Clinician-driven Al in Ophthalmology: Resources Enabling

Democratization

Authors: Edward Korot*'?, Mariana B. Gongalves?**, Saad M Khan®, Robbert Struyven?®,

Siegfried K. Wagner?, Pearse A Keane?

Affiliations:

Stanford University Byers Eye Institute, Palo Alto, USA
Moorfields Eye Hospital, London, United Kingdom

Federal University of Sdo Paulo (UNIFESP), Sao Paulo, Brazil
Vision Institute (IPEPO), Sao Paulo, Brazil

Royal Berkshire Hospital, Reading, United Kingdom

2 o o

University College London, London, United Kingdom

*Corresponding Author:

Edward Korot

2450 Watson Ct Palo Alto Ca 94303
(p)650-723-6995

(f)650-320-9443

ekorot@gmail.com



Abstract

Purpose of review

This article aims to discuss the current state of resources enabling the democratization of

artificial intelligence in ophthalmology

Recent findings

Open datasets, efficient labeling techniques, code-free AutoML and cloud based platforms for
deployment are resources which enable clinicians with scarce resources to drive their own Al

projects.

Summary

Clinicians are the use-case experts who are best suited to drive Al projects tackling
patient-relevant outcome measures. Taken together, open datasets, efficient labeling
techniques, code-free AutoML and cloud platforms break the barriers for clinician-driven Al. As
Al becomes increasingly democratized through such tools, clinicians and patients stand to

benefit greatly.
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Introduction

The authors strongly believe that relevant and clinically applicable deep learning
research is best led by the medical use-case experts - clinicians. Based on their evolving
cumulative clinical experience, clinicians are most attuned to the problem points and
patient-relevant endpoints for which to optimize the algorithms of interest. Deep learning models
should be designed in a use-case first approach, that is, by first identifying a use-case which
addresses a real-world problem, next finding a dataset which is representative of that problem
and clinical context, then applying reproducible and clinically-relevant labels, and finally training
a deep learning model to predict a variable of interest for clinical care. For truly impactful work
which affects clinical outcomes, clinicians are instrumental in each step of the aforementioned

process.

However, full engagement of the clinical community with artificial intelligence (Al)
research has significant challenges. Firstly, the development and validation of such models
typically requires large volumes of data, far exceeding those required for traditional clinical
prediction models[1]. However, a major enabler for Al research, particularly in ophthalmic
imaging, are increasingly provisioned public datasets although the extent to which this may
represent the target population and disease must be explored[2]. Alternatively, healthcare
professionals may look to their own institution for local datasets, cognizant that labeling of such
data may be time-consuming, and associated with significant interobserver variability. Moreover,
the foreseeable information bias characteristic of electronic health records and real-world data
may limit their utility as labels. Secondly, the training of complex modelling approaches, such as
deep learning, require computer hardware not typically found in healthcare institutions. Changes
in policy seeking to modernize the informatics infrastructure of hospitals as well as recent
proposals to migrate healthcare data onto cloud systems may however provide much-needed
subsistence for incorporating cloud-based Graphics Processing Units (GPUs) for model
development[3,4]. Thirdly, expertise in data science and deep learning is often scarce in the
clinical environment, especially among units without an academic or university affiliation.
Solutions to this challenge include interdisciplinary cross-institution collaboration but also the

rapidly evolving field of code-free automated machine learning (AutoML) platforms[5-7].

In this piece, we tackle the efforts and recent developments on these fronts, which are
collectively empowering healthcare professionals, democratizing Al in ophthalmology, and

enabling clinician-driven Al.
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Review

Open Datasets

One of the fundamental tools enabling clinician involvement in Al research and
development is the increasing availability of health data. As local datasets consisting of patient
data are often relatively small, and entail barriers related to ethical approvals, open public
datasets may be leveraged to design Al models. However, datasets must be carefully evaluated
and scrutinised prior to being made available for use [8,9]. This step in the Al-flow requires great
consideration, as the input data used to train machine learning (ML) algorithms will not only
determine the outputs generated, but also the applicability and generalisability of these models
in the clinical setting. In this section, we will discuss the various elements and characteristics of

datasets which will allow them to truly act as a useful tool for clinician-driven Al.

