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Abstract
Objectives The purpose of this study was to build a deep learning model to derive labels from neuroradiology reports and assign
these to the corresponding examinations, overcoming a bottleneck to computer vision model development.
Methods Reference-standard labels were generated by a team of neuroradiologists for model training and evaluation. Three
thousand examinations were labelled for the presence or absence of any abnormality by manually scrutinising the corresponding
radiology reports (‘reference-standard report labels’); a subset of these examinations (n = 250) were assigned ‘reference-standard
image labels’ by interrogating the actual images. Separately, 2000 reports were labelled for the presence or absence of 7
specialised categories of abnormality (acute stroke, mass, atrophy, vascular abnormality, small vessel disease, white matter
inflammation, encephalomalacia), with a subset of these examinations (n = 700) also assigned reference-standard image labels.
A deep learning model was trained using labelled reports and validated in two ways: comparing predicted labels to (i) reference-
standard report labels and (ii) reference-standard image labels. The area under the receiver operating characteristic curve (AUC-
ROC) was used to quantify model performance. Accuracy, sensitivity, specificity, and F1 score were also calculated.
Results Accurate classification (AUC-ROC > 0.95) was achieved for all categories when tested against reference-standard report
labels. A drop in performance (ΔAUC-ROC > 0.02) was seen for three categories (atrophy, encephalomalacia, vascular) when
tested against reference-standard image labels, highlighting discrepancies in the original reports. Once trained, the model
assigned labels to 121,556 examinations in under 30 min.
Conclusions Our model accurately classifies head MRI examinations, enabling automated dataset labelling for downstream
computer vision applications.
Key Points
• Deep learning is poised to revolutionise image recognition tasks in radiology; however, a barrier to clinical adoption is the
difficulty of obtaining large labelled datasets for model training.

• We demonstrate a deep learning model which can derive labels from neuroradiology reports and assign these to the corre-
sponding examinations at scale, facilitating the development of downstream computer vision models.

• We rigorously tested our model by comparing labels predicted on the basis of neuroradiology reports with two sets of
reference-standard labels: (1) labels derived by manually scrutinising each radiology report and (2) labels derived by
interrogating the actual images.
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Abbreviations
AUC-ROC Area under the receiver operating characteristic

curve
BERT Bidirectional Encoder Representations from

Transformers
BioBERT Bidirectional Encoder Representations from

Transformers for Biomedical Text Mining
GloVe Global Vectors for Word Representation
NLP Natural language processing
t-SNE t-distributed stochastic neighbour embedding

Introduction

Deep learning computer vision systems are poised to revolu-
tionise image recognition tasks in radiology [1–3]. However,
progress has been constrained by a critical bottleneck; during
training, artificial neural networks often require tens of thou-
sands of labelled images to achieve the best possible perfor-
mance. Unlike traditional computer vision tasks, where image
annotation is simple (e.g. labelling cat, dog, horse) and large-
scale labelling can be crowdsourced [4], assigning radiologi-
cal labels is highly complex, requiring considerable domain
expertise. Manually labelling MRI scans appears to be partic-
ularly laborious due to (1) the superior soft-tissue contrast of
MRI which enables more refined diagnoses compared with
other imaging modalities such as computed tomography;
and (2) the use of multiple, complementary imaging se-
quences so that a larger number of images must be scrutinised
per examination. Given the year-on-year increase inMRI scan
demand for at least a decade [5] and the existing pressures on
clinical services seen in many countries, it also appears to be
particularly difficult to justify using radiologists’ time to gen-
erate labelled MRI datasets for research purposes. As a result,
it is plausible that neuroradiology, where MRI is fundamental,
is at risk of not being able to fully harness deep learning
computer vision methodology for image recognition tasks.

A promising alternative to manual dataset labelling is to
train a natural language processing (NLP) model to derive
labels from radiology text reports and then assign these labels
to the corresponding MRI examinations. Recently, this tech-
nique has been demonstrated for labelling head computed
tomography (CT) [6], chest CT [7], and chest radiograph [8,
9] examinations. A limitation of these studies is that perfor-
mance was assessed by comparing labels derived from radi-
ology reports by the model with reference-standard labels de-
rived by manual inspection of the same radiology reports by
radiologists. Ultimately, however, it is the agreement between
predicted labels and the actual image findings which is most
important for downstream computer vision training; in cases

where radiology reports fail to capture the full gamut of find-
ings (e.g. due to ‘satisfaction of search’ errors, or because the
findings have been detailed in a previous report and not reca-
pitulated in a follow-up report, e.g. ‘stable findings’ or ‘no
interval change’), then this validation strategy may be
insufficient.

