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Abstract Currently, therapeutics for COVID-19 are limited. To overcome this, it is important
that we use physiologically relevant models to reproduce the pathology of infection and evaluate
the efficacy of antiviral drugs. Models of airway infection, including the use of a human infection
challenge model or well-defined, disease relevant in vitro systems can help determine the key
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components that perpetuate the severity of the disease. Here, we briefly review the humanmodels
that are currently being used in COVID-19 research and drug development.
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Abstract figure legend Current physiologically relevant models for studying COVID19. Image made using
BioRender.com.

Introduction

Coronavirus disease 2019 (COVID-19)is an
infectious disease caused by a newly emerged severe
acute respiratory syndrome (SARS)-coronavirus-2
(SARS-CoV-2). COVID-19 presents a diverse clinical
spectrum, ranging from an asymptomatic carrier state
to patients with life-threatening multi-organ failure and
death (Huang et al. 2020a). The greatest risk factor for
severe disease is age, with higher morbidity and mortality
rates in the elderly population, despite younger people
shedding similar levels of virus (Yanez et al. 2020). The
overall case fatality rate of COVID-19 is 2.3%, rising to
14.8% in patients over the age of 80, and 49% among the
critically ill (Kang & Jung, 2020).
The human airway epithelium is the first line of defence

against inhaled pathogens and, to help prevent damage to
the vulnerable tissues, the airways have developed physical
and innate molecular barriers. These include polyps,
hairs and mucus to trap foreign objects. At the micro-
scopic level, the airway epithelial barrier is composed of
differentiated cell types including muco-secretory goblet
cells and ciliated cells (Pack et al. 1981). These cells
function together to maintain a healthy homeostasis
through the production of secretions that regulate the
volume and viscosity of the fluid layer, and motile ciliary
beating that coordinates clearance (Empey & Kolls, 2017).
SARS-CoV-2 virus enters the airway through the oral

and nasal cavities (Gallo et al. 2020). The inhaled virus
can evade these initial barriers and infect the respiratory
epithelium. SARS-CoV-2 is thought to primarily target
and infect airway epithelial cells via interaction of the
viral spike glycoprotein with the angiotensin converting
enzyme 2 (ACE2) host cell receptor (Zhou et al. 2020b;
Hoffmann et al. 2020), although other receptors have been
implicated (i.e. NRP1, BSG, TFRC) (Wang et al. 2020;
Tang et al. 2020; Cantuti-Castelvetri et al. 2020; Daly
et al. 2020). An impressive body of RNA sequencing data
has confirmed that ACE2 is expressed in approximately
1% of epithelial cells (Ziegler et al. 2020) and there is
a gradient of ACE2 expression from the upper to the
lower airways (Hou et al. 2020).Within the airways, ACE2
protein is thought to bemost abundantly found on ciliated

cells, nasal goblet cells and alveolar type II cells (Sungnak
et al. 2020; Li et al. 2020; Ortiz et al. 2020; Lee et al.
2020b). There is also evidence that some secretory cell
types, notably the ‘secretory3’ cell type (an intermediate
position between club or goblet cells and ciliated cells)
may be an important viral target as they are ACE2+ and
co-express viral spike priming proteases transmembrane
serine protease 2 (TMPRSS2) and/or furin (Sungnak et al.
2020; Lukassen et al. 2020; Ziegler et al. 2020; Hou et al.
2020; Schuler et al. 2021). Histological examination of the
lungs of deceased COVID-19 patients showed it was pre-
dominantly the ciliated cells that were infected, whereas
MUC5B+ club cells, MUC5AC+ goblet cells and p63+
basal cells were not infected (Hou et al. 2020; Schaefer et al.
2020). Alveolar type 1 (AT1) and 2 (AT2) cells (or AT2
cells that had transitioned to AT1 cells) can also become
infected (Hou et al. 2020; Schaefer et al. 2020). Recently, a
novel epithelial cell population that is found bridging the
secretory and ciliated clusters (referred to as inflammatory
epithelial transit cells) was found to yield the highest viral
load in airway epithelial cells (Yoshida et al. 2021).
Once infected, the airways have been shown to become