Accessibility and Usability

To leverage available deidentified datasets for Al modeling, they need to be openly
accessible, which our group has previously defined as being downloadable without fees,
licensing agreements or ethical approvals [2]. We identified over 94 open access ophthalmic
imaging datasets consisting of various modalities and ophthalmic diseases. In contrast to open
datasets, regulated access datasets such as the UK Biobank and the AREDS datasets have
strict requirements in place, which result in barriers for clinician-led development of Al models
[10,11]. It is often difficult for independent healthcare professionals, especially those without
affiliations to research organisations or big health institutions to fulfil the various access

requirements.

While open access datasets are key in the democratization process of Al for clinicians,
this data needs to be made available to the end user in a coherent and usable format. While
most clinicians are familiar with image file formats such as png or jpeg, less are well-versed with
formats such as MATLAB, various raw image formats, and compressed zip folders. Clinicians
may be deterred by this, particularly those without access to high speed internet, resulting in

long download times or failed downloads of large datasets.
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Awareness is another significant barrier. While popular datasets such as Messidor in
ophthalmology are well-known to the research community, there exist many lesser-known large
datasets [2,12]. Having a central and up-to-date repository would not only provide greater
visibility of available, it would also save time by not having to conduct literature or bibliographic
searches to find relevant up-to-date datasets. One such tool recently made available to
clinicians is the Google Datasets search engine, which can be used to identify up-to-date
specific datasets through a user-friendly interface by indexing those published as part of
academic papers and hosted on well-known dataset repositories such as Kaggle [13]. In a
further effort to organize ophthalmology specific datasets for research use, our group has
created eyedatasets.com, which contains links and descriptions of all known open-access

ophthalmic datasets[14].

Metadata Reporting

Reporting of associated demographics and metadata is necessary for full transparency
and data interrogation. This is particularly relevant to investigate data biases such as
overrepresentation or underrepresenation of a particular ethnicity, age group or gender, enabling
scrutiny of ML algorithms for demographic subgroup performance. Without full reporting, models
trained using these datasets may have unpredictable performance, and possibly unintended
consequences for subgroups of the general population [15,16]. Complete metadata reporting
would also allow clinicians to combine images across smaller datasets to develop larger
compiled datasets. This is especially advantageous for uncommon ophthalmic diseases and
imaging techniques, where large datasets from a single institution or research group may be
difficult to obtain.

Relevance and Representation

In a recent review, the concept of health data poverty was highlighted, where there was
unequal representation of the global population across ophthalmic datasets [17]. This is an
issue that needs to be addressed. If models are trained using datasets which are biased to a
certain demographic, they may not perform as well if a clinician’s practice has individuals from
an underrepresented category. First, this has the great potential to exacerbate health disparities.
Second, clinicians may be less incentivised to drive Al development if their patient community

does not benefit due to lack of available representative datasets.
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Open Datasets: A Resource for Al Democratization

Despite the aforementioned considerations, existing open health datasets are one of the
key drivers of clinician-driven Al, as they allow clinicians to leverage large amounts of data for
ML development. Through the use of open datasets, clinicians may curtail obtaining ethical
approvals for collating and de-identifying large volumes of their own institution’s patient data to
curate a dataset. When proper ethical approvals are obtained, and local data is available, open
datasets may also be utilised in ML algorithm testing as additional external validation sets. In
healthcare organizations where patient data has not yet been digitised, open datasets are a

valuable asset to enable clinciain familiarity with Al research and development.

Efficient Labeling Techniques

Traditional labeling process

In the context of healthcare, most ML algorithms are designed with a supervised learning
approach, which relies on labeled data for model training. Accurate and reproducible labels are
required to achieve high model performance, and the following points should be kept in mind
during the labeling process [18]. When selecting the labeling workforce, it is important to
consider that experts have unique strengths at classifying varying types of data [19]. Moreover,
the choice of the number of graders depends on factors such as the subjectivity of the task, the
time and the resources available for each project [20,21]. In addition to qualified graders, it's
desirable to have a grading guideline containing detailed and specific definitions of the ground
truth, as well as some examples to illustrate subjective grading schemes [22]. Lastly, it is
important to carefully decide how to resolve the disagreements that naturally arise when
working with multiple graders. The choice between methods such as maijority vote, arbitration by
a more senior grader, or adjudication should aim to find a balance between the reliability, time

and costs involved with each method [23,24].