In the context of head MRI examinations, NLP has been
previously used to extract highly specific information from
text reports, such as in quantifying the number of brain me-
tastases from the reports of patients with brain metastasis [10],
selecting MRI protocols [11], and highlighting acute strokes
[12]. However, NLP has yet to be applied broadly to tasks
such as labelling head MRI examinations in a manner suitable
for general abnormality detection. This can be ascribed to the
greater lexical complexity of MRI reports compared with oth-
er modalities such as CT, which is again due to the high soft-
tissue contrast resolution of MRI which typically allows more
detailed description of abnormalities and more refined
diagnoses.

In the last 18 months, transformational developments with-
in the field of NLP [13–17] have led to dramatic improve-
ments in performance on a number of general [18] as well as
more specialised [19, 20] language tasks. The purpose of our
study was to build on these recent breakthroughs to create a
state-of-the-art NLP model to automate the labelling of large
MRI neuroradiology imaging datasets which could be used
for downstream training of deep learning computer vision
models to produce abnormality detection systems. We also
sought to rigorously test our model by comparing labels pre-
dicted on the basis of radiology reports with labels generated
via manual inspection of the corresponding images by a team
of expert neuroradiologists. Given the growing evidence that
significant discrepancies can exist between labels derived
from radiology reports and those derived by radiologists in-
terrogating the actual images [21, 22], determining the validity
of using report labels as proxies for image labels in the context
of head MRI examinations was an important aspect of our
study.

Methods

Data

The UK’s National Health Research Authority and Research
Ethics Committee approved this retrospective study.
Radiology reports were extracted from the Computerised
Radiology Information System (CRIS) (Wellbeing
Software). Images were extracted from the Patient Archive
and Communication Systems (PACS) workstations (Sectra).
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All data was de-identified. Reader image analysis was per-
formed on PACS.

All 126,556 adult (≥ 18 years old) head MRI examinations
performed at the King’s College Hospital NHS Foundation
Trust between 2008 and 2019 were included in this study
(Fig. 1). The corresponding 126,556 radiology text reports
produced by 17 expert neuroradiologists (UK consultant
grade; US attending equivalent) were also obtained. The neu-
roradiologists had different reporting styles. These reports
were largely unstructured and typically comprised 5–10
sentences of image interpretation. Sometimes the reports in-
cluded information from the MRI examination protocol, com-
ments regarding the patient’s clinical history, and recom-
mended actions for the referring doctor. The reports had often
been transcribed using voice recognition software. We used
type-token ratio and Yules I [23] to calculate the linguistic
complexity of our report corpus, and compared this to
similar-sized head CT [6] and chest radiograph [24] corpora
from the radiology literature. Because differences in reporting
styles could plausibly lead to poor model performance when
classifying reports from an external hospital (‘domain shift’),
500 radiology reports from Guy’s and St Thomas’ NHS
Foundation Trust were also obtained and used for additional
model testing.

Reference-standard report annotation

A subset of the reports was selected for annotation by 6 expert
neuroradiologists (UK consultant grade; US attending equiv-
alent). Five hundred reports were randomly sampled each year
to create a 5000 report corpus for model training and evalua-
tion. Prior to report labelling in this study, a complete set of
clinically relevant categories of neuroradiological abnormality
and a set of rules by which reports were to be labelled were
developed (supplemental material). Fleiss’ kappa [25] was
used to measure interrater reliability. All labelling was per-
formed using a dedicated tool which we make openly avail-
able at https://github.com/MIDIconsortium/RadReports.

Three thousand reports were independently labelled by two
neuroradiologists for the presence or absence of any abnor-
mality. The level of the initial agreement between these two
labellers was recorded, and where there was disagreement, a
consensus classification decision was made with a third neu-
roradiologist. Separately, 2000 reports were independently la-
belled by three neuroradiologists for the presence or absence
of 7 specialised categories of abnormality (i.e. 7 binary labels
were assigned to each of these reports). These were acute
stroke, mass, atrophy, vascular abnormality, small vessel dis-
ease [26], white matter inflammation, and encephalomalacia.
The level of the initial agreement between these three labellers
was recorded, with a consensus classification decision made
with a fourth neuroradiologist where there was disagreement.
We refer to the ‘presence or absence of any abnormality’

dataset as the ‘binary’ dataset and the ‘specialised categories
of abnormality’ dataset as the ‘granular’ dataset.

