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There are sometimes cost, scientific, or logistical reasons to allocate individu-
als unequally in an individually randomized trial. In cluster randomized trials
we can allocate clusters unequally and/or allow different cluster size between
trial arms. We consider parallel group designs with a continuous outcome, and
optimal designs that require the smallest number of individuals to be measured
given the number of clusters. Previous authors have derived the optimal alloca-
tion ratio for clusters under different variance and/or intracluster correlations
(ICCs) between arms, allowing different but prespecified cluster sizes by arm.
We derive closed-form expressions to identify the optimal proportions of clus-
ters and of individuals measured for each arm, thereby defining optimal cluster
sizes, when cluster size can be chosen freely. When ICCs differ between arms
but the variance is equal, the optimal design allocates more than half the clus-
ters to the arm with the higher ICC, but (typically only slightly) less than half
the individuals and hence a smaller cluster size. We also describe optimal design
under constraints on the number of clusters or cluster size in one or both arms.
This methodology allows trialists to consider a range for the number of clusters
in the trial and for each to identify the optimal design. Except if there is clear
prior evidence for the ICC and variance by arm, a range of values will need to be
considered. Researchers should choose a design with adequate power across the
range, while also keeping enough clusters in each arm to permit the intended
analysis method.

K E Y W O R D S

cluster randomized trial, optimal design, power, sample size, unequal allocation

1 BACKGROUND

In individually randomized trials it has long been known that it is more efficient to randomize to arms unequally when the
variance of the outcome differs between arms.1 In cluster randomized trials unequal randomization is also more efficient
when the intracluster correlation (ICC) or the cluster size differs between arms. An expression is available to identify the
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optimal allocation ratio in this case, for given cluster sizes in each arm.2,3 A related expression for individually random-
ized trials where only one arm is clustered due to treatment has been derived,4 but this setting is not considered further
in this article. Besides consideration of efficiency, unequal allocation in trials may be chosen because the intervention
is more expensive to provide and/or there is a fixed amount of equipment or staff available to provide the intervention.
Fewer clusters were allocated to the intervention in the PARAMEDIC trial that randomized ambulances where the inter-
vention was provision of a mechanical compression device for cardiac arrest.5 In the ROPE trial, where clusters were
villages, exactly 26 villages were allocated to the intervention because there were resources available to train and sup-
port 26 teachers to deliver the intervention, one per village.6 A potential reason to conversely allocate more clusters (or
individuals) to the intervention arm is to improve learning about its implementation.

In many cluster randomized trials it is possible for the ICC and variance to differ between arms due to the effect of the
intervention(s). We note this can in particular be expected where an intervention standardizes care, for example, through
use of an algorithm in medical care, or a device as in the ongoing PARAMEDIC trial.5 Such an intervention could cause
the ICC and/or variance to decline relative to current care. Conversely interventions may potentially increase the ICC
and/or variance if they are not fully implemented in all clusters, or involve adaptation to each cluster such as participatory
learning and action interventions that develop local solutions to local challenges as in the ongoing SNEHA-TARA and
JIAH trials.7,8

In contrast to earlier research,2,3 we here investigate optimal design in which not only the allocation of clusters is
allowed to vary but also the allocation of individuals to be measured to the trial arms. In other words while we assume
a common cluster size within trial arms the cluster size is allowed to differ between arms and is selected freely. Hem-
ming et al present methodology for sample size calculation with different ICC and cluster size between arms.9 In some
trials the number of individuals recruited or exposed per cluster is determined by the setting, for example, because the
intervention is delivered at the level of a health facility and all individuals in the local area are affected. Nevertheless
our methodology may still be helpful in this case because it allows trialists to see how to minimize the number of indi-
viduals that need to be measured in the trial, where outcomes are not routinely collected and only a random sample
of those exposed are measured. Such a design is common in community randomized trials where the number of indi-
viduals exposed per cluster may be very large as in the SNEHA-TARA trial.7 We use the term cluster size in this article
to denote the number of individuals measured in a cluster, and we assume all clusters provide some measurements.
Identifying an optimal design, meaning one with the minimum number of individuals measured for a given number if
clusters, is particularly important if the data collection is burdensome or expensive, such as in the PA4E1 school ran-
domized trial where the student-level data collection includes 7-day accelerometer measurements, anthropometry, and
a survey.10

We restrict our attention in this article to parallel group trials, without baseline measurement, and a continuous out-
come. We first establish how to identify the optimal allocation of clusters and individuals measured without constraints,
and then when the number of clusters or cluster size is constrained in one or both trial arms. We show how trialists could
investigate alternative suboptimal (less efficient) designs which could be nevertheless be preferred for logistical or other
reasons. We also provide an approach to considering trial design in practice under uncertainty in the ICC or other values
required to calculate sample size. We show how to calculate sample size, and illustrate our approach through considering
how the PA4E1 trial might have been designed under a range of hypothetical (but realistic) alternative scenarios leading
to unequal allocation.