inflamed and damaged. Patients with severe COVID-19
have demonstrated acute diffuse alveolar damage and
diffuse inflammatory infiltrates (consisting of inter-
stitial and peribronchial lymphocytes and intra-alveolar
macrophages) (Hou et al. 2020; Schaefer et al. 2020).
Compared to moderate cases and controls, patients
with critical COVID-19 disease exhibited epithelial cells
with significant expression of chemokine-ligand encoding
genes that promote recruitment of neutrophils, T cells and
mast cells (Chua et al. 2020; Lee et al. 2020c). Severe cases
also show greater enrichment for neutrophils, comprising
>60% of cellular composition of upper airway samples
(Chua et al. 2020). The recruitment of immune cells to
sites of epithelial infection is an important early innate
defence mechanism, regulated by the secretion of cyto-
kines and chemokines by infected epithelial cells, which
can help control inflammation and promote pathogen
clearance.
To study the disease mechanisms and evaluate the

efficacy of antiviral drugs, it is important that models of
COVID-19 reproduce the physiology and pathology of
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infection. Here, we briefly review the human models that
are currently being used in COVID-19 research and drug
development.

Models of the airway

Human infection challenge model. The human infection
challenge model has, for many decades, helped to shorten
the timeline of new therapeutic drugs and vaccines, and
to understand the role of viruses in disease pathogenesis.
Edward Jenner’s 1796 iconic challenge experiment
demonstrated the protective effects of cowpox against
smallpox and launched the field of vaccinology. We now
have well-defined ethical criteria for human-challenge
trials (WHO, 2020) and state-of-the-art facilities that
satisfy safety and regulatory requirements, making this
a scientifically acceptable and ethically valid method in
the modern age. (For a review of ethical considerations,
see Miller & Grady, 2001). Previous human infection
challenge trials, of several hundred adult subjects, have
established this as a safe and effective method in which
to study the viral life cycle of many respiratory viruses
including influenza virus, respiratory syncytial virus
(RSV) and rhinovirus, the latter of which has been
shown to reproduce the natural acquired infection
(Lambkin-Williams et al. 2018). A human COVID-19
infection challenge trial is currently taking place at the
Royal Free Hospital, London, infecting 90 healthy adults
(aged 18–30) to determine the lowest possible dose of
SARS-CoV-2 to cause disease (Callaway, 2020).

Human in vitro models. In vitro models are essential for
the pre-clinical evaluation of potential therapeutics and
can give new insight into the mechanism of infection
and viral pathogenesis. Indeed, high-throughput cell line
assays measuring cytopathic effects were instrumental
in the discovery and development of anti-viral drugs
including remdesivir (Eastman et al. 2020). Since the
detection of SARS-CoV-2 in November 2019, several in
vitro models have been used to determine replication,
infection and cytopathic effects of the virus. The essential
characteristics of cell models required for SARS-CoV-2
infection are thought to be the expression of ACE2
and, secondarily, spike priming proteases TMPRSS2 and
furin. Investigations into the susceptibility of cell lines to
SARS-COV-2 infections showed that replicationwasmost
robust in Calu-3 (a human lung adenocarcinoma cell line)
and Caco2 (a human intestinal epithelial cell line), whilst
hepatic Huh7, renal HEK293T and neuronal U251 cells
were also able to propagate the virus (Chu et al. 2020).
However, the commonly used lung adenocarcinoma cell
line A549 (often used to model alveolar type II cells) and
the immortalised human bronchial epithelium cell line
BEAS2B are poor models for SARS-CoV-2 investigation