Reference-standard image annotation

In order to generate ‘reference-standard image labels’ for
model testing, 950 head MRI examinations were randomly
selected from the 5000 examinations with reference-standard
report labels. Two neuroradiologists labelled 250 examina-
tions as normal or abnormal applying the same framework
used for report labelling—but interrogating the actual images.
Separately, 7 datasets of 100 examinations were each labelled
for the presence or absence of one of the 7 specialised catego-
ries. Each of these 7 datasets contained approximately 50 ex-
aminations with the specialised category of interest, and 50
examinations without (Fig. 1, Fig. S1). Creating balanced test
datasets overcame underlying variations in prevalence for dif-
ferent categories, facilitating a fair comparison between each
classifier.

All available sequences within a head MRI examination
were interrogated when generating reference-standard image
labels. This is consistent with the methodology for deriving
labels from reports, as each report summarises the findings
from all available sequences.

NLP model generalisability

In order to determine the generalisability of our normal/
abnormal classifier to radiology reports from an external hos-
pital, 500 reports from Guy’s and St Thomas’ NHS
Foundation Trust were also labelled by two neuroradiologists
for the presence or absence of any abnormality, applying the
same framework used to label reports from the King’s College
Hospital NHS Foundation Trust. Again, a consensus classifi-
cation decision was made with a third neuroradiologist where
there was disagreement.

Report pre-processing

Only those pre-processing steps required by transformer-
based language models were performed [27]. Briefly, all re-
ports were converted to lower case, and each report was con-
verted into a list of unique integer token identifiers.

Modelling

Our report classifier is built on top of BioBERT [19], a lan-
guage model pre-trained on large-scale biomedical corpora
which converts text tokens into contextualised vector repre-
sentations suitable for downstream language processing tasks.
We adapted BioBERT for report classification by adding a
custom attention module which aggregates individual word
vectors into a fixed-dimensional representation for each
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report, as well as a fully connected neural network with a
single hidden layer which takes this vector representation as
its input and outputs the probability that a report describes a
given category of abnormality (Fig. 2). Further architectural
details are provided in [28]. In total, 8 models were trained—
one for normal/abnormal classification, and one for each of
the 7 specialised categories of abnormality.

For each classifier, the corresponding dataset with
reference-standard image labels (n = 250 examinations for
binary classifier, n = 100 examinations for each of the 7
specialised classifiers) was put to one side for use as a hold-
out test set. The remaining datasets of examinations with
reference-standard report labels (after excluding patients

appearing in the image label test set) were then randomly split
into training (60%), validation (20%), and testing (20%)
datasets. This split was performed at the patient level in order
to prevent ‘data leakage’. Our overall approach to dataset gen-
eration is presented in Fig. 1, with a detailed description in the
supplemental material. For each split, model checkpoints were
saved after each epoch, and the model with the lowest valida-
tion loss was used for evaluation on (i) the test set with refer-
ence standard report labels, and (ii) the test set with reference-
standard image labels. Following [29], we set the learning rate
to 1e-5 in order to avoid ‘catastrophic forgetting’ of weights
learned during pre-training; likewise, we set the batch size to
16 as this was the maximum possible size for a 12-GB

Fig. 1 Flowchart showing datasets used to train, validate, and test our
models. For each model, a subset of reports was assigned ‘reference-
standard image labels’ (n = 250 for normal/abnormal, n = 100 for each
of the 7 specialised categories) which served as a fixed hold-out ‘image
label’ test set. After removing reports describing separate studies of pa-
tients in the test set, the remaining reports with ‘reference-standard report
labels’ (e.g. n = 2729 for normal/abnormal, 1891 for ‘mass’/’no mass’
etc.) were split at the patient level into training and validation datasets, as
well as a ‘report label’ test dataset, and model testing was performed in