2 MODEL AND POWER FUNCTION

The data are assumed to follow this model:

Yij = 𝛽0 + 𝛽1Xi + (1 − Xi)u0i + Xiu1i + (1 − Xi)𝜀0ij + Xi𝜀1ij

for participant j in cluster i, where Xi denotes the trial arm for cluster i (coded 0 for control and 1 for intervention). We
assume the random terms are Normally distributed with mean zero, but with potentially different variance according to
the trial arm. The individual variability term is denoted 𝜀0ij or 𝜀1ij depending on trial arm and is assumed independent of
the cluster random effect denoted u0i or u1i. We denote the variance of the random terms thus

Var(𝜀0ij) = 𝜎2
0𝜀;Var(𝜀1ij) = 𝜎2

1𝜀;Var(u0i) = 𝜎2
0u;Var(u1i) = 𝜎2

1u
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and from these we can define the intracluster correlation (ICC) for each arm:

𝜌0 =
𝜎2

0u

𝜎2
0u + 𝜎2

0𝜀
; 𝜌1 =

𝜎2
1u

𝜎2
1u + 𝜎2

1𝜀
. (1)

We denote the overall variance of Y by 𝜎2
0 = Var(Yij|Xi = 0) and 𝜎2

1 = Var(Yij|Xi = 1) and denote their ratio by
𝛾 = 𝜎2

1∕𝜎
2
0 .

To describe different designs we denote the total number of individuals measured by N, and the total number of
clusters randomized (we assume all contribute measurements) by K. We assume a common cluster size of m0 for clusters
in the control arm and m1 in the intervention arm. We denote the proportion of measured individuals in the intervention
arm by p and the proportion of trial clusters allocated to the intervention arm by g. When design choice is unconstrained
we consider designs across all possible values of p and g between 0 and 1, given values of N and K. These in turn define
the cluster sizes because

m1 =
pN
gK

;m0 =
(1 − p)N
(1 − g)K

. (2)

In order to consider power we define the target difference in Y to detect as d. We define the power function, based on
a Normal distribution for large sample sizes, thus:

Φ
⎛⎜⎜⎜⎝

d

𝜎0

√
1+(m0−1)𝜌0

(1−p)N
+ 𝛾[1+(m1−1)𝜌1]

pN

− Z1− 𝛼

2

⎞⎟⎟⎟⎠ . (3)

Noting that 1 + (m0 − 1)𝜌0 and 1 + (m1 − 1)𝜌1 take the form of the design effect commonly used in sample size
calculations, we can define the arm-specific effective sample size (ESS) for the two trial arms in terms of either p and N or
g and K as

ESS0 =
(1 − p)N

1 + (m0 − 1)𝜌0
=

(1 − g)Km0

1 + (m0 − 1)𝜌0
; ESS1 =

pN
1 + (m1 − 1)𝜌1

=
gKm1

1 + (m1 − 1)𝜌1
(4)

and hence can alternatively write the power function as

Φ
⎛⎜⎜⎜⎝

d

𝜎0

√
1

ESS0
+ 𝛾

ESS1

− Z1− 𝛼

2

⎞⎟⎟⎟⎠ . (5)

From this we see that power is maximized at the minimum value of

1
ESS0

+ 𝛾

ESS1
. (6)

3 OPTIMAL DESIGN GIVEN DIFFERENT CONSTRAINTS

3.1 Unconstrained design

First we investigate how, for given values of N and K, power can be maximized over p and g, without constraints on their
values.

Based on differentiation of Equation (6), further details provided in the Appendix, we find power is maximized when

popt =
√
𝛾(1 − 𝜌1)√

𝛾(1 − 𝜌1) +
√

1 − 𝜌0
; gopt =

√
𝛾𝜌1√

𝜌0 +
√
𝛾𝜌1

,
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and the corresponding optimal allocation ratios are

popt

1 − popt
=

√
𝛾(1 − 𝜌1)

1 − 𝜌0
, (7)

gopt

1 − gopt
=
√

𝛾𝜌1

𝜌0
. (8)

Recall from Equation (1) that the ICC is the proportion of total variability due to variability between clusters. Examin-
ing the form of these ratios in Equations (7) and (8) we see the optimal allocation of individuals to arms is proportional to
the square root of their within cluster variability, and of clusters is proportional to the square root of their between cluster
variability. Considering equal variance by arm as a special case, that is 𝛾 = 1, power is maximized when

popt =
√
(1 − 𝜌1)√

(1 − 𝜌1) +
√

1 − 𝜌0
; gopt =

√
𝜌1√

𝜌0 +
√
𝜌1

and if furthermore 𝜌1 = 𝜌0 then popt = gopt = 1∕2.
We see the optimal design allocates more clusters to intervention than control (ie, gopt > 0.5) if and only if 𝛾𝜌1 > 𝜌0,

and fewer than half the individuals measured (popt < 0.5) if and only if (1 − 𝜌0) > 𝛾(1 − 𝜌1). If the two ICCs diverge, for
example, 𝜌1 → 1 and 𝜌0 → 0, then progressively more of the clusters and fewer of the individuals are allocated to the arm
with the higher ICC. This is intuitive because as the ICC tends to zero the clustering of the data becomes irrelevant and a
few large clusters are as informative as many small ones, conversely as the ICC tends to 1 then many clusters are required
and the size of these becomes unimportant.11

3.2 Design with a fixed allocated proportion of clusters or measurements to arms

The expressions for popt and gopt for an unconstrained design involve only 𝛾, 𝜌0, and 𝜌1. This indicates that for given values
of N and K power is maximized at p = popt whatever the value of g and at g = gopt whatever the value of p.

