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Abstract

This investigation examines how Arterial Spin Labelling (ASL) Magnetic Resonance Imaging can be optimised

to assist in the early diagnosis of diseases which cause dementia, by considering group study analysis and control

of motion artefacts.

ASL can produce quantitative cerebral blood flow maps noninvasively - without a radioactive or paramag-

netic contrast agent being injected. ASL studies have already shown perfusion changes which correlate with the

metabolic changes measured by Positron Emission Tomography in the early stages of dementia, before struc-

tural changes are evident. But the clinical use of ASL for dementia diagnosis is not yet widespread, due to a

combination of a lack of protocol consistency, lack of accepted biomarkers, and sensitivity to motion artefacts.

Applying ASL to improve early diagnosis of dementia may allow emerging treatments to be administered earlier,

thus with greater effect.

In this project, ASL data acquired from two separate patient cohorts ( (i) Young Onset Alzheimer’s Disease

(YOAD) study, acquired at Queen Square; and (ii) Incidence and RISk of dementia (IRIS) study, acquired

in Rotterdam) were analysed using a pipeline optimised for each acquisition protocol, with several statistical

approaches considered including support-vector machine learning. Machine learning was also applied to improve

the compatibility of the two studies, and to demonstrate a novel method to disentangle perfusion changes

measured by ASL from grey matter atrophy.

Also in this project, retrospective motion correction techniques for specific ASL sequences were developed,

based on autofocusing and exploiting parallel imaging algorithms. These were tested using a specially developed

simulation of the 3D GRASE ASL protocol, which is capable of modelling motion. The parallel imaging based

approach was verified by performing a specifically designed MRI experiment involving deliberate motion, then

applying the algorithm to demonstrably reduce motion artefacts retrospectively.
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Impact Statement

Arterial Spin Labelling MRI has near-term potential to play a role in the clinical detection of the early

stages of dementia, which is currently highly important due to the emergence of treatments which need

to be initiated early in the disease pathology. The main challenges for this application include gaining

sufficient understanding of quantitative cerebral perfusion based biomarkers for dementia, and motion

artefacts. This thesis presents novel solutions to tackle both of these issues.

During ASL study analysis, it was found that the Support Vector Regression algorithm produced

a higher classification accuracy for Alzheimer’s disease than the Support Vector Machine algorithm,

which is consistent with small but high dimensional data sets in unrelated machine learning applica-

tions. This is an important result for the design of future medical imaging studies, in which a limited

number of subjects can be recruited, but each image may contain a very large number of features.

A technique based Support Vector Regression, feature suppression, was developed to enhance the com-

patibility of the Alzheimer’s disease patient data in the YOAD and IRIS studies. The enhancement

of the compatibility was modest, but the particular problem with the lack of standardisation of ASL

protocols between centres means that this approach to data processing is of interest.

These findings regarding study analysis may impact investigations to determine the perfusion biomark-

ers of dementia pathology. Since these studies were greatly affected by motion artefacts, the rest of

this thesis concerned motion correction.

The impact of a retrospective motion correction technique for dementia research would be an increased

chance of finding statistically significant changes in cerebral perfusion associated with dementia pathol-

ogy, because ASL data which had been previously discarded from analysis could be included. For

clinical use of ASL in dementia diagnosis, retrospective motion correction may reduce the scanning

time, since ASL data would not have to be reacquired due to motion.

The simulation of a 3D GRASE ASL scan developed in this thesis models a default protocol used by

Siemens scanners. The theoretical findings on how protocol parameters can improve the effectiveness

of various retrospective motion correction methods may impact how MRI vendors outside of academia

could design recommended protocols.

A novel form of the autofocusing motion correction technique was created, which allowed correction

of continuous movement to become computationally feasible for 3D GRASE ASL scans. This method

was limited to correcting translational motion, but was found to still improve the quality of simulated
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ASL data to a limited extent even when rotational motion was modelled. Hence it may be practically

useful in combination with other techniques as part of a motion correction pipeline.

An alternative motion correction method was developed and found to reduce motion artefacts in sim-

ulated ASL data, and to improve the quality of in vivo ASL data when it was effected by severe

movements. Therefore, this technique could be applied immediately to the fraction of ASL image

repeats affected by intervals of severe motion, during acquisition for dementia research or diagnosis.
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Introduction

Arterial Spin Labelling (ASL) is an application of Magnetic Resonance Imaging (MRI), which allows

non-invasive mapping of the perfusion rate of blood in organs of the body. Since its conception in

1992 (Detre et al. 1992) ASL has mostly been applied in research, but has become increasingly avail-

able for clinical diagnosis in the past decade (Pollock et al. 2009). The main current application is

to diagnose and monitor diseases known to be directly linked to changes in blood perfusion, such as

stroke, cerebral infarction and ischaemic episodes (Haller et al. 2016). However the utilisation of ASL

to detect neurological conditions that are more indirectly linked to perfusion, such as dementia, is a

rapidly expanding field of research.

Due to an ageing population 1.3% of the UK population currently has some type of dementia (Prince,

M, Knapp, M, Guerchet, M, McCrone, P, Prina, M, Comas-Herrera, A, Wittenberg, R, Adelaja, B,

Hu, B, King, D, Rehill, A and Salimkumar, D. 2014). As the symptoms develop over several years the

patient requires an increasing amount of personal care, which was estimated to globally cost £1 trillion

per year by 2018 (Prince 2014). The pathological mechanisms of conditions which cause dementia, such

as Alzheimer’s disease, are poorly understood while remaining incurable and only marginally treatable.

Hence there is great interest in fundamental research into these disease mechanisms, including links

to cerebral blood perfusion. ASL is a safe and relatively economical (for MRI) tool for such research,

but is also useful as a technique for early detection. This is important as promising new therapies

are being developed (Sevigny et al. 2016) which are likely to be more effective the earlier they can be

prescribed.

However ASL scans are particularly affected by the parameters of the acquisition protocol, difficulties

with objective and quantitative radiological assessment, and motion artefacts. Together, these limita-

tions have prevented wide scale clinical use of ASL for dementia diagnosis. Novel methods to address

these issues are presented in this work.

In the first part of this thesis, support vector based machine learning was applied to analyse two ASL

group studies, by training a dementia vs healthy control classifier. The logic of this form of machine

learning is relatively transparent when the linear approach is taken, so the trained weights can be asso-

ciated with the training data features. This meant the information content of spatial patterns of blood

perfusion data could be analysed. It was found that the support vector regression algorithm could clas-

sify dementia cases slightly more accurately than support vector machine. Adding a non-linear kernel

greatly increased accuracy, but at the cost of transparency because the feature weights were undefined.
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Using support vector machine learning, two problems often associated with ASL group studies could

be tackled. The first is combining data from different studies, since there is often some inevitable in-

consistency in ASL protocols used at different sites, which can result in different quantitative results.

Secondly, a method is developed to disentangle hypoperfusion from grey matter atrophy whilst pre-

serving data quality relative to partial volume correction, tested by training a support vector classifier.

In the second part of this thesis, a general problem with MRI - and ASL in particular - was considered,

motion artefacts. This is exacerbated when patients affected by dementia are less able to keep still,

making a large fraction of currently acquired ASL data unusable. However, motion behaviour during

MRI scanning has been seldom considered in literature. Here, a separate group’s fMRI study into

semantic dementia (Benhamou 2020) was analysed to quantify differences in movement compared to

healthy controls, so that motion could be modelled more realistically.

A simulation of a multi-shot 3D GRASE MRI scan was developed to test motion correction tech-

niques. It was found theoretically that intershot motion (movement between TR cycles) was much

more important for causing motion artefacts than motion during signal acquisition periods - greatly

simplifying the motion correction.

Autofocusing (Atkinson et al. 1997) was one approach considered here for retrospectively correcting

intershot motion. This involved randomly applying transforms in k-space to minimise a motion artefact

severity metric. Although a novel method to greatly reduce the computational expense of corrected

translational motion was found, a theoretical limitation of autofocusing to correct rotational motion

was encountered. Therefore, a novel approach using parallel imaging algorithms to reconstruct images

from fractions of k-space, to simplify motion correction, was developed. Using the ESPIRiT algorithm

(Uecker et al. 2014), this was found theoretically to successfully remove motion artefacts caused by

both translational and rotational motion simultaneously.
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Chapter I: Background

0 Chapter Introduction

In this section, a brief description of the underlying concepts of MRI is outlined. A more in-depth

discussion of the physics and engineering can be found in textbooks (McRobbie et al. 2017). This is

followed by description of Arterial Spin Labelling techniques, dementia pathology, and then how ASL

may be applied to detect the pathology.

1 Basic MRI Physics

1.1 Nuclei Inside the Scanner

A typical modern MRI scanner is composed of a superconducting toroidal magnet generating a 3 Tesla

(T) field within the bore, lined with gradient coils to precisely produce directional linear variation in

the main field’s strength.

Figure 1: The key components of a modern MRI scanner, including the magnetic shielding

for safety and radio frequency shielding to stop external radiofrequency signals causing image

artefacts.

Atomic nuclei have a non-zero total spin if they contain either an odd number of protons or an odd

number of neutrons (Nersesov 1990). This is because protons and neutrons have a quantum spin which

generates a magnetic field, but they form cancelling pairs in the nucleus unless there is an odd particle

left. Hydrogen-1 is the isotope usually considered in MRI, because its abundance in the body and

high gyromagnetic ratio means it produces a strong magnetisation and thus a strong MR signal (see

equation (1)).
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In the strong magnetic field, the atomic nuclei have a lower energy state when their magnetic spins are

aligned with the field. Therefore spins preferentially align with rather than against the field by a very

small margin, causing a bulk net magnetisation M0 according to the Boltzmann distribution (Keeler

2016):

M0 = γ2h2NsB0

4KbT
(1)

where γ is the gyromagnetic ratio of the nuclear isotope considered, h is Planck’s constant, Ns is

the local density of spins, B0 is the magnetic field strength, kb is the Boltzmann constant and T is

temperature.

1.2 Signal Transmission and Reception

To produce and receive a magnetic resonance signal, Radio-Frequency (RF) transmit and receiver coils

are placed near to an object inside the main magnetic field. At the start of each shot (excitation cycle)

in the MRI sequence, the transmit coils create an excitation pulse with the same frequency as the

Larmor frequency fl of the nucleus of interest (J. Wang et al. 2006):

fl = γB (2)

where B is the main magnetic field B0 combined with any modulation from the gradient fields. fl is

the frequency with which the nuclear spin precesses around the axis of the magnetic field, which for

Hydrogen-1 at 3T is 127.7 MHz. An RF pulse of constant amplitude perturbs the precessing spin away

from the precession axis by a flip angle α (J. Wang et al. 2006):

α = γB1tRF (3)

where B1 is the RF pulse amplitude and tRF is its duration. To select a slice of the region of interest

to scan, the magnetic field gradient coils produce a Larmor frequency gradient according to equation

(2) (see SLICE in figure 2). Hence the RF pulse will be resonant with the Larmor frequency only

within a slice perpendicular to the direction of this gradient Gz, with a thickness ∆z:

∆z = ∆fRF
Gz

(4)

Where Gz = gzγ, where gz is the magnetic field gradient in T/m. Thus the slice thickness depends on

the pulse RF bandwidth ∆fRF and gradient strength Gz (Dale et al. 2015).
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1.3 Echo Signals

The flipped precessing spins are initially all in phase, so their orientations in the plane perpendicular to

the main field are all the same at any point in the rotation cycle. Thus they combine to form a precessing

local magnetisation vector, which induces an alternating electromotive force in the RF receiver coils.