as they are not permissive to infection, unless transformed
with ACE2 (Kam et al. 2009; Blanco-Melo et al. 2020; Chu
et al. 2020). This is especially intriguing as their respective
areas of origin (alveoli and bronchi) have demonstrated
ACE2 expression and infection in vivo (Ziegler et al. 2020;
Hou et al. 2020; Salahudeen et al. 2020).Other non-human
primate cell lines that have been historically employed for
virology and replicate SARS-CoV-2 include kidney cells
FRhK4, LLCMK2 and Vero E6 cells (Matsuyama et al.
2020; Chu et al. 2020). Interestingly, the heavily used Vero
E6 cell line does not express TMPRSS2 yet produces robust
propagation of SARS-CoV-2 and is commonly used to
generate viral stocks from clinical isolates (Harcourt
et al. 2020; Ogando et al. 2020). A biochemical cleavage
assay that uses Caco2, HEK293T or Vero E6 cells has
been used to show SARS-CoV-2 spike protein harbours
a distinct four-amino-acid insertion at the S1/S2 that
can be cleaved by furin-like, trypsin-like and cathepsin
proteases (Hoffmann et al. 2020; Jaimes et al. 2020).Whilst
this is of interest for potential development of protease
inhibitors (i.e. camostat) for therapeutics, a caveat here
is the cathepsin spike priming pathway may only target
the residual protein unprimed by TMPRSS2 and therefore
act redundantly within COVID-19 disease severity and
progression (Hoffmann et al. 2020).
It is also crucial to note that whilst passaging

SARS-CoV-2 in cell lines, and specifically Vero E6
cells, the virus is under strong selection pressure to
acquire adaptive mutations in its spike protein gene,
due to the lack of relevant protease expression (Klimstra
et al. 2020; Ogando et al. 2020; Peacock et al. 2020). This
selection pressure can lead to attenuated replication in
human bronchial epithelial cells (Pohl et al. 2021). These
mutations may be negated by propagating SARS-CoV-2
in the serine protease expressing Calu-3 cell line (Lamers
et al. 2021). These are important considerations for drug
discovery. For example, a screen of ∼3000 potential
anti-viral drugs using Vero E6 cells showed few hits,
but the same library screened in Calu-3 revealed
nine hits, seven of which are currently being used
in human trials (Dittmar et al. 2021). Development
of SARS-CoV-2 pseudoviruses also offers a potential
solution for the genetic instability apparent with Vero
E6 propagation, with the additional benefit of increased
safety, reproducibility and scalability for screening assays
(for reviews see Li et al. 2018; Chen & Zhang, 2021).
Proof of principle for this has been demonstrated with a
HIV-based lentiviral pseudovirus assay in aHEK293T cell
line expressing humanACE2 andTMPRSS2 (Neerukonda
et al. 2021). This assay has shown success in screening for
neutralizing antibodies for SARS-CoV-2 (Neerukonda
et al. 2021).
Calu-3 cells have also been a useful model in

determining the function of SARS-CoV-2 non-structural
proteins (NSPs). Employing a range of functional analyses
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including RNA/protein crosslinking, splice reporter
assays and surface sensing of translation (SUnSET)
assays, NSPs were shown to disrupt mRNA processing.
Mechanisms included suppression of global mRNA
splicing (NSP16), binding to 18S ribosomal RNA causing
global inhibition of mRNA translation (NSP1) and
disruption of protein trafficking to the cell membrane
(NSP8 and NSP9) (Banerjee et al. 2020).
Whilst easy to obtain, with the generation of

reproducible assays, these immortalised cell cultures
(using conventional submerged culture techniques)
lack appropriate cell polarisation and many other
distinguishing properties found in the lung, such as trans-
port proteins, mucus and motile cilia. Fortunately, the
relative accessibility to airway epithelium and air–liquid
interface (ALI) culture techniques (described below) has
allowed the development of a gold standard for in vitro
epithelial models using primary airway epithelial cells.