3.3 Design with fixed cluster size in one arm only

In Sections 3.3 and 3.4 we investigate how to maximize power, for given values of N and K, under constraints concerning
cluster size. These constraints do not fix a single value for either p or g as in Section 3.2 but specify a relationship between
p and g such that we need only vary one to identify the optimal design.

We suppose that the cluster size in the intervention arm (m1) will be fixed, though the methodology can be adapted to
either arm. With cluster size fixed in one arm then we need only consider varying one allocation proportion, we choose
to vary g. We note that we can write

m0 =
N − gm1K
(1 − g)K

(9)

and substitution for m0 in the expression for ESS0in Equation (4) can lead to a power function in N,K, and m1 as in
Equation (5).

There is a restriction on the range for g given N and K because the number of measurements in the intervention must
be less than N, that is, gKm1 < N. Deriving an expression for gopt is challenging and importantly, unlike our other design
scenarios, it will depend on both N and K.

3.4 Design with fixed cluster size for each arm

We finally consider optimal design conditional on cluster size in the two arms, m0, m1. This scenario has been addressed
in the literature,2,3 but is included here for completeness and to clarify how this differs from the other scenarios we have
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considered in Sections 3.1 to 3.3. Power is maximized at the value of the individual allocation ratio given by

popt

1 − popt
=

√
𝛾[1 + (m1 − 1)𝜌1]

1 + (m0 − 1)𝜌0
.

From Equation (2) we see

g
1 − g

=
m0p

m1(1 − p)
.

So for fixed cluster sizes for each arm the optimal allocation ratio can equivalently be expressed as a cluster allocation
ratio thus

gopt

1 − gopt
= m0

m1

√
𝛾[1 + (m1 − 1)𝜌1]

1 + (m0 − 1)𝜌0
.

4 SAMPLE SIZE FORMULAS

From Equation (3) we see that a large sample equation for the sample size (here considered both N and K jointly) is given
by

1 + (m0 − 1)𝜌0

(1 − p)
+ 𝛾[1 + (m1 − 1)𝜌1]

p
= Nd2

𝜎2
0

(
Z1− 𝛼

2
+ Z1−𝛽

)2 ,

where 1 − 𝛽 indicates the desired power. Expressions for m0 and m1 can be substituted, based on N,K, p, and g, following
Equation (2), and after some rearrangement we see

N
⎡⎢⎢⎢⎣

d2

𝜎2
0

(
Z1− 𝛼

2
+ Z1−𝛽

)2 − 𝛾𝜌1

gK
− 𝜌0

(1 − g)K

⎤⎥⎥⎥⎦ =
1 − 𝜌0

(1 − p)
+ 𝛾(1 − 𝜌1)

p
. (10)

This has a valid solution (N > 0) provided the expression in square brackets is positive, and therefore

K >

𝜎2
0

(
Z1− 𝛼

2
+ Z1−𝛽

)2

d2

[
𝛾𝜌1

g
+ 𝜌0

(1 − g)

]
.

Equation (10) can be used in any of the scenarios considered across Sections 3.1 to 3.4, but where there are constraints
on cluster size as in Sections 3.3 and 3.4 these will impose a relationship between pand g that must be incorpo-
rated. To consider sample size for optimal unconstrained designs (Section 3.1), expressions for popt and gopt, in terms
of 𝛾, 𝜌0, and 𝜌1, can be inserted for pand g. When p or g is fixed as in Section 3.2 its value can be easily inserted
into (10). A special case is where we consider a fixed g as in Section 3.2, and investigate N given K, so that the num-
bers of clusters in each arm (K0 and K1) are fixed. Equation (10) can be re-expressed for this case to calculate N only
thus

N
⎡⎢⎢⎢⎣

d2

𝜎2
0

(
Z1− 𝛼

2
+ Z1−𝛽

)2 − 𝛾𝜌1

K1
− 𝜌0

K0

⎤⎥⎥⎥⎦ =
1 − 𝜌0

(1 − p)
+ 𝛾(1 − 𝜌1)

p
. (11)
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5 CALCULATING SAMPLE SIZE FOR OPTIMAL DESIGNS WHEN ICC
AND VARIANCE ARE KNOWN: EXAMPLES BASED AROUND THE PA4E1
TRIAL

The formulas in the previous section allow designs with different pairs of N and K to be identified that will provide the
desired power. To search for suitable designs it can be convenient to choose a range of values for either N or K and for
each value solve for the other. In most settings it will be more appropriate to select a range of values for K because the
number of clusters that can be included in the trial is often within a particular range, for logistical or cost reasons. There
is also a lower bound for K at which even if N approaches infinity the desired power cannot be attained, as demonstrated
by the inequalities in K we presented in the previous section.