The electrical signal is proportional to the concentration of excited spins and exponentially decays

due to T2 relaxation. This is caused by de-phasing of the precessing spins due to spin-spin exchange,

whilst de-phasing is be accelerated by any inhomogeneity in the main magnetic field (Levitt 2001).

The signal is proportional to the magnetisation perpendicular to the magnetic field Mxy, which decays

according to:

Mxy(t) = M0 e
−t/T∗

2 (5)

where t is the time after the RF pulse and T ∗2 is the observed T2 relaxation time of the tissue, given

by:

1/T ∗2 = 1/T2 + 1/Tin (6)

where T2 is the relaxation rate due to spin-spin exchange intrinsic to the tissue, and Tin is the relax-

ation rate due to magnetic field inhomegeneity.

The spins also more gradually realign with the main magnetic field due to T1 relaxation, whereby

they return to the lower energy state via spin-lattice exchange (Levitt 2001). Thus the magnetisation

parallel to the magnetic field recovers Mz according to the tissues T1 relaxation time T1:

Mz(t) = Mz(0)exp−t/T1 +M0(1− exp−t/T1); (7)

Signal echoes at a certain delay after the excitation pulse (the echo time, TE) cause a component of

contrast in the MRI image due to varying local rates of T2 relaxation (see equation (5)). This is in

combination with T1 related contrast dependent on the repetition time (TR), which determines how

much M0 is able to relax before the following sequence repetition.

The delayed signal can be achieved using a gradient echo, where spin de-phasing and refocusing gra-

dients are applied using the scanners gradient coils - see figure 2. The first gradient causes Larmor

frequency variation within each voxel, so the spins become out of phase and thus greatly reduce induc-

tion in the receiver coils. The second gradient is applied in the opposite direction reversing this process

so the spins re-phase and cause a signal pulse. The echo strength will depend on the T2* relaxation

time and the echo time (TE) - the delay after the excitation pulse before the echo occurs. This T2*
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relaxation is de-phasing due to both spin-spin interactions and main magnetic field inhomogeneities

(see equation (5)), neither of which are influenced by the applied gradients.

Figure 2: The initial RF pulse, applied magnetic field gradients and signal echo which occur

during each shot of a 2D gradient echo sequence.

The spin echo is another method for generating a delayed signal pulse. Here a second RF pulse flips

the spins by 180 degrees which reverses the de-phasing process, as in each spin’s frame of reference

the precession direction inverts. This is applied at half the desired echo time after the RF excitation

pulse. The resulting echo amplitude depends on T2 decay - because the spin flip reverses de-phasing

due to the main magnetic field inhomogeneities, but not due to spin-spin interactions.

The MRI acquisition method Gradient and Spin Echo (GRASE), which depends on both spin and

gradient echoes, was the main one considered and will be described later in this chapter.

T1 weighting is added to the signal intensity if a short repetition time between echo sequence is chosen.

This is because the perpendicular magnetisation also depends on how much longitudinal relaxation

has occurred since the previous shot. Hence if the repetition time is much longer than T1 the signal

intensity is T2/T2* weighted; if it is short enough that the spin relaxation is T1 limited, the signal is

also T1 weighted.
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2 Arterial Spin Labelling Physics

2.1 ASL Concept

An Arterial Spin Labelling (ASL) routine involves the acquisition of two MRI images of the same

region of interest - a control image and a tagged image. Before acquisition of the tagged image, blood

about to flow into the region of interest is spin labelled. When the spin labelled blood perfuses into

the imaged tissue, it reduces the local net magnetisation and hence reduces the local signal intensity.

Therefore, when the intensity of a voxel in the tagged image is subtracted from the corresponding

voxel intensity in the control image, the remaining value is the ASL signal - which is weighted by the

local rate of perfusion.

Figure 3: ASL is based on comparison of pairs of MRI images, one with and one without spin

labelling of blood entering the imaged region. The intensity differences found by subtraction

is around 1%, which is a function of perfusion rate and in-transit relaxation of the spin label

during the blood arrival time

Immediate observation of the resulting perfusion-weighted difference image can give qualitative overview

of the distribution of perfusion. More usefully, a thorough theoretical model of ASL can translate the

difference image to a quantitative map, returning local perfusion in typical units of millilitres per 100g

per minute.

2.2 Spin Labelling

The original method to label inflowing arterial blood in the early 1990s rodent experiments was Con-

tinuous Arterial Spin Labelling (CASL) (D. S. Williams et al. 1992). The transmitter coil produced

a low-amplitude and continuous RF pulse. A constant gradient caused spin inversion of flowing blood

as it passed through a tagging slice where the Larmor frequency was equivalent to the transmitted RF

frequency. The 180◦ spin flip is produced through flow-induced adiabatic fast passage, which causes

highly efficient inversion. This is achieved due to the adiabatic theorem in quantum mechanics, that
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quantum systems such as spins adapt more reliably to gradually changing external conditions (Kato

1950). As the spins flow along the applied gradient their Larmor frequency changes, so they experi-

ence a sweeping relative difference between their precession frequency and the continuous RF pulse

frequency (Gach et al. 2002).

Adiabatic fast passage inversion will happen if the blood flow velocity is within two bounds. Firstly,

it must be fast enough that spin-spin (T2) relaxation is minimal as it passes through the tagging

slice. Secondly, it must be slow enough that the spins experience a sufficiently gradual change in

Larmor frequency from below resonance with the RF pulse to above it - so the magnetisation vector

follows the effective field, which is the vector combination of B0 and B1. This gives the adiabatic flow

condition:

T2−1 <<
G V

B1
<< γB1 (8)

where T2 is the spin-spin relaxation time, G is the gradient strength parallel to the flow, V is the flow

velocity and B1 is the strength of the magnetic field component of the RF pulse.

The CASL RF pulse lasts for around two seconds followed by a labelling delay of similar length (the

inflow time). This avoids the subtraction signal from perfused inverted blood being dominated by the

signal remaining in the arteries. Due to problems with high energy deposition (or the need for spe-

cialised local transmission coils), CASL is a historical method which was overtaken by Pulsed Arterial

Spin Labelling (PASL) in the late 1990s (Edelman et al. 1998).

Instead of a continuous RF pulse, in PASL a single short pulse inverts a thick slab of blood upstream

from the imaging region. The bolus of blood may be sharpened using Q2 TIPS, where a chain of thin

saturation pulses is used to sharpen the bolus (Luh et al. 1999), which is now recommended for PASL

(Alsop et al. 2015). Various versions of PASL exist, which differ according to how the arterial labeling

is achieved (EPISTAR, PICORE, FAIR) (Edelman et al. 1998) (Wong et al. 1997) (S.-G. Kim 1995).

Due to the short RF pulse, energy deposition problems are significantly reduced for PASL compared

to CASL.

In 2008 a hybrid between CASL and PASL was proposed, known as pseudo-Continuous Arterial Spin

Labelling (pCASL) (Dai et al. 2008). This inverts blood flowing through a thin slice like CASL, but

with a long train of short pulses which incrementally flip the spins, replacing the single continuous

pulse. The slice select gradient for each of these pulses must be stronger than in CASL to maintain the

thin slice thickness, by compensating for the wider frequency bandwidth of the briefer pulses. This is
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followed by a refocusing gradient in the opposite direction, like other plane excitations in MRI. How-

ever, the refocusing gradient is made slightly weaker or shorter than the slice selecting one. Therefore

the spins experience a non-zero average gradient during the inversion process, which is equivalent to

the continuous gradient they would experience in CASL.

PASL can achieve a higher labelling efficiency than pCASL, at 97% compared to around 85% (depend-

ing on the gradient and pulse parameters, and flow velocity).

2.3 Magnetisation Transfer Neutralisation Techniques

Magnetisation transfer is a key issue ASL sequences must address. Hydrogen-1 nuclei can have differ-

ent Larmor frequencies when they are in the magnetic environment of larger molecules (bound spins)

compared to liquid water (free spins). When an RF pulse is applied to flip free spins with a certain

Larmor frequency and thus within a specific plane in the applied gradient, some bound spins in other

regions will also have that Larmor frequency (Henkelman et al. 2001). Bound spins in the imaging

region may therefore be saturated by the spin labelling process, before transferring their saturation to

nearby free spins, thereby affecting the voxel intensity in the image (Hernandez-Garcia et al. 2007).

As ASL depends on the subtraction of a tagged image from a control image, with the latter acquired

without prior spin labelling, magnetisation transfer effects in only the tagged image would cause major

biases in the perfusion map. Therefore ASL sequences also apply RF pulses prior to the control image

acquisition, designed to replicate the magnetisation transfer effects without the tagging.

The original technique to counter magnetisation transfer in PASL was EPISTAR (Echo-Planar Imaging-

based Signal Targeting by Alternating Radiofrequency pulses) (Edelman et al. 1998). In this approach,

the tagging slab was below the brain imaging region prior to the tagged image and above it prior to the

control one - see figure 4. This causes the identical magnetic transfer effects to occur in both images,

while inferior-to-superior arterial flow in the head means the tagged blood does not enter the imaged

region in the control case. A key advantage is the symmetry between tagged and control acquisitions,

which means artefacts due to eddy currents in the hardware can also be cancelled out (Jahng et al.

2003).
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Figure 4: In EPISTAR pulsed arterial spin labelling the inversion slab (orange) is below the

imaging region (purple) prior to the tagged image acquisition to tag inflowing blood, but above

it before the control acquisition.

The PICORE (Proximal Inversion with Control of Off-Resonance Effects) sequence (Wong et al. 1997)

is similar to EPISTAR, but before the control acquisition a pulse is applied at the same frequency offset

relative to the imaging slice as in the tagging sequence. However the omission of a spatial gradient

before the control acquisition means this pulse is off-resonance for all free water spins and so no blood

is tagged. This removes a potential artefact with EPISTAR caused by tagged venous blood flowing

into the control image from above.

Figure 5: In PICORE pulsed arterial spin labelling the inversion slab (orange) is below the

imaging region (purple) prior to the tagged image acquisition. Before the control acquisition

there is an off-resonance non slice selective pulse which does not tag any blood but mimics the

magnetisation transfer effects (green).

In the FAIR (Flow-sensitive Alternating Inversion Recovery) PASL sequence (S.-G. Kim 1995), blood

within the whole brain volume is tagged with a spatially non-selective inversion pulse before the tagged

image acquisition. Prior to the control image acquisition, only a slab containing the imaging region is

inverted, after which non-inverted blood from outside the region can enter, creating the ASL signal.

FAIR is therefore a desirable approach in brain regions where the arterial blood supply does not come

from a specific direction.
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Figure 6: In FAIR pulsed arterial spin labelling the imaging region (purple) is within the

inversion slab (orange) prior to the control image acquisition, while there is an non-selective

whole volume inversion pulse before the tagged acquisition.