Air–liquid interface cell culture. TheALI culture platform
allows a physiological and pragmatic in vitro model that
resides at the top of the experimental hierarchy for pre-
clinical airway epithelial model systems (Karp et al. 2002).
Here, cells are grown on semipermeable membranes with
a basolateral medium supply and apical exposure to air
in a well humidified (>95%) environment. This method
is commonly used in a 24- or 12-well plate format, but
recently groups have demonstrated the application of a
miniaturised 96-well microplate system (Hyang Lee et al.
2020) and robotics for exchange of media that enable
higher throughput drug testing (Bluhmki et al. 2020).
Exposure to air stimulates the epithelial progenitor cells to
differentiate into heterogeneous pseudostratified ciliated,
goblet and basal cells, alongside other specialised cell types
such as the ionocyte (Montoro et al. 2018). After 28 days,
this differentiated epithelium exhibits mucus production
and motile cilia, and transcriptionally has been shown to
strongly correlate (>96% similarity) with the expression
profile of epithelial cells obtained from the original nasal
brushings from the same patients (Ghosh et al. 2020).
There are twomajor advantages of theALI system. First,

it allows for several precise, functional readouts of airway
physiology, including the measurement of ciliary beating,
mucociliary clearance, current or voltage across the
membrane, differential protein secretion, airway surface
liquid height measurements, ion transport measurements
and wound healing assays (see review articles: Gianotti
et al. 2018; Hiemstra et al. 2019). Secondly, airway
epithelial cell culture models can be generated from any
donor of interest, allowing the modelling of a range
of human phenotypes. For example, models can be
developed from donors that are diverse for variables
associated with COVID-19 severity, such as age, ethnicity,
sex, comorbidities such as diabetes and smoking/vaping

and respiratory disorders. All of these have demonstrated
distinct phenotypic and/or functional characteristics in
ALI culture (Clunes et al. 2012; Bilodeau et al. 2016;
Castellani et al. 2018; Carlier et al. 2018; Gaiha et al. 2020;
Woodall et al. 2020; Zhu et al. 2021).

Primary ALI cell cultures. Primary airway progenitor
cells are the principal choice for the ALI method.
These cells can be refined from small tissue biopsies
taken from donated lungs, nasal brushings or bronchial
brushings by bronchoscopy. The main challenge of
working with primary cell culture lies with procurement
of the appropriate cells and access to ethically sourced
lung/airway tissue. Even when readily available, the
process of retrieving these tissues requires specialist
and expensive culture methods and carries risk of
contamination. There is also a substantial amount of
evidence that shows that different culture practices,
including differentmedium preparations, membrane pore
size and collagen coating method, and the duration at
ALI can vary the characteristics of the epithelial model
(Gianotti et al. 2018; Lee et al. 2020a; Leung et al. 2020).
In traditional airway epithelial cell culture systems,

primary cells do not survive for more than a few passages
and their characteristics can deteriorate rapidly with age.
One solution of many (see review article: Orr & Hynds,
2021) to increase proliferative capacity of the progenitor
cells has been to expand the progenitor cells in co-culture
with irradiated/mitotically inactivated fibroblasts prior to
conversion to ALI for differentiation (Butler et al. 2016).
Another solution has been to introduce anti-senescent
mechanisms such as viral oncogenes or the human poly-
comb protein BMI-1 (Fulcher et al. 2009; Munye et al.
2016; Gianotti et al. 2018). The use of induced pluripotent
stem cells (iPSCs) is also becoming increasingly popular,
as fully differentiated cells such as fibroblasts can be
expanded rapidly as iPSCs and then reprogrammed to
differentiate into club cells, goblet cells or ciliated cells
that self-assemble into a functional pseudostratified
airway epithelium (Hawkins et al. 2021), reproduce
characteristics of the proximal and distal airways
(Pollard & Pollard, 2018) and are capable of replicating
SARS-CoV-2 (Huang et al. 2020b).