The ongoing Physical Activity for Everyone (PA4E1) school randomized trial in Australia assesses the effectiveness of
an intervention to promote physical activity in school students compared with routine practice. The primary outcome is
assessed at the school level, but important outcomes are assessed at the student level. Because of the measurement burden
and cost the student outcomes are collected from only a subset of students (40) within each of a subset of schools (K = 30
in total, 15 per arm) nested within the trial (total 76 schools, 38 per arm). In total then outcomes will be obtained from
N = 1200 students. We focus on the outcome minutes of physical activity within school hours per day, which is measured
over a week based on each student wearing an accelerometer. No basis of the sample size for the nested student level
data collection is provided in the published protocol,10 but we can calculate that hypothetically assuming an ICC of 0.05
in both arms and equal variance then the design provides 80% power to detect a standardized effect of 0.278. We assume
that this power for this effect is desired, and look into alternative designs that could have been chosen under different
hypothetical assumptions about the ICC and variance by arm, with and without constraints. We imagine it has been
decided to minimize N due to the measurement burden, and therefore consider a range of values for K from 30 upward
to 50.

5.1 Unconstrained design

We assume that routine school practice is highly variable, and that the intervention will be implemented fully
in all intervention arm schools, thereby standardizing practice and reducing the ICC. We also assume that a
high ICC value is possible in the control arm, because activity is largely determined by the school with only
modest variability between students. We therefore consider the design of trial assuming the ICC is 𝜌0 = 0.1 in
control arm and 𝜌1 = 0.01 in the intervention arm. The optimum allocation proportions are popt = 0.512 and
gopt = 0.240.

The optimal cluster size and number of clusters by arm are displayed in Table 1. In the column headed N we
report the number of individuals measured implied by K1, K0, m1, and m0. We present the values of K1 and K0
implied by gopt after rounding to the nearest integer, and then based on these calculate a provisional value of N
from Equation (11) with which to calculate m1 and m0 which are then rounded upward to the next integer. Because
of this rounding the value of N displayed is therefore greater than the term N calculated directly in Equation (10).
In the final column for comparison we report the number of individuals measured calculated under the constraint
that the numbers of clusters and cluster size are equal between arms and again after rounding to integers. The
optimal design provides a substantial reduction in the number of individuals, particularly for a smaller number of
clusters.

5.2 Constrained by a minimum number of clusters in each arm

Small numbers of clusters per arm can lead to a greater chance of imbalance and also invalidate certain common
methods of analysis.12-14 We may therefore choose to optimize the design subject to a minimum of say 10 clusters per
arm. From Table 1 we see that therefore we must revise the design for K between 30 and 38, setting K1 = 10, and
the results are presented in Table 2. As expected this constraint increases the number of individuals for a given K
compared with the unconstrained design but the increase is generally modest and there remains a substantial reduc-
tion in the number of individuals compared with a design with equal cluster size by arm and equal allocation of
clusters.
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T A B L E 1 Optimal unconstrained design and number of
individuals measured as total number of clusters K varies between 30
and 50 (80% power, d = 0.278, 𝜌0 = 0.1, 𝜌1 = 0.01, popt = 0.512, and
gopt = 0.240)

K K0 K1 m0 m1 N Nequal
a

30 23 7 20 68 936 1500

32 24 8 18 55 872 1280

34 26 8 15 51 798 1122

36 27 9 14 43 765 1044

38 29 9 12 41 717 950

40 30 10 12 36 720 880

42 32 10 11 34 692 840

44 33 11 10 30 660 792

46 35 11 9 29 634 782

48 36 12 9 26 636 720

50 38 12 8 26 616 700

a Number of individuals measured if number of clusters and cluster size forced
equal between arms.

T A B L E 2 Optimal design and number of individuals measured
as total number of clusters K varies between 30 and 38, constrained to
at least 10 clusters in each arm (80% power, d = 0.278, 𝜌0 = 0.1,
𝜌1 = 0.01, popt = 0.512, and goptis as close to the unconstrained
optimal value 0.240 as possible given the constraint)

K K0 K1 m0 m1 N Nequal
a

30 20 10 24 51 990 1500

32 22 10 20 45 890 1280

34 24 10 17 42 828 1122

36 26 10 15 39 780 1044

38 28 10 13 37 734 950

a Number of individuals measured if number of clusters and cluster size forced
equal between arms.

