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Functional near-infrared spectroscopy (fNIRS) is a silent, non-invasive neuroimaging technique that is
potentially well suited to auditory research. However, the reliability of auditory-evoked activation
measured using fNIRS is largely unknown. The present study investigated the test-retest reliability of
speech-evoked fNIRS responses in normally-hearing adults. Seventeen participants underwent fNIRS
imaging in two sessions separated by three months. In a block design, participants were presented with
auditory speech, visual speech (silent speechreading), and audiovisual speech conditions. Optode arrays
were placed bilaterally over the temporal lobes, targeting auditory brain regions. A range of established
metrics was used to quantify the reproducibility of cortical activation patterns, as well as the amplitude
and time course of the haemodynamic response within predefined regions of interest. The use of a signal
processing algorithm designed to reduce the influence of systemic physiological signals was found to be
crucial to achieving reliable detection of significant activation at the group level. For auditory speech
(with or without visual cues), reliability was good to excellent at the group level, but highly variable
among individuals. Temporal-lobe activation in response to visual speech was less reliable, especially in
the right hemisphere. Consistent with previous reports, fNIRS reliability was improved by averaging
across a small number of channels overlying a cortical region of interest. Overall, the present results
confirm that fNIRS can measure speech-evoked auditory responses in adults that are highly reliable at
the group level, and indicate that signal processing to reduce physiological noise may substantially
improve the reliability of fNIRS measurements.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Functional near-infrared spectroscopy (fNIRS) has emerged as a
popular method for imaging the haemodynamic response to
neuronal activity in the human brain (Boas et al., 2014). This non-
invasive technique uses near-infrared light to illuminate the brain
through the intact scalp; the intensity of light returning to the
surface is measured to detect changes in cerebral haemoglobin
concentrations. Changes in the concentration of oxygenated (HbO)
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and de-oxygenated (HbR) haemoglobin are used as indicators of
cortical activation, based on the tight coupling that exists between
neuronal activity and oxygen delivery (Iadecola, 2004). The tech-
nique has been used extensively to study language processing (for a
review, see Quaresima et al., 2012), and in recent years interest has
grown in using fNIRS to study central auditory processing directly
(Abla and Okanoya, 2008; Chen et al., 2015; Lawler et al., 2015;
Plichta et al., 2011; Pollonini et al., 2014; Sevy et al., 2010).
Certainly, fNIRS has practical characteristics that are well suited to
auditory research: not only is it portable and relatively inexpensive,
it is quiet, requires a low degree of participant tolerance, and is
suitable for imaging patients with magnetic implants. Thus, unlike
functional magnetic resonance imaging (fMRI), fNIRS is free from
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
http://creativecommons.org/licenses/by/4.0/
mailto:ian.wiggins@nottingham.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heares.2016.07.007&domain=pdf
www.sciencedirect.com/science/journal/03785955
http://www.elsevier.com/locate/heares
http://dx.doi.org/10.1016/j.heares.2016.07.007
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.heares.2016.07.007
http://dx.doi.org/10.1016/j.heares.2016.07.007


I.M. Wiggins et al. / Hearing Research 339 (2016) 142e154 143
the issues posed by acoustic scanner noise (Peelle, 2014), is ideally
suited for developmental studies in infants (Lloyd-Fox et al., 2010),
and is compatible with implanted auditory prostheses, e.g. cochlear
implants (Sevy et al., 2010).

However, for fNIRS to become an accepted tool in auditory
research, it is critical to establish the fundamental capabilities of
the technique, including its ability to measure auditory responses
that are reproducible across test sessions. Adequate test-retest
reliability is the foundation of successful neuroimaging research,
and is especially pertinent where prospective longitudinal studies
are concerned (Blasi et al., 2014; Lawler et al., 2015): only if mea-
surements are sufficiently reliable will it be possible to identify
changes in cortical activation associated with (ab)normal devel-
opment or clinical intervention. Subsequently, the present study
aimed to quantify the test-retest reliability of temporal-lobe fNIRS
responses to auditory speech (with and without matching visual
cues) in normally-hearing adults. Since visual speech cues are also
known to activate auditory regions in the superior temporal cortex
(Calvert et al., 1997; Hall et al., 2005; MacSweeney et al., 2000), we
additionally aimed to quantify the reliability of temporal-lobe re-
sponses to visual speech (i.e. silent speechreading).