two ways: using the test set with (i) reference-standard report labels and
(ii) reference-standard image labels. This splitting procedure was repeated
10 times for each category to generate model confidence intervals (the test
set with reference-standard image labels always remained fixed). Note
that the splitting procedure in the dashed teal box was performed sepa-
rately for each of the 7 specialised categories of abnormality; however,
only a single category (‘mass’) has been included for brevity. The full
flow chart for all granular categories is available in the supplemental
material (Fig. S1)
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graphics processing unit (GPU) and previous studies have
shown that larger batch sizes give the best performance when
fine-tuning BERT-based models [30]. Following [18], Adam
optimizer was used to update model weights. All statistical
analysis and modelling were performed using PyTorch
1.4.0, an open-source python-based scientific computing
package which provides GPU acceleration for deep learning
research [31]. The area under the receiver operating character-
istic curve (AUC-ROC) was used to quantify model perfor-
mance. To generate performance confidence intervals, the
splitting procedure was repeated 10 times for each classifier.

Accuracy, sensitivity, specificity, and F1 score were also cal-
culated. Given the absence of a dedicated head MRI exami-
nation report classifier in the literature, to allow model com-
parison, we compared our model to the state-of-the-art head
CT report classifier [6] using code available at https://github.
com/aisinai/rad-report-anotator. The classifier is based on
word2vec embeddings [32] and requires pre-training—for
this, we used the remaining 121,556 reports (i.e. those not
assigned reference standard labels). DeLong’s test [33] was
used to determine the statistical significance of AUC-ROC
values for different classifiers and for different evaluation

Fig. 2 Deep learning MRI
neuroradiology report classifier
for automated dataset labelling.
Free-text reports are converted
into a list of integer word identi-
fiers which are passed into a
transformer-based language en-
coder network. This network
converts each word into a 768-
dimensional contextualised em-
bedding vector and contains ~110
million parameters which are
initialised with weights from
BioBERT—a biomedical lan-
guage model pre-trained on all of
English Wikipedia (2.5 billion
words), PubMed abstracts (4.5
billion words), and PMC full-text
articles (13.5 billion words). A
custom attention network aggre-
gates these vectors into a report
representation by a taking
weighted sum of embedding vec-
tors, with the weight of each word
determined by its importance to
the classification decision. A fully
connected neural network with a
single hidden layer then converts
this to a probability that the report
describes a category of interest,
e.g. abnormal, mass, acute stroke.
The entire network—i.e. the
transformer language model, at-
tention module, and classification
network—is trained end-to-end
on the basis of the binary cross-
entropy between the model pre-
dictions and reference-standard
report labels using the Adam
optimizer
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procedures (i.e. reference-standard image labels and
reference-standard report labels).

We applied t-distributed stochastic neighbour embedding
(t-SNE) [34] to generate two-dimensional visualisations of the
report embeddings used by our classifier and compared these
to representations generated from word2vec embeddings. We
also inspected the weights of our model’s custom attention
layer to interrogate classification decisions, in particular erro-
neous decisions.

Code to enable readers to replicate these methods using
their own datasets is available at https://github.com/
MIDIconsortium/HeadMRIDatasetLabelling.

Results

Comparative lexical analysis

The lexical complexity of the MRI head report corpus was
greater than similar-sized head CT [6] and chest radiograph
[24] corpora (Table 1). Our dataset contained a higher number
of unique words, both in absolute number (205,048) and per
report (1.62), than these two other corpora, which is reflected
in a higher Yule I and type-token-ratio score.

Reference-standard report annotation

Reference-standard report labels, along with the initial
interrater agreement, for the two datasets are shown in
Table 2. Across all abnormal reports in the granular dataset,
the mean number of specialised abnormal labels per report
was 1.56 (maximum = 5; mode = 1). The initial discrepancies
between expert neuroradiologists using the same set of clear
categorisation rules put into context the challenges facing an
algorithm.

NLP modelling

Accurate neuroradiology report classification (AUC-ROC =
0.991) was achieved for the binary (i.e. normal or abnormal)
classifier when tested against reference-standard report labels
(Fig. 3, Table 3). Importantly, only a small reduction in per-
formance (Δ AUC-ROC = 0.014) was seen when the classi-
fier was tested against reference-standard image labels instead

of reference-standard report labels (p < 0.05) (Fig. 3); in both
cases, sensitivity and specificity of > 90% were achieved
(Table 3). The model was generalised to reports obtained from
Guy’s and St Thomas’ NHS Foundation Trust (ΔAUC =
0.001) (Fig. 3). The model also outperformed (p < 0.05) a
logistic regression model based on mean word2vec embed-
dings which is the state-of-the-art method for head CT report
classification [6].