5.3 Constrained also by a maximum cluster size

Here we suppose that the expected maximum feasible size for each cluster is 45 because of concerns over the proportion
of students likely to consent to data collection. Considering designs with at least 10 clusters per arm, we see in Table 2
that the optimal design for K = 30 is not feasible. We now identify the optimal design for K = 30 while setting m1 to 45.
Identifying gopt algebraically is challenging, so we propose to investigate the design choice and total sample size through
an iterative graphical method. For a given value of K this involves plotting power curves for increasing values of N over
the feasible range of values for g to identify the smallest N and corresponding value of g that achieve the desired power.
For each value of K and N, g is constrained by gKm1 < N, though in this example only values of g much lower than the
constrant are considered given the desired power. Power is calculated from Equation (3) with m1 = 45 and substituting
the expression for m0 given in Equation (9). The power curves for K = 30 are shown in Figure 1 and indicate that in
principle N = 990 can provide 80% power, but this is at a value of g that cannot be chosen given K = 30. If we consider the
feasible values of g = 0.30 and g = 0.33 corresponding to K1 = 9 and K1 = 10 respectively we see in both cases 80% power
is achieved in principle at N = 995. Respecting the constraint on the number of clusters by arm, we see the optimal design
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F I G U R E 1 Power for a total of K = 30 clusters as g and N vary, for a fixed cluster size in one arm (m1 = 45), effect size d = 0.278, 5%
significance level, and ICCs 𝜌0 = 0.1, 𝜌1 = 0.01

F I G U R E 2 Number of individuals measured, N, as p and g vary from optimal: K = 40 clusters, 80% power, 5% significance level, effect
size d = 0.278, and ICCs 𝜌0 = 0.1, 𝜌1 = 0.01

sets K1 = 10 and K0 = 20, while m1 = 45 and (after rounding up) m0 = 28 and so the total number of measurements in
practice is N = 1010. This further constraint has increased N by only 20, compared with N = 990 seen in Table 2 .

5.4 Investigating suboptimal designs

Trialists may wish to also investigate “suboptimal” designs (choices of p and g) for logistical or other reasons. If for example
there are additional costs or resources associated with allocating clusters to the intervention arm then a lower value of
g than gopt may be selected if this causes only a modest increase in N, the number of individuals to be measured. In the
PA4E1 trial this is perhaps unlikely but we expand on our example to illustrate our methodology.

We illustrate a graphical approach to investigate suboptimal designs by extending the unconstrained design presented
in the previous section, for K = 40 as in the seventh row of Table 1. Figure 2 shows the impact on Nof varying either
p or g away from their optimal values popt = 0.512 and gopt = 0.240. The values of N displayed are theoretical number of
individuals from Equation (10), in practice N will need to be higher due to rounding both cluster size and number of
clusters to be integers for each arm. We see that retaining p = popt = 0.512 but increasing g from gopt (in practice this is
g = 0.25, K1 = 10 and K0 = 30) to 0.40 (K1 = 16 and K0 = 24) increases N by around 70. We also see that while holding
g at gopt, reducing p from popt to 0.4 increases N by around 40, and increasing p from popt to 0.6 increases N by around 25.
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F I G U R E 3 Number of individuals measured, N, for different ICC values and varying g: K = 40 clusters, 80% power, effect size
d = 0.278, and p = 0.51

6 OPTIMAL DESIGNS UNDER UNCERTAINTY IN ICC AND VARIANCE

We have previously focused on scenarios where researchers are happy to select single values for the ICC and variance in
each trial arm, but uncertainty in these parameters is common in practice and could be expected for settings such as the
PA4E1 trial. In this section we address optimal design where the parameters are considered to lie in plausible ranges. We
seek to identify the design which, for a given number of clusters, requires the smallest number of individuals measured
to achieve a specified power across all values in the ranges.

We next extend our example based on the PA4E1 trial (unconstrained design with K = 40) to consider how best to
design a trial if there is uncertainty in the values of ICC expected for each trial arm, as there could well be in the PA4E1
trial. We assume 𝜌0 lies between 0.075 and 0.1 and 𝜌1 lies between 0.01 and 0.025. In Figure 3 we plot how N varies with g
at the four combinations of these boundary values, while holding p = 0.51 which is very close to popt for every combination
(popt varies between 0.507 and 0.512). The values of N are derived from Equation (10). We see that as expected N is larger
for larger values of the ICC. While a total sample size of around 750 together with g in the range 0.3 to 0.4 would provide
adequate power in three of the four scenarios considered, at the extreme where both ICCs are the largest considered, that
is, (𝜌0, 𝜌1) is (0.1, 0.025) the required sample size increases to at least 880. Choosing N = 900 and setting g to 0.325 or 0.350
(K1 = 13 or 14) is a conservative choice proving power across all values of the ICC considered.

Thinking more generally it is intuitive that when considering a range for the ICC and/or variance within each trial
arm that the design that requires the smallest number of individuals measured given a total number of clusters is the
optimal design for the highest values of the parameters (above (0.1, 0.025) for (𝜌0, 𝜌1)). This is because any design that
achieves the desired power (say 80%) at the highest parameter values will have higher power should their values be lower,
and by definition of optimality no alternative design can achieve the desired power with fewer individuals at the highest
parameter values. Some further issues around trial design in practice under uncertainty are however discussed in the next
section.