The test-retest reliability of fNIRS in adults has previously been
studied outside of the auditory domain. Here, we restrict our focus
to studies that assessed the reliability of functional activation in
response to a defined stimulus or task. Using metrics previously
established in the fMRI test-retest literature (e.g. Aron et al., 2006;
Johnstone et al., 2005; Manoach et al., 2001; Rombouts et al., 1997),
these studies typically evaluated, across test sessions and in varying
combinations, the spatial reproducibility of cortical activation
patterns, similarity in the shape of the measured haemodynamic
time courses, and the consistency of response amplitude (typically
quantified using the intraclass correlation coefficient, ICC). In one of
the first of these studies, Watanabe et al. (2003) concluded that
fNIRS offered acceptable reliability for measuring frontal cortical
activation in response to cognitive tasks, based on results from a
small sample of five subjects. Subsequent studies (Kakimoto et al.,
2009; Kono et al., 2007; Schecklmann et al., 2008) confirmed the
capability of fNIRS to reliably measure prefrontal activation during
cognitive tasks, at least when responses are considered at the group
level and when averaged across multiple channels overlying a
cortical region of interest (ROI). Variable, and generally poorer,
reliability has been observed at single-subject and single-channel
level, leading Schecklmann et al. (2008) to conclude that such an-
alyses should be interpreted with caution.

Similar findings have emerged from fNIRS test-retest studies
that focused on other cortical regions. In the sensorimotor cortex,
the time course of activation in response to simple motor tasks has
been found to be reproducible within subjects (Pearson's r > 0.6)
over intervals of minutes (Strangman et al., 2006) andmonths (Sato
et al., 2006). In a comprehensive assessment of the reliability of
sensorimotor activation during an event-related finger-tapping
paradigm, Plichta et al. (2007b) found fNIRS-measured activation to
be highly reproducible at the group level across a retest interval of
three weeks; however, they cautioned that at the single-subject
level reproducibility metrics generally did not exceed “low to
mediocre” values. Similarly, in the visual domain, occipital activa-
tion in response to periodic checkerboard stimulationwas found to
have good-to-excellent reproducibility at the group level, while
reliability at single-subject level was variable among individuals
and only “low” to “moderate” on average (Plichta et al., 2006).

To our knowledge, only one assessment of fNIRS test-retest
reliability to auditory stimulation has been published to date
(Blasi et al., 2014). This study was conducted in infants aged 4e16
months and used a retest interval of 8.5 months. The authors based
their analyses primarily on the HbO parameter, which was found to
be the more robust of the two haemoglobin chromophores (HbO
and HbR). In response to human vocal sounds (e.g. yawning, crying,
laughing) versus silence, at the group level the authors found
excellent reproducibility of i) the spatial pattern of right temporal
activation (overlap across sessions up to 94%), and ii) the shape of
the haemodynamic time course (Pearson's r ¼ 0.90). However, in
the same study, response amplitude was less reliable across test
sessions (ICCs mostly below 0.5). Also, consistent with the adult
studies described above, reliability was highly variable for indi-
vidual infants. While Blasi et al.’s study confirms that fNIRS is
capable of measuring reliable auditory responses in infants (at least
at the group level), the findings cannot be directly extrapolated to
adults because of differences in light propagation between infant
and adult heads (Fukui et al., 2003), as well as the challenge of
separating the reliability of the measurement technique from po-
tential developmental changes that may occur in these infants over
the same time period.

