UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Techniques for Analysis and Motion Correction of Arterial Spin Labelling (ASL) Data from Dementia Group Studies

Highton, Jack Edward; (2021) Techniques for Analysis and Motion Correction of Arterial Spin Labelling (ASL) Data from Dementia Group Studies. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of Highton__thesis.pdf]
Preview
Text
Highton__thesis.pdf

Download (13MB) | Preview

Abstract

This investigation examines how Arterial Spin Labelling (ASL) Magnetic Resonance Imaging can be optimised to assist in the early diagnosis of diseases which cause dementia, by considering group study analysis and control of motion artefacts. ASL can produce quantitative cerebral blood flow maps noninvasively - without a radioactive or paramagnetic contrast agent being injected. ASL studies have already shown perfusion changes which correlate with the metabolic changes measured by Positron Emission Tomography in the early stages of dementia, before structural changes are evident. But the clinical use of ASL for dementia diagnosis is not yet widespread, due to a combination of a lack of protocol consistency, lack of accepted biomarkers, and sensitivity to motion artefacts. Applying ASL to improve early diagnosis of dementia may allow emerging treatments to be administered earlier, thus with greater effect. In this project, ASL data acquired from two separate patient cohorts ( (i) Young Onset Alzheimer’s Disease (YOAD) study, acquired at Queen Square; and (ii) Incidence and RISk of dementia (IRIS) study, acquired in Rotterdam) were analysed using a pipeline optimised for each acquisition protocol, with several statistical approaches considered including support-vector machine learning. Machine learning was also applied to improve the compatibility of the two studies, and to demonstrate a novel method to disentangle perfusion changes measured by ASL from grey matter atrophy. Also in this project, retrospective motion correction techniques for specific ASL sequences were developed, based on autofocusing and exploiting parallel imaging algorithms. These were tested using a specially developed simulation of the 3D GRASE ASL protocol, which is capable of modelling motion. The parallel imaging based approach was verified by performing a specifically designed MRI experiment involving deliberate motion, then applying the algorithm to demonstrably reduce motion artefacts retrospectively.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Techniques for Analysis and Motion Correction of Arterial Spin Labelling (ASL) Data from Dementia Group Studies
Event: UCL (University College London)
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2021. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Licence (https://creativecommons.org/licenses/by-nc/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Med Phys and Biomedical Eng
URI: https://discovery.ucl.ac.uk/id/eprint/10131627
Downloads since deposit
42Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item