7 DISCUSSION

Our research has revealed important novel and simple findings concerning optimal trial design where cluster size can be
chosen freely by the researchers, identifying designs with unequal allocation when the ICC or variance differ between
arms. A striking finding from our examples is how the optimal allocation of individuals measured to arms is very close
to equal when ICCs differ to realistic degrees if the variance of the outcome is equal between study arms. More generally
from Equation (7) if the ratio of variance for intervention to control is 𝛾 then the optimal allocation ratio of individuals to
the intervention arm relative to control will be very close to

√
𝛾 . For a near optimal design trialists may select these values

for their design and then only need investigate the optimal allocation of clusters to arms. We have also described how to
identify optimal designs under the sorts of constraints that can arise in practice such as a maximum feasible cluster size,
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or a minimum number of clusters in each arm. Our hypothetical examples based on the PA4E1 trial demonstrate that
appreciable reductions in the number of individuals that need to be measured are possible through the use of optimal
designs. As we demonstrated sample size curves can be used to investigate the impact of deviating somewhat from the
optimal allocation of clusters or individuals where this is preferred. In many scenarios we expect that some deviation
from the optimal design will cause only a modest increase in sample size.

In the design of cluster randomized trials there will often be uncertainty in the ICC and/or variance parameters. This
uncertainty is compounded if it is suspected that the intervention itself might affect the ICC and variance. Given plausible
ranges for the parameters in each trial arm it is straightforward to design an “optimal” trial that minimizes the number
of measurements for a given number of clusters, with at least a specified level of power across all values in the plausible
ranges. As discussed in the previous section this optimal design assumes the highest plausible parameter values in each
arm. This design may not perform uniformly well over all plausible parameter values, however. Suppose we are confident
that the ICC is 0.01 in the control arm but in the intervention arm the plausible range is anything from 0.01 to 0.10 (to
keep things simple let us suppose the variance is unaffected by the intervention). The optimal design in this case, based
on ICC values of 0.01 and 0.10, allocates clusters in an unbalanced way (gopt =

√
10) which would be very inefficient if

both ICCs were 0.01. An area of further work is to explore more sophisticated strategies for choosing a design in this case,
for example, a Bayesian approach based on priors for the ICC parameters in which we identify sample size to achieve
adequate power across ranges for the ICCs well supported by the priors.

An important issue to consider when contemplating design with an unequal cluster size between arms is selection
bias. In some settings requiring a larger cluster size will lead to bias as “harder to reach” individuals may be measured,
or individuals who only become eligible later, compared with those clusters with a smaller cluster size. This potential
for bias may be minimized, where possible, by enumerating all eligible individuals in each cluster, and then selecting at
random those to be invited to provide measurements. This approach would be feasible for example in school randomized
trials such as PA4E1.

Our findings for an unconstrained design contrast with the literature that has addressed optimal design when the
cluster size in each arm is fixed,2,3 in which considerably more than half the individuals measured may be in one arm
if the ICC is much higher than in the other arm. Our research shows that this however arises only because measuring
more individuals given a fixed cluster size will lead to more clusters, it is the greater number of clusters allocated to an
arm with a higher ICC that increases the efficiency of the design.

Optimal designs as determined by the large sample formulas we present may not be optimal for small samples, in
particular where the number of clusters is modest. Furthermore the methodology we present to calculate sample size
requires adaptation when the number of clusters is small.

Our methodology allows trialists to specify a range for the number of clusters in the trial and then for each determine
the minimum number of individuals that need to be measured through an optimal design. We do not offer any formal
advice as to how the number of clusters should be chosen but we assume that the resource implications of each possible
number of clusters can be compared, and “traded off” against the number of individuals required, in order to select the
final design. More formal approaches could follow established methods.3,15

Besides application to cluster randomized trials, our methodology may also be used to reduce the number of indi-
viduals needing to be measured in nonrandomized interventional studies, where an unequal allocation of clusters may
be selected and measurement is burdensome. Even if the intervention does not affect the ICC or variance, our methods
can be used to show that different cluster sizes in the study arms are optimal. One example where optimal designs could
have been considered is a general practice based study of “social prescribing” where individuals provided quality-of-life
outcome measures.16 Another example is a school-level study of a physical activity and nutrition intervention, where out-
comes required pupil questionnaires, accelerometer use, anthropometry, a physical fitness test, and a parent questionnaire
outcome measures.17

Further work could address optimal design for other outcome types such as binary or count, and also address design
when baseline measurements of the outcome are available for either the same individuals measured later or different
individuals in the same clusters.

It is difficult to know how often values of the variance and ICC differ between arms because they are infrequently
reported separately by arm and the CONSORT guidance does not recommend doing so.18 An important area of further
research would be to investigate the sorts of trial settings and interventions in which variance or ICC will differ between
arms to a degree that should be accounted for in design (and analysis). We recommend that both the variance and ICC
should be reported separately by arm as we argue it will be rare that it can be assumed with any certainty that the
intervention does not affect these.