In pCASL, the RF pulse trains for the tagged and control acquisitions are the same except that for the

control pulse train, the polarity of the RF pulses are alternated. This results in no overall inversion

of blood passing through the inversion slice. The gradient waveform remains identical in balanced

pCASL (Wong 2007), but they may differ in unbalanced pCASL (Dai et al. 2008). Balanced pCASL is

less susceptible to eddy currents, which may cause differences between the tag and control image if the

gradient sequence is different. However, the inversion efficiency of unbalanced pCASL is less affected

by magnetic field inhomegenity (L. Zhao et al. 2017).

2.4 Perfusion Quantification

Several different models exist for quantifying perfusion from the difference between the control and

tagged image. The method recommended by the International Society for Magnetic Resonance in

Medicine Perfusion Study Group (Alsop et al. 2015) for clinical pCASL assumes full delivery of the

labelled spins into tissue has occurred by the time of the tagged image acquisition. Perfusion thus has

a linear relationship with the control/tag difference and can be estimated by:

F = 6000 λ · (Scon − Stag) e(TI/T1b)

2 α σ T1b S0 (1− e(−τ/T1b)) (9)

where F is the perfusion rate in millilitres per 100g per minute, 6000 is the unit conversion factor from

SI units, lambda is the blood-tissue partition coefficient, T1t and T1b are the T1 times of the tissue

and blood, Scon and Stag are the control and tagged image intensities respectively, TI is the inflow

time, α is the labelling efficiency, σ is the background suppression efficiency, S0 is the proton density

weighted image intensity, and τ is the duration of the pCASL inversion.

For PASL, the linear relationship is similar (Alsop et al. 2015):

F = 6000 λ · (Scon − Stag) e(TI0/T1b)

2 α σ TI1 S0
(10)
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where TI0 is the time before imaging that the PASL labelling starts, and TI1 is the PASL bolus

duration - the time between labelling and the application of Q2 TIPS.

The model described above is based on a simplification of more precise models which consider a kinetic

curve, where the evolution of signal difference at each voxel as the bolus of spin labelled blood travels

and perfuses over time is modelled. The original approach was the Buxton model (Buxton et al.

1998):

∆M = 2 M0b f
∫ t

0
C(t)R(t− t′)M(t− t′)dt′ (11)

so to calculate the CBF in units of ml/100g/min:

F = 6000 (Scon − Stag)
2 α σ M0b

(∫ t

0
C(t)R(t− t′)M(t− t′)dt′

)−1

(12)

F = 6000 (S(t)con − S(t)tag)
2 α σ M0b

(C(t) ∗ [R(t, t′) ·M(t, t′)])−1 (13)

where t is the time since the tagging process and ∗ is convolution. The delivery function C(t) is the

fraction of arterial blood arriving at the voxel which has been tagged. The residue function R(t,t’) is

the fraction of tagged water molecules that arrived at time t’ still in the voxel at t, as opposed to being

removed via the venous system. The magnetisation relaxation function M(t,t’) is the fraction of the

original longitudinal magnetisation carried by the tagged spins that arrived at time t’ still remaining

at t.

Figure 7: The general profile of the ASL subtraction signal ∆S = Scon − Stag curves with pCASL

and PASL. The local Bolus Arrival Time (BAT) is when the spin labelled blood first reaches

the voxel.

The kinetic curve can vary significantly in different parts of the brain which can cause erroneous

perfusion measurements, if not accounted for. The Bolus Arrival Time (BAT - see figure 7) is a par-

ticularly spatially varying model parameter (in some papers, BAT is referred to as the arterial transit
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time (ATT) ). This has caused some studies to produce BAT maps, by incrementally increasing the

inversion time until an ASL signal appears when the bolus has just enough time to arrive at a given

voxel (MacIntosh et al. 2010)(Martin et al. 2015), although BAT can also be estimated by fitting the

curve with inversion times greater than BAT. Figure 7 shows that pCASL can produce a higher peak

ASL signal than PASL. This is because continuous labelling means the back of the tagged blood bolus

has less distance to travel before reaching a perfusion location compared to in a labelled slab, so the

average transit time over which the inverted spins relax is reduced. Therefore a bolus of the same size

produced using pCASL has a greater amount of labelling overall when it reaches its destination, as

shown in figure 8.

Figure 8: A bolus of magnetically inverted blood produced by a PASL inversion pulse (blue)

and a pCASL pulse train (green). The initially fully inverted blood is coloured purple, but is

shown turning red as it undergoes T1 relaxation. When the two boluses reach the same location

downstream, the front of both boluses are equally inverted, but the back of the bolus produced

using pCASL is more inverted. Thus the bolus of spin-labelled blood is more strongly inverted

when it reaches any target tissue, allowing pCASL to produce a stronger ASL signal than PASL.

2.5 Background Suppression

Background suppression is a recommended addition to ASL protocols (Alsop et al. 2015) to reduce

noise and the severity of motion artefacts. This is achieved by reducing the signal intensity from ‘static’

brain tissue in both the tag and control images, but not significantly reducing the signal difference
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between them caused by perfusion. Therefore the subtraction image is more influenced by perfusion,

and less by noise and artefacts in the background tissue signal.

Background suppression is achieved by applying a saturation pulse followed by multiple inversion pulses

at specific times before the imaging sequence. Each of these inversion pulses reverses the direction

of the longitudinal magnetisation Mz. Between inversion pulses, Mz relaxes towards the positive

equilibrium magnetisation of the tissue M0, at a rate depending on the tissue T1:

Mz(t) = M0
(

1− M0−Mz0

M0 e−t/T1
)

(14)

where Mz0 is Mz immediately after the inversion pulse, when time t = 0.

Crucial to the usefulness of background suppression in ASL is the limited suppression of the ASL

difference signal. It has been shown that a non-selective inversion pulse changes this difference ∆M

to (Ye et al. 2000):

∆Minv = −αinv ∆M (15)

where the inversion efficiency is αinv. This simple relation occurs because the total magnetisation,

after any effect of tagged spins, is reversed preceding both the control and tag image acquisition, hence

the difference in signal δM is reversed. An αinv of less than one means the magnetisation inversion

is not ideal. This can happen due to magnetic and RF field inhomogeneities or due to T1 and T2

decay during the inversion pulse itself, often resulting in a measured inversion efficiency of around 0.95

(Garcia et al. 2005).

A theoretical example of the evolution of Mz according to equations (14) and (15) during the back-

ground suppression process is shown in figure 9.
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Figure 9: Evolution of Mz relative to M0 for grey and white matter during the background

suppression stage of an ASL scan. A saturation pulse reduces Mz to zero at time 0 ms. Then

Mz of grey and white matter relaxes at differing rates, until an inversion pulse (green) inverts

Mz. Perfect inversion efficiency is shown. The desired result is a much reduced but positive Mz

for both tissues when image acquisition starts at 2000 ms.

2.6 Image Acquisition

A key consideration in the design of ASL imaging sequences is that the spin labelling process has to

be repeated before each shot (each TR cycle starting with a new spin-labelling period, followed by

data acquisition). Therefore, the whole of k-space should be acquired using a relatively small number

of shots to control the time required for the scan. In contrast to some structural scans in which a

single line of k-space is acquired per shot, A large fraction of k-space must be sampled during each shot.

This introduces two problems for the image quality, both due to points of k-space being sampled for an

extended time after each RF excitation pulse. Firstly, the T2 decay of the MRI signal after excitation

means k-space points will be sampled with a reduced SNR over time, reducing the overall SNR of

the image. Secondly, the gradual decrease in signal will produce a large scale intensity modifying field

across k-space, which will add a point spread function in image space, blurring the reconstructed image.

The 3D GRASE imaging sequence is commonly used for ASL (Feinberg et al. 2009) because it com-

bines the rapid scanning of k-space associated with gradient echoes, with the T2 rather than T2*

dependence of the signal decay associated with spin echoes. This means a large fraction of k-space can

be acquired rapidly thus with reduced decay of the signal, therefore improving the SNR and reducing
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the point spread function. In the later chapters of this thesis, 3D GRASE will be considered both in

ASL simulations and experimental data.

Figure 10: The 3D k-space sampling trajectory of 3D GRASE using four shots (shown by four

colours), which between them acquire k-space in an interleaved manner in two directions. The

sampling direction of the frequency encoded readout lines is shown by arrows, within planes

acquired in an order numbered for one of the shots.

3 Imaging and Dementia

3.1 Dementia - Definition and History

Dementia is defined by the Diagnostic and Statistical Manual of Mental Disorders IV as “A syndrome

that may be caused or characterized by: Multiple cognitive deficits, which include memory impairment

and at least one of the following: aphasia, apraxia, agnosia (difficulties with language, movement and

sensory interpretation respectively) or disturbance in executive functioning.“ (APA 1994).
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Dementia type Proportion Mean onset

Alzheimer’s 62% 80 yrs

Vascular 17% 70

Mixed type 10% -

Lewy-body 4% 70

Fronto-temporal 2% 60

Parkinson’s 2% 60

Other 4% -

Table 1: The main forms of dementia (Prince, M, Knapp, M, Guerchet, M, McCrone, P, Prina,

M, Comas-Herrera, A, Wittenberg, R, Adelaja, B, Hu, B, King, D, Rehill, A and Salimkumar,

D. 2014), the proportion of dementia cases they cause and the mean age of diagnosis.

Most dementia cases are caused by Alzheimer’s disease, as shown in table 1. This condition was

named after Dr Alois Alzheimer, who took an interest in a 51 year old patient, Auguste Deter. She

could hardly remember key details of her life and gave answers which had no relevance to the question

posed (Engstrom 2007). After Deter’s death in 1906, Dr Alzheimer dissected her brain and applied

silver staining to find unusual microscopic structures which are now known to be amyloid plaques and

neurofibrillary tangles.

This would now be considered an example of early onset Alzheimer’s disease since the patient was less

than 65 years old, which only accounts for 5% of cases (Harvey et al. 2003). Hence it was considered

an exotic condition for over 70 years, until it was realised that the same post-mortem histology could

be identified in most elderly patients who had dementia symptoms (Bellur 1979).

3.2 Dementia - Pathological Mechanism

The microscopic structures found in all brains affected by Alzheimer’s disease were discovered to be

two coexisting types by the 1980s. These are plaques composed of amyloid beta proteins along with

neurofibrillary tangles made up of tau proteins (Morishima-Kawashima et al. 2002).

Amyloid beta is formed when the transmembrane amyloid precursor protein is cleaved consecutively

by two different enzymes. A small number of amyloid beta proteins can combine to form oligomers

within the neurons, whilst a very large number can entangle to form the extracellular plaques char-

acteristic of Alzheimer’s disease. If the “Amyloid hypothesis” is correct, neurological decay is caused

by the oligomers, possibly by the formation of unregulated calcium ion channels causing neuroelectric

dysfunction before triggering cell death (Ekinci et al. 2000). Figure 11 outlines the process of Amyloid

pathology.
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Figure 11: The Amyloid hypothesis for the mechanism of Alzheimer’s disease. Amyloid Precur-

sor Protein (APP) on a synapse membrane gets cleaved by enzymes alpha and beta secretase

forming Amyloid Beta proteins (AB). These then combine to form neurotoxic oligomers.