Using t-SNE, two-dimensional visualisations of the report
representations used by the binary model were generated (Fig.
4). A clear clustering of normal and abnormal reports is seen,
indicating that the model has separated the underlying factors
of variation between these classes. In contrast, representations
formed using mean word2vec embeddings exhibit consider-
ably more overlap between the two classes. The relative im-
portance of different words to the construction of each report
representation can be determined by inspecting the weights of
the attention network, providing a form ofmodel interpretabil-
ity (Fig. 5).

For all granular abnormality categories studied, accurate
neuroradiology report classification was achieved (AUC-
ROC > 0.95, reference-standard report labels). For 4 of the
7 categories (acute stroke, mass, small vessel disease, and
white matter inflammation), only a small reduction in per-
formance (Δ AUC-ROC < 0.02) was observed when tested
against reference-standard image labels instead of
reference-standard report labels (p < 0.05) (Fig. 6a–d).
For these categories, sensitivity and specificity of > 90%
were achieved (Table 4). Interestingly, a larger drop in
AUC-ROC was observed for atrophy (Δ AUC-ROC
0.037), encephalomalacia (Δ AUC-ROC 0.055), and vas-
cular (Δ AUC-ROC 0.067) categories when tested against
reference-standard image labels (p < 0.05) (Fig. 6e–g),
highlighting discrepancies between labels derived from
historical radiology reports, and those derived by manually
scrutinising the images.

Once trained, our classifiers can be used to automatically
assign labels to head MRI examinations by fixing the param-
eter weights and running eachmodel in inference mode, there-
by completing the final stage of a pipeline for labelling large
datasets of head MRI examinations. To demonstrate feasibil-
ity, we assigned labels to the remaining 121,556 head MRI
examinations that had not been used for reference-standard
labelling (Fig. S3); this was achieved in under 30 min.

Table 1 Complexity analysis of head MRI, head CT [6], and chest radiograph [24] reports

Dataset Number of reports Total size of corpus (words) Total number of unique words Yule I Type-token-ratio

Head MRI 126,556 14,183,182 205,048 79 0.019

Head CT [6] 96,303 12,110,849 145,257 34 0.011

Chest radiograph [24] 160,861 2,432,099 6481 29 0.002
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Discussion

Artificial neural networks typically require tens of thousands
of labelled images to achieve the best possible performance in
image recognition tasks. This represents a bottleneck to the
development of deep learning systems for complex image
datasets, particularly MRI which is fundamental to neurolog-
ical abnormality detection. In this work, we have developed a
dedicated neuroradiology report classifier which can automate

image labelling by deriving labels from radiology reports and
accurately assign important labels to the corresponding MRI
examinations. It was feasible for our model to assign more
than 100,000 MRI scans as normal or abnormal—as well as
allocating specialised labels to abnormal scans—in under 30
min, a task that would likely take years to complete manually.

Our study builds on recent transformational developments
in NLP, culminating with the introduction of the Bidirectional
Encoder Representations from Transformers (BERT) model
and the biomedical variant BioBERT. Both of these models
were pre-trained on huge collections of text—BioBERT, for
example, was trained on English Wikipedia and all PubMed
Central abstracts and full-text articles, totalling more than 20
billion words—meaning that considerable low-level language
comprehension can be inherited by initialising downstream
networks with weights from these parent models, so that fewer
labelled examples are necessary for model training.

Additionally, BERT and BioBERT provide contextualised
word embeddings. Before 2018, state-of-the-art document
classification models used pre-trained word2vec or GloVe
[35] embeddings. However, a fundamental limitation is that
these embeddings are context-independent. For example, the
vector for the word ‘stroke’ would be the same when present
in the sentence ‘restricted diffusion consistent with acute
stroke’ as it would be in the sentence ‘no features suggestive
of acute stroke’. Context independence is particularly prob-
lematic for complex, unstructured, reports like those in our
MRI corpus as these often include descriptions, proceeded
by distant negation, of abnormalities which are not present,
including those that are being searched for in light of the
clinical information.