COPAS and HOOPER 11

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ORCID
Andrew J. Copas https://orcid.org/0000-0001-8968-5963
Richard Hooper https://orcid.org/0000-0002-1063-0917

REFERENCES
1. Gail M, Williams R, Byar DP, Brown C. How many controls? J Chron Dis. 1976;29:723-731.
2. Roberts C, Roberts SA. Design and analysis of clinical trials with clustering effects due to treatment. Clinical Trials. 2005;2:152-162.
3. Candel MJJM, Van Breukelen GJP. Sample size calculation for treatment effects in randomized trials with fixed cluster sizes and

heterogeneous intraclass correlations and variances. Stat Meth Med Res. 2015;24(5):557-573.
4. Moerbeek M, Wong WK. Sample size formulae for trials comparing group and individual treatments in a multilevel model. Stat Med.

2008;27:2850-2864.
5. Perkins GD, Lall R, Quinn T, et al. Mechanical versus manual chest compression for out-of-hospital cardiac arrest (PARAMEDIC): a

pragmatic, cluster randomised controlled trial. Lancet. 2015;385:947-955.
6. Raising outcomes in primary education, a cluster randomised trial in rural Guinea Bissau. ISRCTN67389010. https://doi.org/10.1186/

ISRCTN67389010
7. Duruwalla N, Machchhar U, Pantvaidya S, et al. Community interventions to prevent violence against women and girls in informal

settlements in Mumbai: the SNEHA-TARA pragmatic cluster randomised controlled trial. Trials. 2019;20(1):743.
8. Rath S, Prost A, Samal S, et al. Community youth teams facilitating participatory adolescent groups, youth leadership activities and liveli-

hood promotion to improve school attendance, dietary diversity and mental health among adolescent girls in rural eastern India: protocol
for a cluster-randomised controlled trial. Trials. 2020;21(1):52.

9. Hemming K, Kasza J, Hooper R, Forbes A, Taljaard M. A tutorial on sample size calculation for multiple-period cluster randomized
parallel, cross-over and stepped-wedge trials using the Shiny CRT Calculator. Int J Epidemiol. 2020;49(3):979-995.

10. Sutherland R, Campbell E, Nathan N, et al. A cluster randomised trial of an intervention to increase the implementation of physical
activity practices in secondary schools: study protocol for scaling up the Physical Activity 4 Everyone (PA4E1) program. BMC Public Health.
2019;19:883.

11. Hemming K, Eldridge S, Forbes A, Weijer C, Taljaard M. How to design efficient cluster randomised trials. BMJ. 2017;358:j3064.
12. Huang S, Fiero MH, Bell ML. Generalized estimating equations in cluster randomized trials with a small number of clusters: review of

practice and simulation study. Clin Trials. 2016;13(4):445-449.
13. Murray DM, Varnell SP, Blitstein JL. Design and analysis of group-randomized trials: a review of recent methodological developments.

Am J Public Health. 2004;94(3):423-432.
14. Kahan BC, Forbes G, Ali Y, et al. Increased risk of type I errors in cluster randomised trials with small or medium numbers of clusters: a

review, reanalysis, and simulation study. Trials. 2016;17(1):438.
15. Van Breukelen GJP, Candel MJJM. Efficient design of cluster randomized trials with treatment-dependent costs and treatment-dependent

unknown variances. Stat Med. 2018;37:3027-3046.
16. Mercer SW, Fitzpatrick B, Grant L, et al. The Glasgow ’Deep End’ Links Worker Study Protocol: a quasi-experimental evaluation of a social

prescribing intervention for patients with complex needs in areas of high socioeconomic deprivation. J Comorb. 2017;7(1):1-10.
17. Verjans-Janssen SRB, Van Kann DHH, Gerards SMPL, Jansen MWJ, Kremers SPJ. Study protocol of the quasi-experimental evaluation of

“KEIGAAF”: a context-based physical activity and nutrition intervention for primary school children. BMC Public Health. 2018;18:842.
18. Campbell MK, Piaggio G, Elbourne DR, Altman DG. Consort 2010 statement: extension to cluster randomised trials. BMJ. 2012;345:e5661.

How to cite this article: Copas AJ, Hooper R. Optimal design of cluster randomized trials allowing unequal
allocation of clusters and unequal cluster size between arms. Statistics in Medicine. 2021;1–13. https://doi.org/10.
1002/sim.9135

APPENDIX 1. MAXIMIZATION OF POWER FUNCTION TO IDENTIFY OPTIMAL VALUES OF
P AND G

We noted earlier that the power function can be written, in the notation of Section 2, as
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and that from this we see that power is maximized at the minimum value of

1
ESS0

+ 𝛿

ESS1
.

This expression needs to be re-expressed in terms of p and g to be minimized. The expression can be alternatively
written, as seen in Equation (2), as

1 + (m0 − 1)𝜌0

(1 − p)N
+ 𝛿[1 + (m1 − 1)𝜌1]

pN
.