Tau proteins stabilise the microtubules which form the cytoskeleton of neurons. However, mutant

hyperphosphorylated tau proteins become insoluble and are therefore able to intertwine with each

other. This causes the neurofibrillary tangles characteristic of Alzheimer’s disease to form, whilst the

microtubules dissemble (Huseby et al. 2019). The “tau hypothesis“ attributes this process to the cause

of neurological decay resulting in dementia (D. Williams 2006). Figure 12 outlines the process of Tau

pathology.

Figure 12: The Tau hypothesis for the mechanism of Alzheimer’s disease. Normal tau proteins

stabilising the neurone’s microtubules are hyperphosphorylated (with phosphate groups labelled

PO4). They then form tangles resulting in the cytoskeleton breaking down.

The question of whether the Amyloid hypothesis or Tau hypothesis is more correct has previously
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been a focus of research. However, a recent theory is that Amyloid pathology precedes Tau pathology,

and then the two synergize in causing Alzheimer’s disease (Busche et al. 2020). For example, amyloid

beta activates microglia (immune system cells) and neuron cellular pathways which result in production

and hyperphosphylation of Tau protein. In mouse experiments, Amyloid supressing antibodies reduced

Tau hyperphosphylation in its early stage but not late stage dementia (Oddo et al. 2003). This may

explain the recent failure of numerous human drug trials targeting Amyloid Beta, because the identified

dementia affected subjects were not in a sufficiently early stage (Busche et al. 2020).

Cerebral blood flow reduction is well known to be associated with Alzheimers disease (Erik S Musiek et

al. 2012) and may be linked to Amyloid/Tau pathology synergy. Induced hypoperfusion increases both

Amyloid aggregation into plaques and Tau hyperphosphylation in mice (Kitaguchi et al. 2009)(Qiu et

al. 2016). In turn, build up of Amyloid Beta and Tau proteins can induce blood vessel constriction and

blood vessel abnormalities respectively in the human brain (Nortley et al. 2019)(Bennett et al. 2018).

Regardless of the pathological mechanism, the resulting pattern of the brain’s structural decay is well

studied (Fiford et al. 2018). The total volume of both white and grey matter decrease and are replaced

with cerebral-spinal fluid, as shown in figure 13. The biological process may start two decades before

the first clinical symptoms manifest (Jack et al. 2013). These usually begin with difficulties retaining

short term memory due to atrophy of the hippocampus, at which stage typical survival time is around

10 years (Armstrong 2014).

Figure 13: Structural decay of the brain associated with Alzheimer’s disease, shown by T1

weighted MRI images acquired in the early (A) and late (B) stages of the disease (De Leon

et al. 2004).

30



3.3 Dementia Diagnosis and Treatment

Genetic tests can identify one of several inherited genes causing formation of abnormal amyloid pre-

cursor protein, indicating a very likely probability of early-onset familial Alzheimer’s disease (Weggen

et al. 2012). A certain allele of the Apolipoprotein E gene (APOE e4) increases the risk of late-onset

Alzheimer’s disease by a factor of 3.5 (Sadigh-Eteghad et al. 2012). However, most patients with

Alzheimer’s disease do not have associated known mutations. Even with this limitation of genetic

testing, a person without dementia symptoms receiving a positive result may restrict their access to

health and life insurance (Society 04/2015).

The cognitive symptoms of dementia are usually first detected using a psychiatric test, such as the

mini-mental state examination (Pasquier 1999), although this does not indicate the specific disease.

The most reliable way to diagnose Alzheimer’s disease is to test a cerebral-spinal fluid sample for the

characteristic Amyloid Beta and Tau proteins (Sjögren et al. 2003). Furthermore, a high Tau to Amy-

loid Beta ratio distinguishes Alzheimer’s Disease from Fronto-temporal dementia (Duits et al. 2015).

However, given the imprecision of psychometric testing and the invasiveness of extracting cerebral-

spinal fluid, medical imaging is also an important part of the diagnostic work-up.

The key medical imaging modalities used are structural MRI and Positron Emission Tomography

(PET). Structural MRI is cheaper and simpler, but usually depends on detecting hippocampal shrink-

age (figure 13), which may be subtle in the early stages of the disease . PET using metabolism-sensitive

[18F]-Fluorodeoxyglucose (FDG) or amyloid-sensitive Pittsburgh-Compound-B as a tracer may detect

changes which are characteristic of Alzheimer’s disease even before symptoms appear (Mosconi et al.

2010). In symptomatic patients, Tau sensitive PET tracers are superior at predicting the location of

atrophy (La Joie et al. 2020), consistent with the hypothesis of increased importance of Tau pathology

in the later disease stage. However, PET tracers are radioactive and require a cyclotron to produce,

so are therefore expensive. This is why Arterial Spin Labelling MRI is attracting great interest as a

potential diagnostic alternative.

Alzheimer’s disease is currently incurable, like all other dementia causing diseases. However, there

are established pharmaceutical treatments which can modestly reduce the symptoms, and others in

development which show promise in slowing disease progression. The currently prescribed drugs, such

as donepezil, inhibit the enzyme acetylcholinesterase which breaks down the key neurotransmitter

acetylcholine (Hansen et al. 2008). This boosts interaction between neurons, which can modestly com-

pensate for their dysfunction in the early stages of the disease. In 2016 the first phase trial of the

monoclonal antibody aducanumab demonstrated a reducion in the Amyloid Beta plaques in the brains

of Alzheimer’s disease patients (Sevigny et al. 2016). However, further trials showed that aducanumab
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did not reduce the rate of cognitive decline (M 10/2019), resulting in its rejection by the US Food and

Drug Administration. The reason for the failure of this and many other recent drug trials has been

hypothesised to be due to their focus on Amyloid pathology, ignoring Tau pathology or the potential

synergy between them (Oxford et al. 2020).

3.4 ASL in Dementia Detection

PET is clinically used to diagnose dementia causing diseases in the early stages, when Mild Cognitive

Impairment (MCI) appears (L. Mehta et al. 2012). When the radiological tracer used is Fludeoxyglu-

cose (FDG), lower glucose uptake linked to slower metabolism is shown in certain brain regions before

structural decay is apparent. Presyptomatic detection of this effect has been demonstrated (Rohrer

et al. 2013). As it has long been known cerebral blood flow is tightly correlated with brain metabolism

(Ingvar 1982), this has inspired numerous studies using ASL to investigate perfusion as a biomarker

for dementia. They have repeatedly shown strong overlap of measured hypo-perfusion with reduced

FDG uptake and eventual structural decay (Erik S Musiek et al. 2012).

The advantages of using an MRI based diagnostic for dementia rather than PET include both absence

of an ionising radiation dose and cost effectiveness. Traditionally, MRI perfusion measurements involve

an injection of paramagnetic gadolinium as a tracer. In contrast ASL is non-invasive, with endogenous

spin labelled blood travelling into the region of interest acting as the tracer. It can also easily be

combined as a co-diagnostic with structural MRI scans.

A 2011 ASL study (Chen et al. 2011) included 148 control subjects and 65 with mild cognitive impair-

ment, with an average age of 76 years. Around half of the control subjects suffered subtle cognitive

decline in the follow-up period. ASL imaging linked decreased perfusion in the posterior cingulate

cortex in these participants with an area under the receiver operating characteristic curve of 0.66,

demonstrating the potential value of ASL for presymptomatic diagnosis of non-specific dementia. In

2019, it was found that ASL could detect presymptomatic perfusion changes in the longitudinal GENFI

study examining genetic Frontotemporal dementia (Henri JMM Mutsaerts et al. 2019).

ASL studies in established Alzheimer’s disease have consistently shown a reduction in perfusion in the

posterior parietal regions (Binnewijzend et al. 2013)(Erik S Musiek et al. 2012). The ASL perfusion

patterns are clearly linked to the pattern of reduced metabolism seen with FDG PET (Haller et al.

2016), as shown in figure 14. In similar studies of patients with frontotemporal dementia, analogous

corresponding perfusion and metabolism patterns have been confirmed in the frontal lobes (Verfaillie

et al. 2015).
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Figure 14: The patterns of metabolism measured using FDG PET (left) and perfusion from

ASL (right) (Haller et al. 2016). The posterior parietal regions are indicated with white arrows,

where the strongest link between these modalities associated with Alzheimer’s disease is present.

In any ASL application the perfusion maps should be compared against those from healthy subjects

from a similar age group, as grey matter perfusion has repeatedly been found to decrease with age

(Restom et al. 2007) (J. J. Chen et al. 2011).

An emerging use of ASL for early dementia detection is analysis of the blood brain barrier. In a recent

study, ASL was used to detect damage to the blood brain barrier, which was found to correlate with

cases of pre-clinical Alzheimer’s Disease (Joseph 2020). This is achievable due to the much longer

T1 relaxation rate of the spin labelled protons which leak into cerebrospinal fluid due to blood brain

barrier damage. This effect can be analysed by measuring the decay of the ASL signal over time by

using multiple inversion times, to use as input for multiple-compartment models.

Currently ASL is not routinely used for clinical diagnosis of dementia. This is because there is no

accepted translation from these group level statistical findings to robust biomarkers which identify

abnormality in individual cases (Ten Kate et al. 2018), given the variety in healthy cerebral blood

flow caused by many factors - which have themselves been studied using ASL (Clement et al. 2018).

33



Furthermore, optimum ASL sequence parameters are not yet established (Ten Kate et al. 2018) -

particularly the inflow time. This should be chosen to return the highest ASL signal according to the

kinetic curve (see figure 7) which mostly varies depending on the Bolus Arrival Time (BAT). However

the BAT is spatially variable and changes due to disease (Al-Bachari et al. 2014), making the optimum

inversion time difficult to define. Multi-delay ASL methods can quantify local BAT as well as CBF,

which is a target for research given that the recommended protocol is to use a single delay only for

simplicity (Alsop et al. 2015).

However, ASL already has a useful secondary role in assisting dementia diagnosis, when ASL data

has been acquired in a brief extension to the scan after structural MRI acquisition. (Grade et al.

2015). But the potential of ASL for simplified early detection of the Alzheimer’s disease may be

most useful for dementia research and guiding eventual treatment. ASL studies of CBF itself may

help improve understand the extent to which early perfusion changes are a cause or consequence of

disease pathology - since it has been hypothesised that hypoperfusion undermines clearing of Amy-

loid and Tau proteins (Mazza et al. 2011). Also, identifying individuals with early stage Alzheimer’s

disease will both help drug trial studies and allow treatments to be more effective by early intervention.

In this work, novel methods were developed to improve the quality and interpretability of ASL data

acquired from subjects with dementia or who are at risk - limitations which constrain the clinical

application of the ASL modality to this group. To improve data quality, correction of motion artefacts

was focused on. To improve interpetability, machine learning methods to recognise spatial patterns

in CBF were developed, specifically designed to improve the compatibility of ASL data acquired at

different centres.
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Chapter II: Methods for Quantitative ASL

Group Analysis

0 Chapter Introduction

ASL data from two previously performed dementia studies, YOAD and IRIS, were analysed here. Con-

ventional regional perfusion quantification methods were used to compare patients with various types

of dementia with healthy control cases, by segmentation of structural data into brain regions with

which the cerebral blood flow measurements could be associated. In addition, a novel inter-regional

statistical analysis based on two sampled t-tests is demonstrated.