Immortalised cell lines. Some immortalised airway
epithelial cell lines, such as 16HBE14, and spontaneous
cancer cells (i.e. Calu-3 and H441) (see table in review
article: Orr & Hynds, 2021) that are cultured on semi-
permeable membranes can form tight junctions, secrete
mucins, and show differential distribution of plasma
membrane transport proteins between the apical
membrane and the basolateral membrane epithelium
(Castellani et al. 2018), but do not produce ciliated
and other important specialised cell types. Calu-3 cells
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are a popular epithelial cell line for infection studies
as they are known to generate higher transepithelial
resistance, produce mucus, and express a diverse set
of immune and inflammatory modulators (Grainger
et al. 2006; Braakhuis et al. 2020). The HBEC3 series
are thought to be the most favourable airway model
due to generation of motile cilia (Lodes et al. 2020). To
facilitate the study of basal cell biology, a few research
groups have successfully immortalised basal cell lines
expanding the experimental scope. In one instance,
basal cell immortalised non-smoker 1 (BCi-NS1) is
an immortalised human large airway basal cell line
generated via retrovirus-mediated expression of human
telomerase (hTERT) (Walters et al. 2013). The small
airway epithelium basal cell line hSABCi-NS1.1 was
generated via a similar methodology (Wang et al.
2019). The development of these basal cell lines
with a multipotent differentiation capacity retaining
characteristics to the original primary basal cells for
over 40 passages is a useful tool for understanding basal
cell biology, pathogenesis and related diseases allowing
long term experimentation. Notably, expression of genes
encoding ACE2, TMPRSS2 and other essential factors
necessary for SARS-CoV-2 infection has been detected in
BCi-NS1.1 and hSABCi-NS1.1 cell lines, thus advocating
for their suitability in COVID-19 research (Zhang et al.
2020).

Whilst immortalised cell lines are pragmatic for high
throughput assays, especially those required for drug
screening, a resounding problem in their use is the
inability to represent age phenotypes when age-related
severity is a distinguishing characteristic of COVID-19.

Primary ALI cultures for SARS-CoV-2 research. Primary
cells grown using ALI culture have been shown to
propagate SARS-CoV-2 effectively in epithelial cell types
expressing ACE2 (Hou et al. 2020; Robinot et al. 2020;
Zhu et al. 2020, 2021; Pohl et al. 2021). Interestingly, the
number of ciliated cells in airway epithelial cell cultures
did not correlate with susceptibility to infection (Hou et al.
2020). This may be due to the presence of secondary
entry receptors (NRP1, BSG, TFRC), whose expression
has shown some correlation with actively infected cells
in scRNA-seq studies and cell line assays (Wang et al.
2020; Tang et al. 2020; Cantuti-Castelvetri et al. 2020;
Daly et al. 2020; Yoshida et al. 2021), or changes to
epithelial defence mechanisms, including apparent basal
cell mobilization (Robinot et al. 2020). ALI cultures
have also been shown to support long- and short-term
modelling of SARS-CoV-2. Short-term studies are useful
to investigate virus replication and cytopathic effects, and
there is rapidly emerging data suggesting some prevalent
variants of SARS-CoV-2 may have altered replication
dynamics within human airway epithelial cells, whilst

some in vitropassaged isolatesmay developmutations that
severely decrease infectivity of human airway epithelial
cells (Peacock et al. 2020; Liu et al. 2021; Pohl et al.
2021). Long-term modelling allows us to study the air-
way epithelium’s ability to repair and regenerate (Hao et al.
2020).
Functional readouts from ALI-specific assays have

shown a transient decrease in epithelial barrier function
and disruption of tight junctions, though infectious viral
particles almost exclusively remain at the apical side
of cultures (Fig. 1) (Robinot et al. 2020; Hao et al.
2020; Zhu et al. 2020). SARS-CoV-2 infection also led
to a rapid loss of the ciliary layer and this resulted
in reduction of motile cilia function as measured in
a mucociliary clearance assay (Robinot et al. 2020).
Furthermore, iPSC-derived AT2 cultures demonstrated
rapid transcriptomic change in SARS-CoV-2-infected
cells to an inflammatory phenotype, characterised by an
upregulation of nuclear factor κB signalling (Huang et al.
2020b).
Studies have shown that ALI cultures display the age-,

sex- and disease-dependent changes in ACE2 mRNA
levels that have been observed in lung tissue fromdifferent
donors (Lukassen et al. 2020). Specifically, the expression
of putative SARS-CoV-2 receptors was found to be lower
in the upper and lower airways in children compared to
other age groups, whilst expression of both ACE2 and
TMPRSS2 were upregulated in smokers and patients with
chronic obstructive pulmonary disease compared with
healthy subjects (Saheb Sharif-Askari et al. 2020). The role
of entry factors in determining disease severity remains
inconclusive, and other studies suggest that the immune
response to SARS-CoV-2 may play a more important
role (Koch et al. 2021), with elevated production of type
I and III interferons, rather than differential receptor
expression, suggested as the cause of the lower viral
replication in paediatric compared to adult nasal epithelial
cultures (Zhu et al. 2021).

