Prostanoid receptors in GtoPdb v.2021.2

Lucie Clapp¹, Mark Glembycz², Akos Heinemann³, Robert L. Jones⁴, Shuh Narumiya⁵, Xavier Norel⁶, Yukihiro Sugimoto⁷, David F. Woodward⁸ and Chengcan Yao⁹

1. University College London, UK
2. University of Calgary, Canada
3. Otto Loewi Research Center (for Vascular Biology, Immunology and Inflammation), Austria
4. University of Strathclyde, UK
5. Kyoto University Faculty of Medicine, Japan
6. Laboratory for Vascular Translational Science, France
7. Kumamoto University, Japan
8. Allergan plc, USA
9. University of Edinburgh, UK

Abstract

Prostanoid receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Prostanoid Receptors [694]) are activated by the endogenous ligands prostaglandins PGD₂, PGE₁, PGE₂, PGF₂α, PGH₂, prostacyclin [PGI₂] and thromboxane A₂. Differences and similarities between human and rodent prostanoid receptor orthologues, and their specific roles in pathophysiologic conditions are reviewed in [448]. Measurement of the potency of PGI₂ and thromboxane A₂ is hampered by their instability in physiological salt solution; they are often replaced by cicaprost and U46619, respectively, in receptor characterization studies.

Contents

This is a citation summary for Prostanoid receptors in the Guide to Pharmacology database (GtoPdb). It exists purely as an adjunct to the database to facilitate the recognition of citations to and from the database by citation analyzers. Readers will almost certainly want to visit the relevant sections of the database which are given here under database links.

GtoPdb is an expert-driven guide to pharmacological targets and the substances that act on them. GtoPdb is a reference work which is most usefully represented as an on-line database. As in any publication this work should be appropriately cited, and the papers it cites should also be recognized. This document provides a citation for the relevant parts of the database, and also provides a reference list for the research cited by those parts. For further details see [76].

Please note that the database version for the citations given in GtoPdb are to the most recent preceding version in which the family or its subfamilies and targets were substantially changed. The links below are to the current version. If you need to consult the cited version, rather than the most recent version, please contact the GtoPdb curators.

Database links

Prostanoid receptors
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=58
Introduction to Prostanoid receptors
https://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=58
Receptors
DP₁ receptor
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=338
DP₂ receptor
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=339
EP₁ receptor
prostaglandin E2 receptor transduce both intracellular calcium and cAMP signals. Biochemistry 33: 14496-502 [PMID:7981210]


39. Ashton AW, Mukherjee S, Nagayothi FN, Huang H, Braunstein VL, Desruisseaux MS, Factor


70. Bondesen BA, Jones KA, Glasgow WC and Pavlath GK. (2007) Inhibition of myoblast migration by prostacyclin is associated with enhanced cell fusion. FASEBJ 21: 3338-45 [PMID:17488951]


82. Cameron KO, Lefker BA, Ke HZ, Li M, Zawistoski MP, Tjoa CM, Wright AS, DeNinno SL,


100. Clark P, Rowland SE, Denis D, Mathieu MC, Stocco R, Poirier H, Burch J, Han Y, Audoly L and Therien AG et al. (2008) MF496 [N-[(4-(5-Diethoxy-6-oxo-6,8-dihydro-7H-pyrrolo[3,4-g]quinolin-7-yl)-3-methylbenzyl)sulfonyl]-2-(2-methoxyphenyl)acetamide], a selective E prostanoid receptor 4 antagonist, relieves joint inflammation and pain in rodent models of rheumatoid and osteoarthritis. J Pharmacol Exp Ther 325: 425-34 [PMID:18527210]

Identification in human airways smooth muscle cells of the prostanoid receptor and signalling pathway through which PGE2 inhibits the release of GM-CSF. *Br J Pharmacol* **141**: 1141-50 [PMID:15023863]


143. Friel AM, O'Reilly MW, Sexton DJ and Morrison JJ. (2005) Specific PGF2(α) receptor (FP)
antagonism and human uterine contractility in vitro. BJOG 112: 1034-1042 [PMID:16045514]


328. Li X and Tai HH. (2013) Activation of thromboxane A2 receptor (TP) increases the expression of monocyte chemoattractant protein-1 (MCP-1)/chemokine (C-C motif) ligand 2 (CCL2) and recruits macrophages to promote invasion of lung cancer cells. PLoS ONE 8: e54073 [PMID:23349788]


guinea pig and rat platelets. *Jpn J Pharmacol** 59: 357-64 [PMID:1434130]


392. Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF and Roberts 2nd LJ. (1990) A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. *Proc Natl Acad Sci USA** 87: 9383-7 [PMID:2123555]


Naka M, Mais DE, Morinelli TA, Hamanaka N, Oatiis Jr JE and Halushka PV. (1992) 7-


Gi and Gs proteins by E- and I-type prostaglandins in membranes from the human erythrocyte cell line, HEL. *Biochim Biophys Acta* **1265**: 8-14 [PMID:7532011]


682. Wilson SJ, Dowling JK, Zhao L, Carnish E and Smyth EM. (2007) Regulation of thromboxane receptor trafficking through the prostacyclin receptor in vascular smooth muscle cells: role of


5 [PMID:11684633]