Prior to this, the method for spatially normalising the data using a created group structural atlas

image will be outlined, followed by how cerebral blood flow was quantified and segmented into the

contributions from grey and white matter. The analysis pipeline will be compared with state of the

art pipeline, ExploreASL (Henk JMM Mutsaerts et al. 2020).

The ASL data processed in this manner will also be used in the following Chapter III where machine

learning was utilised, whilst conventional analysis will be used as a standard to compare the results

from the machine learning methods against.

1 The ASL Acquisitions

1.1 The YOAD and IRIS Samples

The two group ASL studies, YOAD and IRIS, were not acquired as part of this project. However, the

full pipeline for quantitatively analysing ASL CBF data was developed and performed here.
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Dementia type Study Total Number Male/Female Age Mean Age Range

Healthy Control (HC) YOAD 22 11/11 60.6 48.8 - 68.2

IRIS 18 52.6 51 - 69

typical Alzheimer’s Disease (tAD) YOAD 23 15/8 61.5 51.8 - 73.8

IRIS 12 62.1 52 - 71

Posterior Cortical Atrophy (PCA) YOAD 14 9/5 62.4 53.6 - 70.5

Frontotemporal Dementia (FTD) IRIS 21 64.0 51 - 70

Table 2: An overview of the YOAD and IRIS study cohort. ASL data from healthy control and

typical Alzheimer’s Disease cases was present from both studies. YOAD also included Posterior

Cortical Atrophy cases, while IRIS contained Frontotemporal Dementia cases.

1.1.1 YOAD

The Young Onset Alzheimer’s Disease (YOAD) study (Slattery 2018) was organised and run by the

Dementia Research Centre at the UCL Institute of Neurology. ASL data was obtained from 69 indi-

viduals aged between 48 and 73 years at the time of scanning. They included a mixture of healthy

controls and patients diagnosed with Alzheimer’s disease both in its typical form and the Posterior

Cortical Atrophy variant (table 2), via Neuropsychological testing and MRI scanning to rule out other

causes of cognitive impairment. Patients with cerebrospinal fluid biomarker evidence to confirm the

underlying Alzheimer’s disease pathology rather than fronto-temporal dementia were preferentially

recruited - the threshold for AD being a Tau/Amyloid Beta ratio above 0.52 (Duits et al. 2015). The

patients were all recruited from the Specialist Cognitive Disorders Clinic at the National Hospital for

Neurology and Neurosurgery: a national referral centre with a particular expertise in young onset

and genetic forms of dementia. Unaffected partners of study patient participants were preferentially

recruited as controls to aid accurate matching of the groups in terms of background, age and education.

1.1.2 IRIS

The 2015 IRIS study was acquired by a different researcher group at the University Medical Centre

Rotterdam (Bron, Steketee, et al. 2014) (Steketee et al. 2016). It was designed for various MRI based

approaches to compare patients with young onset Alzheimer’s Disease (AD) verses Frontotemporal

Dementia (FTD). ASL data was acquired from 51 subjects aged 51-71 years, including healthy con-

trols (table 2).

Suspected AD or FTD diagnosis was established at the Alzheimer Centre Rotterdam by a multidisci-

plinary team of neurologists, radiologists, and neuropsychologists. Healthy controls matched for age

and gender were recruited and neuropsychologically tested to rule out impairment.
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1.2 YOAD MRI Protocol

1.2.1 Overview

The cohort underwent a comprehensive multi-parametric MRI protocol using a 3T Siemens Trio scan-

ner (Slattery 2018). From this data, three types of image were used in the ASL analysis.

High-resolution structural T1-weighted images were acquired for the anatomical information needed

to interpret perfusion data - by assigning perfusion values to anatomical areas. These were also used

to make the ASL data spatially consistent by groupwise registration.

Next, five ASL control/tagged image pairs were consecutively acquired per subject. These were used

to generate perfusion-weighted images.

Finally, three saturation recovery images were acquired per subject, with three different recovery times.

These were used to the calculate proton density maps which were combined with the perfusion-weighted

images to generate quantitative CBF maps.

1.2.2 Structural Imaging

The 3D MPRAGE (Magnetisation Prepared Rapid Acquisition Gradient Echo) pulse sequence was

used to acquire structural images with 1.1mm isotropic resolution, using TR 2200ms and TI 900ms.

Contrast in an MPRAGE image is T1 weighted, which is desirable in structural brain imaging due to

the resulting strong grey/white matter contrast and dark CSF.

1.2.3 ASL Imaging

The multi-shot 3D GRASE (GRadient And Spin Echo) pulse sequence was chosen for acquiring ASL

data, with 3.8 x 3.8 x 4.0mm resolution, 64x64x30 matrix size, TR 5000 ms, TE 14.86 ms, and 8 shots.

The imaging region was positioned just above the cerebellum. The PASL FAIR Q2 TIPS spin labelling

process was used with an inversion delay of 2s and bolus length of 0.8s. Background suppression com-

posed of inversion pulses 1240ms and 390ms before the excitation pulse.

An inversion time of 2s was sufficient to allow the bolus to arrive at all brain regions based on their

expected bolus arrival times, as is consistent with the 2015 ASL consensus paper (Alsop et al. 2015).

However, a limitation is that in cerebrovascular disease and in deep white matter, ATT can be above

2000ms (Alsop et al. 2015). Despite the apparent superiority of pCASL in terms of SNR (Dolui et

al. 2017), PASL was used as pCASL was not in standard use at the institution at the time of acquisition.
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A 3D sequence was used, which can obtain a higher SNR than 2D EPI multiple slice sequences. The

limitations of 3D sequences relative to 2D include less contrast between the CBF measured in grey

and white matter due to stronger partial volume effects (Vidorreta, Z. Wang, Rodrıguez, et al. 2013),

greater sensitivity to motion and the resulting necessity of background suppression (see chapter I

section 2.5), and greater time required to produce a full ASL image. Due to the latter limitation, 2D

EPI ASL is usually used to observe changes in CBF over time due to brain function (Liu 05/2015,

retrieved 02/05/2021), but only baseline perfusion was required for YOAD.

3D GRASE was chosen because it combines the rapid scanning of k-space associated with gradient

echoes, with the T2 rather than T2* dependence of the signal decay associated with spin echoes. This

means more of k-space can be acquired after each excitation pulse with reduced decay of the signal and

hence better SNR, which is crucial for the acquisition time as the spin labelling must be performed

before each excitation pulse - hence the long TR of 5000 ms. With the 8 shot sequence, the number

of times the spin labelling process had to be repeated was thus limited to 8. Using fewer shots would

have meant longer signal acquisition periods thus more decay of SNR and broader point spread func-

tion, while using more shots would have increased acquisition time and may have exacerbated motion

artefacts.

The lower resolution relative to the structural images was used because the ASL signal drawn from

the difference between the tag and control image pairs may be two orders of magnitude lower than the

structural MR signal. An adequate SNR can be achieved by increasing the volume of signal generating

tissue in each voxel from 1.1x1.1x1.1 = 1.33mm3 to 3.8x3.8x4.0 = 57.8mm3.

The ASL images were linearly interpolated in the transverse plane as part of the on-scanner image

reconstruction, meaning the nominal resolution was 1.9x1.9x4 mm. The control and tagged images

had already been co-registered to account for any head displacement between their acquisition.

1.2.4 Saturation Recovery Imaging

The Saturation Recovery (SR) image sets were acquired using the same 3D GRASE readout and pa-

rameters as the ASL data, but with only a single image acquired with a preceding saturation pulse

and no tag or control pulses. For each subject, three SR images were acquired with recovery times of

1s, 2s, and 5s. Like the ASL images, the SR images were linearly interpolated so the effective image

resolution was 1.9x1.9x4 mm.
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1.3 IRIS MRI Protocol

1.3.1 Overview

The images had been previously acquired at the University Medical Centre Rotterdam (Bron, Steketee,

et al. 2014)(Steketee et al. 2016). The cohort underwent a multi-parametric MRI protocol using a 3T

General Electric Discovery MR750 scanner. From this data, three types of image were used in the

ASL analysis.

High-resolution structural T1-weighted images were acquired for the anatomical information and spa-

tial registration of the ASL data by groupwise registration. Five ASL control/tagged image pairs

were consecutively acquired per subject. The proton density images required for CBF quantification

were acquired for each subject, using the same sequence as the control image but without background

suppression.

1.3.2 Structural Imaging

3-D fast spoiled gradient-echo T1-weighted images provided structural information. The resolution was

1x1x1mm and field of view was 240x240x176 mm. Frequency encoded lines of k-space were acquired

with a TR of 7.9 ms and TE of 3.06 ms, and the acquisition of each k-space slice was preceded by

an inversion time of 450 ms. The sequence used ASSET parallel imaging (General Electric term for

SENSE) with acceleration factor 2, allowing a 4.41 minute acquisition time.

1.3.3 ASL Imaging

In accordance with ISMRM consensus recommendations (Alsop et al. 2015), background-suppressed

3D pCASL was acquired. The labelling plane was positioned 9 cm below the anterior commissure-

posterior commissure line, with labelling duration 1450 ms, and post-labelling delay 1525 ms. This

value of the post-labelling delay is shorter than the consensus recommendation of around 2000 ms

(Alsop et al. 2015), which could affect the CBF measurement in voxels with a long bolus arrival time.

The ASL image resolution was 3.3x3.3x3.3 mm with a 240x240x120 mm field of view. The k-space

sampling trajectory was a 3D interleaved fast spin echo stack of spirals, with eight spirals per slice

each sampling 512 points. The k-space volume of 36 axial planes was acquired in an interleaved order

sampled over 8 shots, each with TR 4632 ms and effective TE of 10.5 ms. A proton density weighted

image (see below) and three tag and control image pairs were acquired in 4 minutes 20 s. Background

suppression composed of inversion pulses 1580ms and 472ms before the excitation pulse.

1.3.4 Proton Density Weighting

Calibration images were directly acquired using the same acquisition sequence as the ASL images, but

with no spin labelling nor background suppression. The long TR (4632 ms) relative to the short TE

(10.5 ms) resulted in proton density weighting.
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2 YOAD Study Analysis Method - CBF Map Generation

2.1 Overview

The pipeline consisted of the following steps, each of which are described in more detail in this sec-

tion:

1. Structural Atlas Creation

2. Image registration to Atlas

3. Return to Original SR/ASL Resolution

4. Saturation Recovery fitting for Proton Density image

5. Grey/White Matter Segmentation

6. CBF Quantification

7. CBF Global Normalisation

In the YOAD dataset, the control, tag and Saturation Recovery (SR) images had already been aligned,

before the difference images were subtracted, by the previous research group who acquired it (Steketee

et al. 2016). The control and tag images in the IRIS data had also already been aligned. However, the

data was not registered to a common atlas, therefore all of the steps above had to be performed here

to allow groupwise analysis.

Automatic Motion Artefact Filtering was considered as the first step, but not used. This is described

and explained before the above list. The section after this one describes how some steps differed for

processing the IRIS data, due to its different format and properties.