We need next to substitute expressions for m0 and m1 given in Equation (1) thus

m1 =
pN
gK

;m0 =
(1 − p)N
(1 − g)K

,

and this leads finally to needing to minimize

1 +
(

(1−p)N
(1−g)K

− 1
)
𝜌0

(1 − p)N
+

𝛿

[
1 +

(
pN
gK

− 1
)
𝜌1

]
pN

.

This minimization was performed in Matlab through partial differentiation with respect to p and setting to zero, and
then repeating for g. This was sufficient to find the optimal values of p and g jointly because the expression for popt does
not involve g and vice versa.

APPENDIX 2. STATA CODE TO GENERATE THE SAMPLE SIZE PLOTS IN FIGURES 2 AND 3

Code for Figure 2
k is the total number of clusters (in the article denoted K)
rhoc is the ICC in the control arm (𝜌0)
rhoi is the ICC in the intervention arm (𝜌1)
d is the standardized effect size
the values 0.4, 0.512 and 0.6 are values of the proportion of individuals allocated to the intervention arm (p)
x is the proportion of clusters allocated to the intervention arm (g)

the value 7.84 is chosen for 80% power and 5% significance level
(

Z1− 𝛼

2
+ Z1−𝛽

)2

foreach k of num 40 {
foreach rhoc of num 0.1 {
foreach rhoi of num 0.01 {
foreach d of num 0.278 {
twoway function y = (((1-‘rhoc’)/(1-0.4)) + ((1-‘rhoi’)/0.4)) / ((‘d’*‘d’/7.84) - (‘rhoi’/(x*‘k’)) - (‘rhoc’/((1-x)*‘k’))), range(0.1
0.5) ylabel(650(50)950) lcolor(blue) || ///
function y= (((1-‘rhoc’)/(1-0.512))+ ((1-‘rhoi’)/0.512)) / ((‘d’*‘d’/7.84) - (‘rhoi’/(x*‘k’)) - (‘rhoc’/((1-x)*‘k’))), range(0.1 0.5)
ylabel(650(50)950) lcolor(purple) || ///
function y = (((1-‘rhoc’)/(1-0.6)) + ((1-‘rhoi’)/0.6)) / ((‘d’*‘d’/7.84) - (‘rhoi’/(x*‘k’)) - (‘rhoc’/((1-x)*‘k’))), range(0.1 0.5)
ylabel(650(50)950) lcolor(red) ///
title("measurements required for p=0.4-0.6, ICC=(‘rhoc’,‘rhoi’)") ytitle("N") xtitle("Proportion of clusters allocated to
intervention, g") ///
legend(label(1 "p=0.40") label(2 "p=0.512") label(3 "p=0.60") pos(12) ring(0) forcesize symxsize(8) symysize(1) rowgap(1)
size(large) colgap(1) symplacement(left)textfirst cols(1) colfirst)
graph export "Figure 2.png", replace
}
}
}
}
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Code for Figure 3
k, x and d are defined as for Figure 2, and 7.84 is again chosen for 80% power.
Here the value of p is selected to be 0.51
The different lines are defined by different pairs of (𝜌0, 𝜌1), and in the order shown these are (0.1, 0.025), (0.075, 0.025),
(0.1, 0.01), (0.075, 0.01)
foreach k of num 40 {
foreach d of num 0.278 {
twoway function y = (((1-0.1)/(1-0.51)) + ((1-0.025)/0.51)) / ((‘d’*‘d’/7.84) - (0.025/(x*‘k’)) - (0.1/((1-x)*‘k’))), range(0.2
0.5) ylabel(600(100)1100) lcolor(purple) || ///
function y = (((1-0.075)/(1-0.51)) + ((1-0.025)/0.51)) / ((‘d’*‘d’/7.84) - (0.025/(x*‘k’)) - (0.075/((1-x)*‘k’))), range(0.2 0.5)
ylabel(600(100)1100) lcolor(brown) || ///
function y = (((1-0.1)/(1-0.51)) + ((1-0.01)/0.51)) / ((‘d’*‘d’/7.84) - (0.01/(x*‘k’)) - (0.1/((1-x)*‘k’))), range(0.2 0.5) yla-
bel(600(100)1100) lcolor(red)|| ///
function y = (((1-0.075)/(1-0.51)) + ((1-0.01)/0.51)) / ((‘d’*‘d’/7.84) - (0.01/(x*‘k’)) - (0.075/((1-x)*‘k’))), range(0.2 0.5)
ylabel(600(100)1100) lcolor(blue) ///
title("measurements required at p=0.51 as ICC values vary") ytitle("N") xtitle("Proportion of clusters allocated to inter-
vention, g") ///
legend(label(1 "ICC=(0.025, 0.1)") label(2 "ICC=(0.025, 0.075)") label(3 "ICC=(0.01, 0.1)") label (4 "ICC=(0.01, 0.075)")
pos(12) ring(0) forcesize symxsize(8) symysize(1) rowgap(1) size(medium) colgap(1) symplacement(left) textfirst cols(1)
colfirst)
graph export "Figure 3.png", replace
}
}