Challenges in Data Labeling

Manually labeling data is highly costly and time-consuming, and the scarcity of experts to
handle the data makes the annotation step a bottleneck of the model training process [25-29].
In addition, medical tasks often involve great subjectivity, grader variability and noise in training
labels. Techniques such as adjudication by multiple graders can improve label quality and

provide a rigorous reference standard for model training, but the high time costs prevent this
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method from being used more often [23,30]. These barriers are more pronounced in low-income

countries and small research groups, which hinders the democratization of Al [6].

Deep Learning Techniques Utilizing Fewer Labels

Many studies have been carried out to decrease the resource requirements involved in
the traditional labeling process (i.e., manual labeling of data) [27,30—-32]. Semi-supervised
learning (SSL) is a deep learning method that makes use of both labeled and unlabeled data,
decreasing the need for high quality labeled instances, and achieving superior accuracy when
compared to unsupervised methods, which use only unlabeled data for model training
[25,26,33]. For example, in self-training, an SSL technique, a model (i.e., teacher model) is
firstly trained on a small, labeled set and used to predict pseudolabels on the large, unlabeled
set. A second model (i.e., student model) is then trained on the whole dataset, containing
labeled and pseudolabeled data [26,34,35]. This process may be iterated (i.e., putting the

student back as a teacher) until the desired performance is reached [36].

Active learning (AL) is another deep learning technique which allows efficient use of
unlabeled data. In this method, the most informative instances for model training are selected
for labeling, aiming to reduce cost, while maintaining an adequate model performance
[26,35,37,38]. AL has been recently evaluated in the context of diabetic retinopathy, in which
large amounts of unlabeled data generated by screening programs represent a use case for this
technique [39,40]. This and other alternatives to reduce labeling costs (e.g., transfer learning
and self-supervised learning) represent enabling techniques for research by clinicians with
limited resources. Further work is required to determine an appropriate balance between the

contributions of humans and automated systems in the ML pipeline [41].

AutoML Platforms

Automated machine learning (AutoML) refers to the process of automating some or all
parts of the MLworkflow, obviating the need for coding expertise [6]. Currently, several AutoML
platforms are available, offering a wide range of services that include data cleaning, model
selection, hyperparameter optimization and, in some cases, labeling tools [5]. The Google Cloud
AutoML Vision platform, for example, offers the “Data Labelling Service”, through which users
can submit instructions containing detailed definitions of the ground truth and receive the data
annotated by human labelers [42]. The Microsoft Azure Custom Vision platform offers a tool

called “Smart Labeler”, which resembles the self-training technique. Firstly, the user uploads the
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data, labels part of the training set and starts the automated training process. Once the training
is completed, the platform uses the latest trained iteration of the model to predict the labels of
unlabeled images [43]. Although these tools have the potential to facilitate the annotation step,

their feasibility in clinical data has yet to be evaluated.

Code-free AutoML

AutoML Platforms

A resource which curtails the need for coding-expertise enabling clinician-driven ML is
AutoML. This comprises a set of tools, available from multiple vendors (Amazon, Apple, Clarifai,
Google, MedicMind, Microsoft and others), which automate the ML process[5]. These publicly
accessible platforms enable a clinician-friendly approach where the AutoML provides a user
interface to upload and collate data, assign labels, and train a deep learning model without
coding. A number of services run in the cloud (Amazon, Clarifai, Google, Microsoft, MedicMind),
provisioning the requisite graphical processing units or tensor processing units, and thereby
removing the clinician-facing obstacle of providing their own expensive hardware to train deep
learning models. The platforms typically train the models automatically, and perform steps such
as selection of optimal network architectures, pre-processing methods and hyperparameter

optimization.