Trans-epithelial migration models. The migration of
neutrophils and other polymorphonuclear leukocytes
(PMNs) across columnar epithelia is a key component of
mucosal defence and inflammation, and it is becoming
increasingly evident that COVID-19 disease severity is
associated with a dysregulation of the immune response,
including increased neutrophil recruitment (Lee et al.
2020b). To study this further, a modified ALI model has
been developed that facilitates neutrophil transepithelial
migration in response to airway infection or other stimuli
(for review see Adams et al. 2021). This three-dimensional
in vitro technique differs from the aforementioned ALI
model in that airway epithelial cells are cultured on the
underside of the membrane insert. The inverted insert
is coated with collagen to assist in the epithelial cell

© 2021 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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attachment. Once fully differentiated (at ALI for 28 days)
and infected, neutrophils or PMNs are added to the baso-
lateral (medium) side of the epithelial cells so they can
migrate in the physiological direction, from basolateral to
apical surface. This model has already revealed important
insights into the contribution of neutrophils to airway
damage and viral clearance during RSV infection (Deng
et al. 2018; Herbert et al. 2020). Additionally, this model
was used to study neutrophil transepithelial migration
during Pseudomonas aeruginosa infection (Kusek et al.
2014; Yonker et al. 2017). Although this model has not yet
been utilised for COVID-19 research, work is underway
in our group to study neutrophil transepithelial migration
in response to SARS-CoV-2 infection.
Immortalised cell lines have also been applied in

co-culture models. Specifically, Calu-3 cells have been
used as the structural barrier to create co-culture
models with humanmacrophages, tomodel inflammatory
responses to aerosols (Grainger et al. 2006).

Organoids. Another in vitro model that closely
recapitulates lung epithelial function and architecture
is three dimensional organoids. These self-assembling
structures can be cultured in a three dimensional
extracellular matrix using a variety of progenitor cells
including basal cells, airway secretory club cells, epithelial
cells, iPSC and crypt stem cells (Lancaster & Knoblich,
2014; Barkauskas et al. 2017). Though there are some
limitations with these models, such as the restricted
accessibility to the luminal surface, they are quickly
becoming valuable in development of personalised
therapies (Dekkers et al. 2016; Berkers et al. 2019), to
study lung development (Vazquez-Armendariz et al.
2020) and infection with viruses such as rotavirus,
norovirus, enterovirus 71 and human adenovirus

(Ramani et al. 2018). Both airway and intestinal
organoids have been shown to express high levels of
ACE2 and membrane-bound serine proteases TMPRSS2
and TMPRSS4 enabling cleavage of the SARS-CoV-2
spike protein to facilitate viral entry (Zang et al. 2020;
Suzuki et al. 2020). Indeed, three simultaneous studies
(Zang et al. 2020; Zhou et al. 2020a; Lamers et al. 2020)
used human adipose-derived stem-derived intestinal
organoids to provide evidence that SARS-CoV-2 could
establish itself in the gastrointestinal tract, showing that
the most common cell type of the intestinal epithelium,
the enterocyte, is readily infected and strongly upregulates
viral response genes (Lamers et al. 2020). One recent
development is the generation of distal lung organoids by
embedding cells in extracellular matrices to form cyst-like
organoids with apical-out polarity (Danahay et al. 2015;
Lukassen et al. 2020) to present ACE2 on the exposed
external surface (Salahudeen et al. 2020). This polarity
allows for the more physiological, non-invasive apical
infection of AT2 and basal cultures with SARS-CoV-2,
already leading to the identification of club cells as another
target population via scRNA-seq analysis (Salahudeen
et al. 2020).
Organoid cultures have also shown potential for

studying immune cell–epithelium interactions. The
co-culture of human intestinal stem cell-derived enteroid
monolayers with human monocyte-derived macrophages
have demonstrated communication between the
epithelium and macrophages through morphological
changes and cytokine production in response to E. coli
infections (Noel et al. 2017).