2.2 Automatic Motion Artefact Filtering

After subtracting each tagged image from its corresponding control image in the ASL data set, 15 of

the subjects (22%) had at least one difference image affected by visible motion artefacts. These were

caused primarily by motion during acquisition causing phase shifts and rotations within k-space, rather

than the typical ASL artefact caused by the head changing position between the control and tagged

acquisition. As can be seen in example data shown in figure 15, this was apparent because:

• There was no negative ASL signal at head/air boundary, which would be expected if the head

had shifted between tag and control acquisitions as the tagged image intensity in the head is

subtracted from the control image intensity in the air.
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• Image ghosting was visible (halos of intensity perforating across the brain), which is consistent

with motion during k-space acquisition. (Highton 2016).

Figure 15: Examples of difference images from tag/control acquisition repeats. Left: ‘good’

data. Centre: moderate motion artefacts. Right: severe motion artefacts

In order to make the pipeline as user-independant as possible, the coding of a module for automatically

filtering motion corrupted images was attempted using a method previously outlined (H. Tan et al.

2009). This excluded some of the five control/tag image pairs if they were predominantly responsible

for the artefact.

The five difference images per subject used by this module were found by subtracting the tagged

image from the corresponding control image. The result is a non-quantitative perfusion weighted

image which roughly scales with actual CBF, so which should have artefact properties very similar

to the eventual quantitative CBF maps. This is because the only other image data used in their

calculation, the structural images used to calculate proton density for calibration, did not contain

significant artefacts because they did not undergo the control/tag subtraction process which greatly

exacerbates motion artefacts (Highton 2016). Hence the differences images could be used for motion

artefact evaluation.

For each subject, the mean and standard deviation (with the latter normalised by dividing by the

mean) of the entire difference images were calculated, returning five of each values for each subject’s

scan. The first filter passed a data set to the second filter if the difference between the largest standard

deviation value Smax and the lowest Smin was above a certain threshold (H. Tan et al. 2009):

ln
(
Smax − Smin

)
>= 1 (16)

If (16) was not fulfilled, all the data from that scan was accepted. This step was included to avoid

over-filtering of “good” data sets. Due to the weakness of the signal change between the tag and control

image in ASL, it was presumed the signal noise would contribute greatly to the variation between tissue
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containing voxels. Hence in the absence of artefacts, the standard deviation of the difference images

would be similar because they were all acquired with the same pulse sequence thus should theoretically

have same background noise. (16) tested conservatively if this condition was met. Only two ASL scan

cases were removed due to this filter.

The second filter performed two checks on each of the individual difference images. First the following

parameters were calculated for each subject:

• µµ - mean of the subject’s difference image means.

• Sµ - standard deviation of the subject’s difference image means.

• µS - mean of the subject’s difference image standard deviations.

• SS - standard deviation of the subject’s difference image standard deviations.

∣∣µi − µµ∣∣ > aSµ (17)

∣∣Si − µS∣∣ > bSS (18)

where µi and Si are the mean and standard deviation of difference images i, while a and b are thresh-

old parameters governing the strictness of the filter. If either equation (17) or (18) are fulfilled, that

difference image is excluded from calculating the mean difference image from that subject.

(17) was implemented to filter for artificially high or low intensity in the image. (18) checks for variant

standard deviation, which filters for motion artefacts using the same theory as (16) - but with a tunable

threshold (b) and with each difference image compared with the rest of the set rather than just the

extremes being considered.

However, this module was removed from the pipeline. Instead the five ASL difference images from

each subject were averaged, then subjects where the motion artefacts were still strong were manually

excluded. The basis for doing so was the presence of obvious ghosting extending outside the head -

seven subjects were removed for this reason.

The two reasons this manual approach was chosen over the automatic approach were: its difficulty with

getting selection correspondence with visual judgement of motion artefacts and the CBF maps’ SNR

being reduced by the omission of any tag/control image acquisition repeats (due to the low number of

averages available (i.e. 5)). The former point reduced the advantage over subjective manual rejection,

especially since subjective parameters had to be set for the algorithm anyway. The second point was

an issue because the CBF maps would all be used for leave-one-out testing of a learning classification
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machine, so consistency was required.

2.3 Atlas Registration Overview

The data alignment pipeline, based on a common group average structural atlas, is depicted in figure

16. The aim was for each voxel in each subject’s perfusion weighted image to correspond to the same

anatomical point, in order to allow voxel based analysis.

Figure 16: The spatial registration pipeline. The Saturation Recovery (SR) images undergo

groupwise registration based upon the high resolution structural images first (blue arrows).

Then the ASL images are groupwise registered using the registration parameters from this

process to repeat it (green arrows). The steps involving the ASL image resolution of 1.9x1.9x4

mm are placed in the top row, while the steps involving the structural resolution of 1.1x1.1x1.1

mm are in the lower two rows.

2.4 Structural Atlas Creation

The neuroimaging registration toolbox NiftyReg (Modat, David M Cash, et al. 2014) was used to

produce an atlas based on the groupwise average of the structural images. The package comes with a

shell script which achieved this by first performing rigid registration, where a single template image

(from subject 1) was chosen as a reference to which the other images were each registered by maximising

mutual information. This does not cause significant anatomical bias towards the template subject,
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because the rigid registration does not change the anatomy but ensures the brain in each image is

approximately in the same position.

An average of the rigidly registered images was calculated, which produced a blurry result. How-

ever, each rigidly registered image was affine registered to the average image, using the program

reg aladin(Modat, David M Cash, et al. 2014). Then an average of the resulting images was calcu-

lated, which was less blurry than the previous average. Nine more loops of affine registrations and

averaging were performed, followed by ten loops of deformable registration using reg f3d (Modat,

Ridgway, et al. 2010). The result was a sharp structural atlas based on the set of structural images

given, but without bias towards the anatomy of any one of them (“http://cmictig.cs.ucl.ac.uk/wiki/

index.php/NiftyregGroupwise” 09/12/2015, retrieved 27/10/2020).

As structural images from both the healthy controls and dementia patients were used, the atlas image

represented an intermediate between a brain with and without dementia related atrophy.

2.5 SR image registration to Atlas

In the YOAD dataset, the control, tag and Saturation Recovery (SR) images had already been aligned,

before the difference images were subtracted. However, the dataset had not been registered to a com-

mon atlas, so the Saturation Recovery (SR) images were used here for that purpose.

The SR images with a saturation time of 5s were used to achieve the group registration, because these

had stronger signal relative to noise compared to the 1s and 2s saturation time SR images. However,

the intensity profile was the opposite of the T1 weighted structural images; the CSF is brighter than

tissue in the 5s SR but darker in the T1 weighted structural image - see figure 16.

The contrast of the saturation recovery (SR) images was inverted to better match the structural im-

ages, as shown in the top left of figure 16. This was done by subtracting each voxel from the 99.9th

percentile of the image’s intensity distribution. Background voxels were excluded from this process by

a minimum intensity filter of 10% of the 99.9th percentile intensity. This allowed consistent success

when the SR images were affine registered to the structural images using reg aladin. Then they were

deformably registered to the atlas, using the deformation field calculated from deformably registering

the structural image to the atlas using reg f3d (Modat, Ridgway, et al. 2010).

The deformable registration parameters were: Similarity measure term 0.995, Bending energy penalty

term 0.005, Linear energy penalty term 0, L2 norm of the displacement penalty term 0, Jacobian-based

penalty term 0.

The affine transformation matrix describing each affine registration was recorded in a file, as was each
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deformation field produced by each deformable registration. Because the ASL difference images were

already aligned with the SR images in the partially processed YOAD dataset, this information could be

used to register each ASL difference image to the atlas without new registrations being computed. This

was beneficial because the contrast inverted SR images were much more comparable with the structural

images and had higher SNR than the ASL difference images, which allowed more accurate registrations.

The original non-inverted SR images were also registered to the atlas in the same manner.

2.6 Return to Original SR/ASL Resolution

After the previous step, the SR and ASL images from each subject were co-registered with the struc-

tural atlas. As an intrinsic part of the co-registration process, the ASL images were upsampled from

1.9x1.9x4 mm to 1.1x1.1x1.1 mm (the latter being the structural image resolution). The ASL images

were returned to their original resolution so they would be more consistent with other ASL data and

would not have surplus features (voxels) for the later machine learning analysis. To do this, an atlas

of the inverse contrast SR images was produced in the same way the structural atlas. The SR atlas

was affine registered to the structural atlas, then an inverse of the affine transformation matrix was

calculated. This was then used to transform the co-registered SR and ASL images, returning them to

1.9x1.9x4 mm resolution without biasing the anatomy towards any case.

2.7 Proton Density Mapping

The proton density maps, like the example in figure 17, were required for calibrating the CBF maps.

They were calculated using the Saturation Recovery (SR) images. The equation describing the inver-

sion recovery process in each voxel of each SR image was (Tofts 2009):

S = M0

(
1− exp(− tI

T1)
)

(19)

where the known variables are signal intensity S and saturation recovery time tI , while the unknown

variables were proton density M0 and T1. As there were three co-registered SR images for each subject,

there were three corresponding S and tI values per voxel. Therefore the MATLAB general curve fitting

algorithm “fit“ (F. c. o. s. t. d. MATLAB v. R2017b f. 2017-09 (accessed 26/01/2019)) could be used

to find M0 and T1 by defining them as fit parameters, as is depicted in figure 18.
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Figure 17: An example proton density map calculated for subject 1.

Figure 18: The saturation recovery curve �tted using the three points of voxel signal vs satura-

tion recovery time data from the SR images, to �nd the proton density parameter.

2.8 Grey/White Matter Segmentation

Due to the limited resolution of the ASL data, originally acquired with 3.8x3.8x4 mm sized voxels, a

large fraction of voxels contained signi�cant fractions of grey matter, white matter and/or cerebral-
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spinal 
uid. The volume fraction maps had previously been produced using the GIF algorithm of the

NiftySeg toolbox (Cardoso et al. 2015). As analysis of grey and white matter separately was intended,

the contribution to the ASL signal from both tissue fractions had to be discerned.

Partial volume correction was performed using a linear regression algorithm (Asllani, Borogovac, et al.

2008), based on the assumption that within a local region of the brain the CBF rate to grey matter and

white matter did not vary. Although partial volume correction is typically available in ASL analysis

tools for Grey and White matter segmentation (Chappell et al. 2009), the method was implemented

here due to the intended extension to inter-regional partial volume correction. This meant that within

a kernel of voxels around a given central voxel, the following equations would apply:

Si = sgGi + sw Wi (20)

where Si , Gi and Wi are the signal, grey matter volume fraction and white matter volume fraction

in the ith voxel of the kernel, whilst sg and sw are the unknown signal components originating from

grey and white matter. By assuming sg and sw are constant in a kernel containing n voxels, a matrix

equation could be constructed:
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The matrix equation (2.7) has the form A = Bx where A and B are known, so it could be solved for

x using the MATLAB function \lsqnonneg" (S. n. l. l.-s. p. MATLAB v. R2017b l. 2017-09 (accessed

26/01/2019)). This uses the Lawson-Hanson non-negative least-squares solver algorithm (Lawson et al.

1995), which �nds the positive elements ofx which achieves:

min x

�
�
�
�

nX

i =1

�
A i � (B i 1 � x1 + B i 2 � x2)

� 2 �
�
�
� (22)

The original partial volume correction algorithm (Asllani, Borogovac, et al. 2008) solved using a pseudo-

inverse function, which may compute faster than (22).