Previous studies have only reported model performance on
a hold-out set of labelled reports [6, 7, 9], and to date, there has
been no investigation into the general validity of NLP-derived
labels for headMRI examinations [36]. An important question

Table 2 Reference-standard report labels across all abnormality
categories. We refer to the ‘presence or absence of any abnormality’
dataset as the ‘binary’ dataset and the ‘specialised categories of
abnormality’ dataset as the ‘granular’ dataset. Granular definitions are
provided in the supplemental material. Briefly, ‘small vessel disease’

refers to the presence of moderate or severe small vessel disease [26];
‘vascular’ includes abnormalities such as aneurysms; ‘atrophy’ refers to
volume loss in excess of age; ‘encephalomalacia’ refers to any cause of
permanent tissue damage including previous surgery or the chronic
sequelae of infarcts or haemorrhages

Dataset Binary label dataset
King’s College
Hospital NHS
Foundation Trust
(n = 3000)

Binary label dataset
Guy’s and St
Thomas’ NHS
Foundation Trust
(n = 500)

Granular label dataset Guy’s and St Thomas’NHS Foundation Trust (n = 2000)

Category Abnormal Abnormal Small
vessel
disease

Acute
stroke

Mass Vascular White matter
inflammation

Atrophy Encephalomalacia

Number of examinations 1152 215 266 251 351 287 257 264 384

Interrater agreement
(Fleiss kappa)

0.87 0.89 0.85 0.84 0.92 0.91 0.94 0.79 0.83

Fig. 3 Receiver operating characteristic curve for the binary classifier
evaluated on the reference-standard report label (indigo, n = 600) and
reference-standard image label (teal, n = 250) test sets from the King’s
College Hospital NHS Foundation Trust, and the reference-standard re-
port label test set from Guy’s and St Thomas’ NHS Foundation Trust
(magenta, n = 500). The area under the receiver operating characteristic
curves and the corresponding 95% confidence intervals are also provided
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that we investigated in this study was the validity of using
report labels as proxies for image labels. By comparing our
model’s predictions with reference-standard image labels de-
rived by our team of neuroradiologists on the basis of manual
inspection of 950 images, we have shown that binary labels
indicating the presence or absence of any abnormality can
reliably be assigned using our NLP model. We have also
shown that labels for four specialised categories of abnormal-
ity (mass, small vessel disease, white matter inflammation,
and acute stroke) can be accurately assigned.

Whilst label information was accurately extracted from the
original reports for all categories (AUC > 0.95, reference-
standard report label validation), the original reports less ac-
curately represented the actual image findings for three cate-
gories of abnormality (encephalomalacia, vascular, and atro-
phy), as evidenced by the greater ΔAUC-ROC. This repre-
sents a source of error unrelated to NLPmodel performance (a
text classifier cannot detect findings which are not reported).
There may be several reasons for this discrepancy. First, in the

presence of more clinically important findings, neuroradiolo-
gists often omit descriptions of less critical abnormalities
which may not necessarily change the overall conclusion or
instigate a change in the patient’s management. For example,
we noted that MRI reports were often insensitive to non-
critical findings such as micro-haemorrhages (vascular cate-
gory) or minor parenchymal residua from an intraventricular
drain tract (encephalomalacia). A second source of low sensi-
tivity is the observation that radiology reports are often tai-
lored to specific clinical contexts and the referrer. A report
aimed at a neurologist referrer who is specifically enquiring
about a neurodegenerative process in a patient with new-onset
dementia, for example, may make comments about subtle
parenchymal atrophy. In contrast, parenchymal volumes
may not be scrutinised as closely in the context of a patient
who has presented with a vascular abnormality, such as an
aneurysm, and the report is aimed at a vascular neurosurgeon.
The drop in accuracy for these three categories highlights an
important and novel contribution of our work, namely that

Fig. 4 Two-dimensional visualisations of test set report embeddings
generated by our model (left), and from mean word2vec embeddings
(right), along with reference-standard report labels (abnormal: red,

normal: blue). Representative examples of false-positive and false-
negative misclassification are demonstrated in Fig. 5

Table 3 Binary classifier performance evaluated on reference-standard
report labels and reference-standard image labels. Comparison is made
with a logistic regression model using mean word2vec embeddings and
N-grams (N = 1, 2, 3) which has previously been shown to accurately

classify head CT reports [6]. AUC-ROC, accuracy, sensitivity, specific-
ity, and F1 score are provided, along with the corresponding 95% confi-
dence intervals

Model AUC-ROC Balanced accuracy (%) Sensitivity (%) Specificity (%) F1 (%)