Platform Performance and Features

When the model is finished training, it may be deployed to the cloud and made available
for evaluation and prediction. Some platforms (Google, Microsoft) allow download of the
resulting model, for use on mobile devices as an “edge model” or for local evaluation and use.
Our group has performed a systematic performance and featureset review of available
code-free platforms on ophthalmic imaging of various modalities[5]. Three leading platforms
(Amazon, Google, Microsoft), demonstrated uniformly high ML model performance, often higher
than bespoke coded ML models in the literature which utilized the same datasets for training.
However, only the Google platform contained all features recognized as crucial for clinically
useful ML model evaluation and explainability such as confusion matrices, precision-recall
curves, saliency maps, and providing threshold adjustments[44—47]. The Google platform

provided all of these features, the Amazon platform provided none, and the Microsoft platform
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only provided threshold adjustment. External validation of ML models is crucial before clinical
use[48]. Crucially, of these leading three platforms, only Google provided scalable batch
prediction capability, which enables external validation by rapidly producing predictions on large

datasets.

An important consideration of the available AutoML platforms is cost. While clinicians
may save money by avoiding purchasing expensive local hardware to train ML models, the
cloud-based platforms have a limited free tier before requiring payment for their compute
services. Thus, performance per dollar will become a key metrics for those researchers and
clinicians who are budget constrained. As personal computing power becomes more powerful,
these costs will inevitably decrease, allowing for further democratization. As these platforms
mature, the ML process will become increasingly commoditized, and clinicians will become

more versed in utilizing the available tools.

AutoML Enabling Democratization

Code-free AutoML is a robust and increasingly available resource which democratizes
ML access for clinician-driven Al. In addition to image classification and segmentation models, it
has a wide range of uses including natural language processing, tabular data, and video data,
all of which is being generated at a rapid rate in our clinics. AutoML'’s use-cases are broad, and
models may be rapidly trained by the clinicians who are uniquely attuned to their respective
bottlenecks including but not limited to patient care, clinic flow, referral management, and
research study recruitment. The increased ML exposure these platforms provide clinicians will
not only promote fast iteration and problem solving, but also drive exploration and knowledge of

responsable Al practices[49].

Model Deployment: Ingest Data, Provide Predictions via User Interface

At a rapid pace, new ML models are emerging from the research space. Although
promising, almost none of the ML models have made it to the clinic, as crucial obstacles still
stand in the way of the widespread use of Al in this setting. This is demonstrated by only two
ophthalmic diabetic retinopathy algorithms having received FDA approval, and only a fraction of
ophthalmologists utilizing Al in their daily work[50,51]. To take an Al model from research to the

clinic, the model must be packaged and deployed. This involves creating an end-to-end solution
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which goes from a medical scan ingestion to the delivery of the Al-derived insights to the doctor.
The high level steps to create this solution include: utilizing quality controlled image data,
feeding the data to the model to produce predictions, delivering the predictions to the user

through a tailored interface, and finally, obtaining regulatory approval.

Real-time Data Ingestion

ML model training starts with the creation of a dataset. Specifically in medical imaging,
this involves either using an existing public dataset or extracting a dataset manually from the
local hospital imaging file systems. In contrast, during model deployment, the data will originate
from the local hospital imaging file systems. This implies that one must connect with the local
file-system that stores the images, identify the scans of interest, ingest those scans in real-time,

and convert them to a standard format which is usable by the model.

As every medical imaging vendor uses varying storage systems and metadata
structures, connecting to the clinical image file-system may be challenging. Moreover, the
images are often stored in proprietary file formats which may only be viewed via vendor-specific
software, and in most cases no batch converter is provided to convert or extract images to
standard file formats. As a result, to ingest data for a model in real-time, file format converters
are necessary for every scanning device and vendor, alternatively, the images may be stored in
a standard format, similar to the DICOM standard in radiology. Recently, the American Academy
of Ophthalmology (AAO) stated that ophthalmic imaging device manufacturers should
standardize image formats and that “adherence to standardization would advance the needs
and interests of ophthalmologists, their patients, and the quality of clinical care by promoting
interoperability, enabling the creation of comprehensive datasets for research and big data

analyses, and developing algorithms for ML and artificial intelligence’[52].