A prevalent issue in fNIRS imaging is that the measurements are
more sensitive to absorption changes occurring in superficial tissue
layers than in deeper structures such as the cortex (Strangman
et al., 2013). This makes the measurements highly susceptible to
interference from physiological signals of extra-cerebral origin
(Huppert et al., 2009). One promising approach to minimize the
influence of superficial signals is to introduce a reference channel
with short (ideally <10 mm) sourceedetector separation: this al-
lows signals that originate in superficial tissue layers (i.e. the scalp
and skull) to be regressed out from the main measurement chan-
nels (Gagnon et al., 2011; Saager and Berger, 2005). However, a
disadvantage of this approach is that the hardware used for data
acquisition must provide for the additional short-separation mea-
surement channels, something that is not true of many commer-
cially available fNIRS systems. An alternative approach, which does
not require any modification of the acquisition system, was pro-
posed by Yamada et al. (2012). Yamada et al. described a signal-
processing algorithm that exploits the fact that changes in HbO
and HbR tend to be negatively correlated in the functional cerebral
response, whereas systemic physiology tends to give rise to posi-
tively correlated changes in HbO and HbR. On this basis, the algo-
rithm aims to separate the haemodynamic signal into estimates of
the functional and systemic components. We have found applica-
tion of this algorithm to be beneficial in earlier work (Wiggins and
Hartley, 2015), and here we aimed to establish whether it can
improve the test-retest reliability of fNIRS measurements,
compared to the conventional approach of assessing HbO and HbR
separately.

Based upon the findings of the previous research, our overall
predictions were as follows: i) that speech-evoked activation in
adult temporal cortex measured using fNIRS would be more reli-
able at group and multi-channel level, compared to single-subject
and single-channel level; and ii) that application of Yamada
et al.'s (2012) algorithm to isolate the functional component of
the haemodynamic signal would improve test-retest reliability.

2. Materials and methods

2.1. Participants and test sessions

Seventeen participants (median age 65 years, range 26e75
years, 6 males) were tested in two sessions separated by approxi-
mately 3 months (median number of days between sessions 91,
range 85e108 days). All participants had normal hearing as
assessed using pure-tone audiometry conducted during session 1
(average air-conduction threshold �20 dB HL across frequencies
0.5, 1, 2 and 4 kHz in both ears). All participants were native English
speakers with normal or corrected-to-normal vision and no known
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cognitive ormotor disorders. Most participants (N¼ 15) were right-
handed as assessed using the Edinburgh Handedness Inventory
(Oldfield, 1971). The study was approved by the Nottingham 1
Research Ethics Committee and all participants gave written
informed consent.

2.2. Test procedure

In a block design, participants were presented with 24-s blocks
of speech stimulation interleaved with rest periods of random
duration in the range 20e40 s. There were three stimulation con-
ditions, including an auditory-only (A-ONLY), visual-only (i.e. silent
speechreading; V-ONLY), and audiovisual (AV) condition. In the A-
ONLY condition, the background remained uniform and a fixation
cross was presented at the positionwhere the talker's mouthwould
have been. This uniform background and fixation cross remained
visible throughout rest periods also. The stimulation conditions
were interleaved in random order, with each condition presented
five times in total. The overall measurement duration was
approximately 15 min.

Participants were instructed to look at the fixation cross during
rest periods. During stimulation periods, participants were
instructed to attend to the speech and to try to understand what
was said. Although, for the most part, there was no active task, to
encourage sustained attention to the experimental stimuli infre-
quent control trials were presented (after two of the 15 stimulation
blocks, chosen at random). The control trials proceeded as follows:
Two seconds after the cessation of a chosen block, two words were
presented on either side of the fixation cross; in a two-alternative
forced-choice task, participants were asked to press one of two
buttons to indicate which of the two words had been spoken in the
immediately preceding sentence. The response period was set to
automatically time out if no button press was registeredwithin 15 s,
although participants were observed to always respond within this
period. Following the response, the ensuing rest period was
extended by 5 s. Note that responses to these control trials were not
examined as part of the data analysis.

Before commencing data collection, there was a short familiar-
ization session in which each of the three stimulation conditions
was presented once, in each case followed by a practice of the
control task. This familiarization session was conducted before the
optode array was placed on the participant's head. Immediately
after the fNIRS measurements, a test of speech intelligibility was
conducted to assess participants' ability to correctly report key-
words (three per sentence) in each of the three stimulation
conditions.