Our model

Report label test set (n = 600) 0.991 ± 0.004 95.9 ± 0.2 96.5 ± 0.1 95.3 ± 0.2 96.2 ± 0.2

Image label test set (n = 250) 0.973 ± 0.004 91.8 ± 0.6 91.4 ± 0.3 92.1 ± 0.5 93.0 ± 0.5

Word2vec model [6]

Report label test set (n = 600) 0.969 ± 0.003 90.1 ± 0.3 89.1 ± 0.2 91.0 ± 0.2 90.3 ± 0.2

Image label test set (n = 250) 0.935 ± 0.004 86.2 ± 0.6 85.1 ± 0.4 87.3 ± 0.5 85.9 ± 0.5
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Fig. 5 Visualisation of word-level attention weights including represen-
tative examples of false positive and false negative misclassification.
Darker colour represents a higher contribution to the report representation
used by the model for report classification. In a (true positive classifica-
tion), the model assigned high weighting to several words in the sentence
describing a ‘focus of restricted diffusion…consistent with an acute in-
farct’. In b (true negative classification), the model assigned the highest
weighting to the words ‘normal’, ‘Intracranial’, and ‘appearances’. In c
(false positive), the highest weighting was assigned to words describing a
‘well defined lesion’ which ‘remains unchanged in size’. However, this
report was marked by our team of neuroradiologists as normal due to the

likelihood that it represents a prominent perivascular space, a finding
which our team consider normal unless excessively large. In d (false
negative), the highest weighting was assigned to several instances of
the phrase ‘normal intracranial appearances’. This example highlights a
case where the neuroradiologist who reported the original scan reason-
ably deemed a finding insignificant—and used language accordingly—
whereas our labelling team, in order to be as sensitive as possible, marked
this report as abnormal. These representative examples demonstrate how
our labelling framework errs towards the safest clinical decision.
Additional examples of erroneous classification are available in the sup-
plemental material

Fig. 6 Receiver operator characteristic (ROC) curves for small vessel
disease (a), mass (b), white matter inflammation (c), and acute stroke
(d), encephalomalacia (e), atrophy (f), and vascular (g) classifiers evalu-
ated on reference-standard report label (indigo, n = 400) and reference-

standard image label (teal, n = 100) test sets. The area under the receiver
operating characteristic curves and the corresponding 95% confidence
intervals are also provided
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validation against manual inspection of radiology examina-
tions by experienced radiologists may be necessary to rigor-
ously determine the validity of using report labels as proxies
for image labels.

Although our neuroradiology report classifiers are highly
accurate, they are not perfect models (i.e. they achieve AUC <
1, Fig. 3). This will result in some small fraction of images
being mislabelled. Recent studies have shown that this ‘label
noise’ can impact the performance of deep learning models
[37, 38]. Nonetheless, the level of label noise which results
from using our models is modest and is in fact below known
error rates present in commonly-used computer vision
datasets (e.g. ImageNet, which is estimated to have label noise
as high as 10% [39, 40]); as such, minimal impact on down-
stream computer vision performance can be expected.

A limitation of our work is that our sample training cohort
may not be representative of every neurological patient pop-
ulation. However, the sample was large, and obtained from a
sizeable hospital and university cluster where imaging is ob-
tained for all neurological, neurosurgical and psychiatric dis-
orders, and also included healthy volunteers. This hospital
department also consists of 17 expert neuroradiologists with
different reporting styles. Furthermore, our normal/abnormal
classifier demonstrated minimal degradation in performance
when applied to reports from an external hospital. Together,
this would suggest that our study findings are reasonably rep-
resentative of large hospitals catering for a wide range of neu-
rological abnormalities reported by neuroradiologists.
Nonetheless, as part of future work, we plan to further inves-
tigate the generalisability of our classifiers to examinations
from other hospitals.

In conclusion, we have developed an accurate neuroradiol-
ogy report classifier to automate the labelling of head MRI
examinations. Assigning binary labels (i.e. normal or abnor-
mal) to images from reports alone is highly accurate. In con-
trast to the binary labels, the accuracy of more granular label-
ling is dependent on the category. Our model performed the
labelling task in a small fraction of the time it would take to
perform manually. Together, these results overcome a critical
bottleneck to the development and widespread translation of
deep learning computer vision systems for image recognition
tasks in radiology.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00330-021-08132-0.
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