Wei, Z;
Liu, F;
Masouros, C;
Vincent Poor, H;
(2021)
Fundamentals of Physical Layer Anonymous Communications: Sender Detection and Anonymous Precoding.
IEEE Transactions on Wireless Communications
10.1109/TWC.2021.3093722.
(In press).
Preview |
Text
Fundamentals_of_Physical_Layer_Anonymous_Communications_Sender_Detection_and_Anonymous_Precoding.pdf - Accepted Version Download (1MB) | Preview |
Abstract
In the era of big data, anonymity is recognized as an important attribute in privacy-preserving communications. The existing anonymous authentication and routing designs are applied at higher layers of networks, ignoring the fact that physical layer (PHY) also contains privacy-critical information. In this paper, we introduce the concept of PHY anonymity, and reveal that the receiver can unmask the sender’s identity by only analyzing the PHY information, i.e., the signaling patterns and the characteristics of the channel. We investigate two scenarios, where the receiver has more antennas than the sender in the strong receiver case, and vice versa in the strong sender case. For each scenario, we first investigate sender detection strategies at the receiver, and then we develop anonymous precoding to address anonymity while guaranteeing high signal-to-interference-plus-noise-ratio (SINR) for communications. In particular, an interference suppression anonymous precoder is first proposed, assisted by a dedicated transmitter-side phase equalizer for removing phase ambiguity. Afterwards, a constructive interference anonymous precoder is investigated to utilize inter-antenna interference as a beneficial element without loss of the sender’s anonymity. Simulations demonstrate that the anonymous precoders are able to preserve the sender’s anonymity and simultaneously guarantee high SINR, opening a new dimension on PHY anonymous designs.
Type: | Article |
---|---|
Title: | Fundamentals of Physical Layer Anonymous Communications: Sender Detection and Anonymous Precoding |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1109/TWC.2021.3093722 |
Publisher version: | http://dx.doi.org/10.1109/TWC.2021.3093722 |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Electronic and Electrical Eng |
URI: | https://discovery.ucl.ac.uk/id/eprint/10132363 |
Archive Staff Only
![]() |
View Item |