Lung-on-a-chip. A precursor to the lung organoid
culture was the ‘lung-on-a-chip’ model. This biological
device uses microfluidics technologies and allows

Figure 1. Transmission electronmicrographs of SARS-CoV-2-infected ciliated nasal epithelial cells grown
in culture at an air–liquid interface
Black arrows indicate SARS-CoV-2 viral particles; red arrowheads indicate the viral spike protein. Ci, cilia; Mv,
microvilli. Scale bar: 200 nm. Image credit Andreia Pinto.
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communication between epithelial and endothelial
cells through a porous and elastic membrane. Here,
epithelial cells in the upper chamber are exposed to the
ALI, whilst the submerged endothelial cells (grown in
the bottom layer) co-ordinate the uptake of nutrients
from the media (Benam et al. 2016b). The lung-on-a-chip
model has been employed successfully in some drug
discovery and toxicity studies (Huh et al. 2012; Gkatzis
et al. 2018), including chips connected to an instrument
that mimics ‘breathing’ (Benam et al. 2016a; Huang et al.
2021). Recently, the human airway-on-a-chip model has
shown utility in testing potential antiviral therapeutics
against COVID-19 using pseudotyped (Si et al. 2021)
and wild-type SARS-CoV-2 virus (Thacker et al. 2021;
Deinhardt-Emmer et al. 2021).

Future directions

Ion transport in COVID-19. Despite the consensus that
airway epithelial cell function is key in COVID-19
pathogenesis, there has been a lack of research on
how critical epithelial functions, such as ion trans-
port, are affected by SARS-CoV-2 infection (Gentzsch &
Rossier, 2020). For example, it has been suggested that
SARS-CoV-2 could disrupt conserved second messenger
signalling cascades via G protein-coupled receptors,
adversely modulating transepithelial transport processes
(Hameid et al. 2021). The role of cystic fibrosis trans-
membrane conductance regulator (CFTR) in COVID-19
is also undescribed and may be of significance as a key
regulator of mucociliary clearance and airway liquid pH,
especially since SARS-CoV-2 entry into airway epithelial
cells is pH-dependent (Hoffmann et al. 2020; Shang
et al. 2020). Investigation here may be valuable as it
has been shown in an influenza model that potentiating
CFTR expression and function with corrector lumacaftor
reverses in vitro down-regulation of CFTR and ENaC
following viral infection, rehydrating the airway surface
liquid (Brand et al. 2018), which could aid viral clearance.

Tissue engineering. Advances in whole lung
bioengineering using engineered three-dimensional
scaffolds and microenvironments have opened new
possibilities for studying lung regeneration and infection
ex vivo using acellular human and non-human derived
lung tissue scaffolds. Methods to decellularize whole
human lungs, lobes or resected segments from normal
and diseased human lungs have been developed using
both perfusion and immersion-based techniques (Lin
et al. 2009; Asnaghi et al. 2009; Castellani et al. 2018).
These bioreactors, containing for example autologous
respiratory epithelial cells and mesenchymal stem
cells (BMSCs, then differentiated into chondrocytes),
have been used clinically in tracheal transplantation
(Macchiarini et al. 2008; Day, 2019) but also may be

able to predict oxygen profiles (Asnaghi et al. 2009)
following infection. These cellular systems, combined
with improved sensitivity in readouts, offer immense
potential to study the functional responses to respiratory
virus infection using superior, physiologically relevant
human models.

Conclusion

Every experimental model of the human airway has its
limitations. Whilst cell lines are pragmatic models for
reproducible high throughput assays, complex primary
cell models, produced from donors from a range of
demographics, are the only ones capable of representing
the variability of disease severity that has become
characteristic of COVID-19 disease.
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