The kernel size used was 5x5x5 voxels. However it was found the elements ofx were nonphysically

large for some voxels, indicating an unstable solution. This was remedied by adding extra conditions

to the function:

ˆ Voxels which contained a volume fraction of both grey and white matter combined of less than

10% were assigned zero CBF contribution from either type, because the low volume fraction of

tissue compared to CSF made unstable solutions likely.
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ˆ Voxels in the kernel which contained a volume fraction of both grey and white matter combined

of less than 10% were excluded from the solution process for the same reason.

ˆ Voxels which contained more than 99% of either grey or white matter were assumed to be 100%

that tissue type, because the low fraction of the other tissue type also made unstable solutions

liable.

2.9 CBF Quanti�cation

The command line tool Oxford ASL (Chappell et al. 2009) was used for the quanti�cation of CBF from

the ASL data. This is part of the Bayesian Inference for Arterial Spin Labelling (BASIL) which is part

of the widely used Oxford Centre for Functional Magnetic Resonance Imaging of the Brain Software

Library (FSL). Version 6.0.1 was used (\https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation" 09/2018,

retrieved 01/10/2018).

Figure 19: CBF map (one example axial slice) from IRIS subject 5 after groupwise registration

(left) segmented into grey (middle) and white (right) matter components using the partial

volume handling function. Note CBF was only calculated in voxels with at least 10% volume

fraction of the relevant tissue. The CBF values for white matter in some locations are much

higher than the typical value of around 20 ml/100g/min, which may be due to poor �tting in

regions with low volume fractions of white matter.

BASIL was originally designed for sets of ASL di�erence images acquired using di�erent inversion

delays, based on �tting the Buxton kinetic model of how an in-
owing bolus of tagged blood changes

the MRI signal (Wong et al. 1997). This has been historically achieved by least squares �tting to

obtain the model parameters which include CBF, however BASIL utilises a fast Bayesian inference

method for the model inversion. This method is 
exible enough for handling ASL datasets using a

single inversion delay. This is the case for the YOAD and IRIS studies where �ve ASL acquisitions

were acquired per subject, each with an inversion delay of 2s were in YOAD and 1.45s in IRIS.
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The output maps were calibrated for variations in the proton density and B1 array coil receiver

sensitivity pro�les by dividing them by the calculated proton density maps. Voxels with very small

proton density values were excluded to avoid inaccuracies due to the numerical instability of dividing

by a small value. The units were converted frommillilitres per gram per second to millilitres per 100g

per minute by multiplying the CBF values by 6000.

CBF maps were quanti�ed separately for grey and white matter using partial volume correction, so

they could be analysed separately - as shown in �gure 19.

2.10 CBF Global Normalisation

It is known that many factors can cause global variation in blood perfusion to the brain amongst

healthy subjects. Important examples include sex, alcohol consumption and recent exercise causing

an increase, while ca�eine, cardiovascular �tness and adult age can cause an decrease (Clement et al.

2018). Anxiety, often associated with an MRI scan, can cause global perfusion increases or decreases

depending on the individual (Clement et al. 2018). The validity of linking a regional CBF value to

the pathology of a dementia causing disease is increased if other causes of variation can be accounted

for. As this pipeline was designed to link region speci�c perfusion changes to types of dementia,

globally normalising CBF maps to account for changes in the baseline perfusion rates should improve

the statistical con�dence of the results of the analysis.

An alternative approach for CBF normalisation is to use a control region expected to have the same

CBF for subjects with and without the disease - the cerebellum is used for this purpose in amyloid

PET, but it has not been found to be useful for ASL in dementia (Lacalle-Aurioles et al. 2013).

To perform global CBF normalisation, �rst the mean CBF in grey and white matter across the whole

cohort was found. This was calculated using grey/white matter segmented data, considering only

voxels which contained at least 20% volume of the respective tissue type, without partial volume

correction.

Next the approximate peak of the distribution function of the voxel CBF values from each subjects nor-

malised grey and white matter CBF maps was calculated. This was achieved in two stages. First the

MATLAB function \histcounts\ was used to �nd the approximate peak location, which produces a dis-

crete 1D distribution function for all eligible voxels in the brain. A counting bin size of 1 ml/100g/min

was used. To achieve a more precise peak, a Gaussian function was �tted to the frequency values

of the discrete distribution points. The points used were limited to those around the approximately

guassian peak, where the frequency values were at least 25% the peak value, to stop the in
uence of

the noisier points associated with less common CBF values. Although there were not visible areas of

signal dropout caused by insu�cient post labelling delay in the IRIS data, any such voxels would thus

be excluded from the normalisation.

Global normalisation could then be performed by applying a transformation to each subject's grey/white
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tissue CBF map, resulting in the distribution function peak shifting to coincide with the mean value

of the group. Two global operations were tested: (i) addition of a subject-dependent constant, and (ii)

multiplication by a constant.

With the addition of a constant, the distribution function F of the CBF values x is translated to the

normalised distribution function N :

N (x) = F (x � a) (23)

where a is the di�erence between the mean tissue CBF value of the group and the position of the

peak of F for that individual. The peak of N will coincide with the mean tissue CBF value. This

transformation between F and N is a curve shift with no stretching, meaning the contrast between

adjacent voxels will stay the same. An exception was made for voxels containing no tissue fraction, to

which the constant a was not applied.

For the second approach, global multiplication by a constant, the distribution function was transformed

as such:

N (x) = F (x=b) (24)

where b is the mean tissue CBF value of the group, divided by the modal CBF value (the peak of

F) for that individual. The peak of N will again coincide with the mean tissue CBF value, but the

transformation involves stretching of the distribution curve, meaning the contrast between adjacent

voxels will change scaling withb.

The �rst approach, addition of a constant, was �nally used, because it resulted in statistically signi�cant

CBF di�erences between the dementia and control groups being calculated in more segmented brain

regions (see section 5.1).

3 IRIS Study Analysis Method - CBF Map Generation

The IRIS study data contained ASL signal di�erence and proton density weighted images. An example

ASL signal slice is show in �gure 20, with signi�cant spiral background artefacts relative to the ASL

di�erence signal intensity clearly visible.
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Figure 20: An example ASL di�erence signal map, IRIS subject 5.

These artefacts are likely caused by thegridding process, where the non-Cartesian k-space sampling

of a spiral trajectory is interpolated to a Cartesian grid to allow application of the discrete Fourier

transform (Rasche et al. 1999).

In the proton density images, ring artefacts were clearly apparent, as shown in �gure 21. These

artefacts caused the groupwise registration pipeline previously applied on the YOAD data to fail.

This was recti�ed by applying a minimum intensity value constant for all subjects - any voxels below

a threshold of 15% of the 99.9th percentile of intensity were increased to meet the threshold. This

caused the rings to merge with the background - see the bottom of �gure 21.
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Figure 21: Top: An example proton density signal map, IRIS subject 5. Bottom: this same map

with a constant 
oor signal of 180 on the arbitrary MR signal scale, enforced to reduce the ring

artefacts which otherwise inhibited image registration.

The atlas for group registration was the groupwise average of the IRIS structural data, including the

control and dementia subjects. After this, the registration pipeline described in 2.4 to 2.6 was applied

to the IRIS dataset, followed by CBF quanti�cation (see section 2.9) and Global Normalisation (see

section 2.10).

4 Comparison with Current State of the Art Pipeline

ExploreASL (mutsaerts2020exploreas ) is a pipeline for analysing ASL data which is in contempo-

rary use (Rubinski et al. 2021). This will be brie
y compared with the pipeline used in this work which

was developed in early 2018, two years before ExploreASL was released.
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The �rst distinction is that exploreASL includes an optional module to remove white matter hypo-

intensities in the T1 weighted structural images. These lesions indicate damage to small blood vessels,

which may be linked to vascular dementia (Alber et al. 2019), and can cause errors in segmentation of

white and grey matter. However, the module requires FLAIR images (where WM hypo-intensities are

hyper intense), which were not available with the YOAD and IRIS datasets.

The segmentation of grey matter, white matter and CSF is performed using the toolbox CAT12 (Gaser

2009) in ExploreASL. Here, the NiftySeg toolbox was used for this task (Cardoso et al. 2015) for the

support bene�t of being developed in-house at University College London. Although a direct compar-

ison of the result quality was not made, NiftySeg is signi�cantly more computationally expensive than

CAT12, with the former taking over an hour on a dedicated server whilst CAT12 can be performed

within minutes ( mutsaerts2020exploreas ).

The image registrations were calculated using NiftyReg (Modat, David M Cash, et al. 2014) in this

pipeline, whilst ExploreASL used the DARTEL function in CAT12 (Gaser 2009). More importantly,

here the ASL data was registered to the saturation recovery images, which were in turn registered to

the T1 weighted structural images. In ExploreASL, registration is instead performed between the grey

matter segmentation maps and the ASL signal di�erence maps.

Outlier rejection was considered but not included in this pipeline, due to the method's dependence on

an arbitrary parameter. However, ExploreASL uses a threshold-free method ENABLE. This ranks the

ASL di�erence image repeats according to quality (contrast to noise ratio) and adds them together

until the GM temporal SNR stops increasing because the additional repeats are of insu�cient quality.

The CBF quanti�cation in ExploreASL is based on the consensus method of calculation (Alsop et al.

2015), which is e�ectively the same in this pipeline when BASIL was used with a single delay time.

The partial volume correction in ExploreASL optionally uses a gaussian kernel, whilst a uniform cubic

kernel is used in this pipeline.

In a future study, the YOAD and IRIS data would be processed using the state of the art ExploreASL

pipeline, before the novel analysis methods considered in this thesis were applied. This would reveal

the sensitivity the �nal result has to the design of the pipeline leading to CBF quanti�cation.
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5 Study Analysis Method - Regional and Inter-regional

Analysis

5.1 Regional Segmentation

The structural images had been previously parcellated into over 200 regions by using the Geodesic In-

formation Flows (GIF) algorithm implemented in the NiftySeg toolbox (Cardoso et al. 2015). However

as voxels were allocated to a single region from this list depending on which region had the largest

volume fraction present in them, many anatomically smaller regions had no voxels assigned to them

as they only had small volume fractions present in any single voxel.

In this pipeline, the brain was divided into eight anatomical regions (with corresponding left and right

hemisphere regions considered together), by assigning each of the 200+ regions output by GIF to

one of these 8 more general regions based on neuroanatomical literature. The eight combined regions

were:

ˆ Frontal Lobe

ˆ Temporal Lobe

ˆ Parietal Lobe

ˆ Occipital Lobe

ˆ Insular Lobe

ˆ Limbic Lobe

ˆ Hippocampus

ˆ Basal Regions

where the basal regions were the basal ganglia and diencephalon. When the structural parcelation maps

were co-registered with the lower resolution ASL data, the increase in voxel size meant that multiple

regions could be assigned to a single voxel. In order to use as much of the data possible in regional

analysis, the contributions of each region to the CBF in these voxels had to be discerned.