Generating Model Predictions: Local, Cloud, or Smartphone

Today, the use and impact of models is not just limited by technical hardware
capabilities, but also by the operational processes to develop, share, and deploy ML models.
Conventions for ML model standardization are required for the launch of real-world Al in
healthcare. Common conventions (as the MLCommons initiative has proposed in MLCube) can
ensure models behave as interchangeable building blocks, which may be easily shared for
experimentation between researchers and hospitals[53]. This will eventually enable enhanced

collaboration, and increasingly robust workflows.
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Before model deployment, a ML developer should decide whether it will be run locally, in
the cloud, or on a smartphone. Previously, hospitals focused on having their IT infrastructure
locally ‘on-premise’, as this allowed them to set up and control the full IT setting entirely
independently, initially coming with the benefit of privacy and security. However, as those
systems grow in complexity over the years, adding new features, building upon old software,
this can result in highly complex systems which are difficult to maintain, with increasing outages
and cybersecurity risks. The ability to build ML solutions on local infrastructure is frequently
hampered by both limitations in access to compute resources, and restrictions on the installation

of ML software.

Hospitals are increasingly seeking to modernize their informatics infrastructure, as well
as migrating healthcare data onto cloud systems. Storing and hosting databases on cloud
systems (e.g. Microsoft Azure, Amazon AWS, Google Cloud) allows users to benefit from the
expertise of major technology companies in security, scaling, and ensuring outage-proof stable
infrastructure. Additionally, moving to the cloud allows for easier integration with purpose built
ML tools in the cloud such as AutoML. Further, it enables efficient scaling of compute resources
such as cloud-based graphics processing units for model development or deployment
on-demand. Cloud companies are also focusing on ‘serverless’ services, meaning the developer
does not need to manage and set up their own servers, scale resources in case of increased
demand, create backups, or guarantee security. This allows developers to truly focus on building

ML solutions instead of thinking about servers, security, and backup infrastructure.

Beside deployment on local and cloud infrastructure, ML models may also be hosted on
smartphone devices. Both TensorFlow and PyTorch, the two most commonly used ML
frameworks, are expanding their lightweight libraries to deploy models on mobile and embedded
devices (TensorFlow Lite, PyTorch mobile respectively)[54,55]. Not only are smartphone chips
surprisingly suited for producing ML predictions, they also allow physicians to make predictions
completely locally without the potential privacy issues of having to send data to the cloud as in a
cloud-based setup. In 2020, the first open dataset of smartphone pictures of medical scans was
created[56]. A follow-up paper concluded that although the models, used for classifying chest
X-ray, had a drop in performance when applied to photos of chest X-rays, some models still

performed comparably to radiologists [57].
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User Interface

The interface software to present ML insights should be adapted to the clinical
workflow[58]. In other industries, custom software interfaces are increasingly built by “citizen
developers”. Although their primary job function is outside the field of developing or ML
analytics, these citizen developers create new software applications primarily using no-code
initiatives. No-code initiatives for general web and mobile applications allow non-technical users
to build web and mobile apps without coding expertise. The recent developments in no-code
and low-code initiatives may also facilitate the emergence of citizen developers in medicine. The
creation of interfaces built by and for physicians will result in interfaces which fit within the
physician workflow with integrated and helpful interactions. Eventually, these interfaces will
allow physicians to not only build models with AutoML, but also launch their own models for use

in their own clinic.

Conclusion

Through the proliferation of open datasets, efficient labeling techniques, code-free
AutoML, and cloud-based model deployment frameworks, the barriers for clinician-driven ML
are significantly decreasing. Gartner research defines a citizen data scientist as a “person who
creates or generates models that use advanced diagnostic analytics [...], but whose primary job
function is outside the field of statistics and analytics”[59]. We believe that clinicians, as the
use-case experts, are best suited to be the clinical citizen data scientists who design ML models
for their own use to better patient care. Utilizing the highlighted resources which enable the
democratization of ML, clinicians who were previously interested in applying ML, yet hesitant

due to the perceived hurdles, can now lead the progress of clinician-driven Al.
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Key Points

e Clinician-driven Al projects are now possible, even by researchers and clinicians without
coding experience through publicly available tools

e Open datasets, AutoML, efficient labeling techniques, and cloud platforms enable
machine learning model design with scarce resources

e Clinician-driven Al has the potential to address the Al chasm, enabling use-case driven
projects for relevant endpoints with higher likelihood of actual implementation
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