This was possible based on the assumption that within a limited region of the brain, the CBF rate to

each region was constant - a similar assumption to the one used for Grey and White matter partial

volume correction. This meant that within a kernel of voxels around a given central voxel, the following

equations would apply:

Si = Vi 0C0 + Vi 1C1 ::: + Vin Cn (25)
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where Si is the signal in the ith voxel of the kernel, C1 is the unknown CBF component from the

�rst of n regions (frontal lobe) and C0 is the unknown component from any volume fraction which

is not included in the n regions. Vij is the volume fraction of the jth region in the ith kernel voxel.

By assuming the s values are constant in a kernel containingm voxels, a matrix equation could be

constructed:
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As Equation (26) is of the form A = Bx it could be solved for x using the MATLAB function

\lsqnonneg" (S. n. l. l.-s. p. MATLAB v. R2017b l. 2017-09 (accessed 26/01/2019)). Some resulting

data is shown in �gure 22, after a 3x3x3 kernel was used.
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Figure 22: The regionally segmented CBF data from Subject 1, without grey/white matter

partial volume correction for ease of illustration, shown in an axial slice for four of the eight

regions. Top left: Frontal Lobe, top right: Temporal Lobe, bottom left: Parietal Lobe, bottom

right: Occipital Lobe.
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5.2 Regional Statistical Analysis

For each subject, the mean CBF in each of the eight regions was found, for both grey and white matter.

This was achieved by including only voxels which contained a volume fraction of the respective region

above a 20% threshold.

To �nd the regional perfusion changes associated with the dementia conditions relative to the healthy

controls, the mean CBF value associated with each region was found for each group. Then these

average values from the healthy control group were subtracted from the average values from each of

the disease groups separately.

To �nd the statistical con�dence for the CBF change in each region, a form of the Student's t-test

(Ghaderpour et al. 2017) was performed. t-tests are used when the mean and standard deviation of a

large data set is unknown and only a limited sample from that data set is available, but a probability

distribution of the possible true mean is desired. This is the circumstance in this case, because the

objective is to quantify the probability that the mean regional CBF change caused by tAD or PCA is

not zero and the null hypothesis can be rejected, based on a limited sample from all the tAD/PCA

a�ected brains that exist.

The �rst step of the t-test was to calculate the t-statistic, which is the di�erence between the mean of

the limited sample �̂ and the hypothesised mean of the whole sample� , divided by the standard error

of the mean of the limited sample:

t =
�̂ � �
�̂ =

p
n

(27)

Where � is the variance of the limited sample andn is its size. When comparing two means a and b

with di�erent variances, Equation (27) becomes (B. K. Moser et al. 1992):

t =
� a � � b � d̂

p
� 2

a=na + � 2
b=nb

(28)

where d̂ is the di�erence between true means according to the null hypothesis, which in this case is

zero.

Next, the number of degrees of freedom� was calculated, which when comparing two means of non

homogeneous variance is (B. K. Moser et al. 1992):

� =
( 1=na + u=nb )2

1=(n2
a (na � 1)) + u=(n2

b (nb � 1))
(29)

where: u = S2
b=S2

a
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where na and nb are the size of the two samples, whileSa and Sb are their standard deviations. Once

the t-statistic and degrees of freedom where known, these were input into the MATLAB function

\tcdf\ was used to �nd the p-value. This uses the cumulative distribution function of the t-statistic

(Ghaderpour et al. 2017), shown in �gure 23. Subtracting the p-value from one returned the con�dence

level. The steps were individually coded for this analysis, rather than using a statistical toolbox, so

they could be developed for the less standard inter-regional analysis in the next section.

Figure 23: The cumulative distribution function for the Students' t-distribution. t is the t-

statistic of the sample. P is the probability that the t-statistic of the sample set(s) is more than

the t-statistic of the larger sets(s) they were drawn from. Note that P increases faster with t

when the sample(s) have higher degrees of freedom � .

5.3 Inter-regional Statistical Analysis

Considering a group of individuals, each with a certain set of features (e.g. CBF in brain regions),

there may be statistical relationships between the di�erent features which are informative about the

disease - which could not be analysed by looking at regions individually.

In the inter-regional analysis used here, only on the YOAD data, the statistical relationship between

regional dementia-related CBF di�erence relative to controls was considered. The objective was to

�nd statistically signi�cant di�erences between separate brain regions in how the diseases a�ect CBF

within them.

This may allow the relationship between CBF to a particular pair of regions to be identi�ed as a

sensitive disease biomarker. For example, in Posterior Cortial Atrophy this could be the di�erence be-
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tween frontal and occipital lobes. This approach would also reduce the importance of global perfusion

di�erences between individuals, thus reducing the importance of imprecise (Stewart et al. 2015) global

methods to get a reliable result.

The di�erence in dementia-related CBF di�erence between two brain regions could be found simply

by subtracting the CBF di�erence results from regional analysis described in section 5.2.

Identifying the statistical con�dence involved calculating error margins for the dementia-related CBF

di�erence of the two regions for a given con�dence level (1-p). Typically, a minimum con�dence inter-

val of 95% (p = 0.05) would be expected for the result to be considered signi�cant. This process was

repeated with decreasing con�dence intervals, meaning decreasing error margins, until the con�dence

interval value where the error margins did not overlap - the point where the null hypothesis that the

true regional dementia-related CBF di�erence are the same could be rejected.

Finding the error margin of each region's CBF dementia-related CBF di�erence required an inhomo-

geneous variance t-test. This discerns the statistical con�dence with which the null hypothesis that

the means of two large data sets are the same can be rejected, based on a limited sample from each -

even if the samples have di�erent variances.

The �rst step to �nd the error margins is to calculate the degrees of freedom� assuming the samples

have unequal variances, using equation (29). Next the t-statistic had to be calculated using the inverse

cumulative t-distribution shown in �gure 24. This was achieved using the MATLAB function \tinv",

which returns a value of the t-statistic from an input probability (con�dence interval) and degrees of

freedom value.
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Figure 24: The inverse distribution function for the Students' t-distribution. t is the t-statistic

of the sample. P is the probability that the t-statistic of the sample set(s) is more than the

t-statistic of the larger sets(s) they were drawn from. Note that P increases faster with t when

the sample(s) have higher degrees of freedom � .

Next, the standard error SE of the di�erence between the means was found by considering error

propagation from combining them:

SE =
q

S2
a=na + S2

b=nb (30)

The t-statistic is given by the error margin E between the mean of the limited sample ^� and the

hypothesised mean of the whole sample� , divided by the standard error of the mean of the limited

sample (Student 1908). Hence the error margins could now be found:

t =
�
� �̂ � �

�
�=SE

t = E=SE

E = t � SE (31)

A check was made to determine whether the di�erence between the dementia-related CBF di�erence

in a pair of regions is greater than the combined error margins of the dementia-related CBF di�erence

in those regions:

�
�CBFa � CBFb

�
� > E a + Eb (32)
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If this condition is met, then the null hypothesis that the regional dementia-related CBF di�erence

associated with tAD or PCA are the same in the general population can be rejected. Otherwise the

error margins are recalculated using a lower con�dence interval, with an increment of 1%, until the

maximum con�dence interval with which the null hypothesis can be rejected is found.

6 YOAD and IRIS Study Analysis - Results

6.1 Regional Statistical Analysis

The statistically signi�cant regional di�erences in the normalised grey and white matter partial volume

corrected CBF maps found when comparing the dementia a�ected a�ected subjects against healthy

controls, from the YOAD and IRIS study separately, is shown in tables 3 and 4. These also include

results from CBF unseparated between Grey and White matter (`Both').

The results from both the YOAD and IRIS data show signi�cant hypoperfusion linked to Alzheimer's

Disease (AD) in the cortical lobes, with greater e�ect in grey than white matter. AD related Hip-

pocampal hypoperfusion was found to be statistically signi�cant, albeit only in the larger YOAD group

when both grey and white matter was considered. This had been found in previous studies involving

diagnosed tAD (Asllani, Habeck, et al. 2008) and has also been seen in studies of pre-symptomatic

tAD (Okonkwo et al. 2012).

In YOAD's Posterior Cortical Atrophy (PCA) cases, hypoperfusion was seen in the temporal lobes,

parietal lobes and occipital lobes. This is in agreement with the visual results in a previous study

concerning 5 of the PCA patients in the YOAD group (Lehmann et al. 2016). In the analysis here,

a further 9 new cases were considered for a total of 14. However, this did not lead to statsitically

signi�cant hypoperfusion being seen in further brain regions.

In IRIS's fronto-temporal dementia (FTD) cases, signi�cant hypoperfusion was seen in the cortical

lobes - most strongly in the frontal and temporal lobes, as expected from the know pathology of this

disease.

The hypoperfusion in the Hippocampus associated with AD only became statistically signi�cant when

both grey and white was considered. This is likely because although this region is dominated by

grey matter it is small relative to the ASL voxel size, so many voxels will share volume between the

hippocampus and surrounding white matter - so some relevant perfusion information would be in the

white matter CBF maps. In contrast the AD related hypoperfusion in the Basal Regions (ventral
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diencephalon and basal ganglia) was only signi�cant in the grey matter CBF maps. This suggested

hypoperfusion in stronger than in the grey matter (interior volume of the Basal Regions (Harnsberger

et al. 2007)) than in the white matter (super�cial Basal Regions (Harnsberger et al. 2007)).

Region Grey Matter White Matter Both

AD PCA AD PCA AD PCA

Frontal Lobe -13.0 - -12.9 - -10.6 -

Temporal Lobe -13.5 -14.6 -10.2 - -12.8 -13.6

Parietal Lobe -22.1 -25.0 -14.5 - -13.7 -13.7

Occipital Lobe -19.9 - -14.1 - -13.7 -23.9

Insular Lobe -9.3 - - - -6.5 -

Limbic Lobe -10.0 - -6.0 - -7.8 -

Hippocampus - - - - -10.1 -

Basal Regions -10.1 - - - - -

Table 3: The regional di�erence in the mean CBF (ml/100g/min) between the tAD or PCA a�ected subjects

and the healthy controls from the YOAD study. Results from partial volume corrected of grey and white

matter CBF maps, and both together without segmentation, are shown. Values are only given if the CBF

change in that region was statistically signi�cant, as the con�dence interval was below 95% (p > 0.05).

Region Grey Matter White Matter Both

AD FTD AD FTD AD FTD

Frontal Lobe -12.9 -14.0 -8.1 -9.8 -10.2 -10.6

Temporal Lobe -10.5 -14.6 - -10.1 -9.8 -11.4

Parietal Lobe -11.1 -13.0 - - -8.1 -9.7

Occipital Lobe -11.9 -9.9 -14.1 - -10.7 -6.1

Insular Lobe -6.3 - - - - -8.4

Limbic Lobe - - - - - -

Hippocampus - - - - - -

Basal Regions - - - - - -

Table 4: The regional di�erence in the mean CBF (ml/100g/min) between the tAD or FTD a�ected subjects

and the healthy controls from the IRIS study. Results from partial volume corrected of grey and white matter

CBF maps, and with both recombined, are shown. Values are only given if the CBF change in that region was

statistically signi�cant, as the con�dence interval was below 95% (p > 0.05).

6.2 Inter-regional Statistical Analysis

The inter-regional analysis was performed on the YOAD data only, in order to provide a proof of con-

cept. Comparison between the YOAD and IRIS datasets will be important in the following chapters,

so the analysis pipeline has been applied to both so far. However the inter-regional analysis will not
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