2.3. Stimuli and equipment

We used the IHR Number Sentences developed by Hall et al.
(2005), which include sentences such as “Five yellow leaves are
falling.” Digital audiovisual recordings of 90 such sentences were
used, each spoken by both a male and a female talker. These 90
sentences were randomly split into sets of 30, one set for each of
the three conditions (A-ONLY, V-ONLY, and AV). Each stimulation
block comprised six concatenated sentences (three from each
talker), presented in random order and evenly spaced to fill the 24-
s block (Fig. 1a). To minimize familiarity effects, for each participant
a different random allocation of sentences to conditions, as well as a
different grouping of sentences into blocks, was used at each ses-
sion. The same sentences were used for the speech intelligibility
tests conducted immediately after fNIRS imaging, again with a
different allocation of sentences to conditions; furthermore, the
talker gender was reversed, such that sentences that were spoken
by the female talker during fNIRS imaging were spoken by themale
talker during the speech intelligibility tests, and vice versa.
Testing was conducted in a soundproof booth with dimmed

lighting. Participants were seated comfortably at a distance of
75 cm from the visual display. Auditory stimuli were presented
through a Genelec 8030A loudspeakermounted immediately above
and behind the display, at a level of 65 dB SPL (A-weighted root-
mean-square level averaged over the duration of each sentence,
measured at the listening position using a Brüel & Kjær Type 2250
sound level meter with the participant absent). Participants
responded to the control trials using a response box held on their
lap. A dense sound-absorbing screenwas placed between the fNIRS
equipment and the listening position, resulting in a steady ambient
noise level of 38 dB SPL (A-weighted).

2.4. fNIRS measurements

Measurements were made using a continuous-wave fNIRS sys-
tem (ETG-4000, Hitachi Medical Co., Japan). The probe set
comprised two 3 � 3 arrays (each containing 5 sources and 4 de-
tectors), which were used to simultaneously record responses from
the left and right cerebral hemispheres. This gave 24 measurement
channels in total, with a fixed source-detector spacing of 30 mm.
The ETG-4000 measures simultaneously at wavelengths of 695 nm
and 830 nm (sampling rate 10 Hz), and uses frequency modulation
to minimize crosstalk between wavelengths and optodes.

The probe set was positioned on the head so as to ensure good
coverage of superior temporal regions, where the auditory cortices
are located (Penhune et al., 1996). To allow for a valid assessment of
fNIRS test-retest reliability, it was important to ensure that the
optodes were positioned as consistently as possible across partici-
pants and test sessions. The international 10e20 system (Jasper,
1958) was therefore used to guide optode placement: on each
side, the lowermost source optode was placed as close as possible
to the preauricular point, with the uppermost source optode
aligned towards position Cz. Consistency of positioning across test
sessions at the individual level was further ensured by reference to
photographs taken during session 1. Once the position of the probe
set was finalized, an elasticised bandage was gently wrapped
around the participant's head to help maintain secure contact be-
tween the optodes and the scalp. Participants were asked to sit as
still as possible during testing to minimize motion artefacts.

To evaluate the consistency of positioning across individuals, the
procedurewas piloted on six adult volunteers who did not take part
in the main study. After positioning the probe set as described
above, the optode positions, plus anatomical surface landmarks,
were recorded using a 3D digitizer. These were then registered to
the “Colin27” atlas brain (Collins et al., 1998) using the AtlasViewer
tool (Aasted et al., 2015). Fig. 1b gives an indication of the spread in
registered optode positions across the six volunteers. The standard
deviation in the position of each optode was between 2.9 and
8.8 mm. We did not expect this degree of variability to have a
pronounced effect on our recordings, given that the spatial reso-
lution of our non-overlapping fNIRS measurements was expected
to be comparable to the 30-mm source-detector spacing (Boas
et al., 2004).

We also used AtlasViewer to confirm that our probe set pro-
vided sensitivity to the relevant cortical regions. The software cal-
culates a cortical sensitivity profile for each measurement channel
by running the photon migration forward problem, i.e. by simu-
lating the probabilistic path of photons as they traverse through the
head from source to detector (Aasted et al., 2015). The forward
problemwas run using the Monte-Carlo photon transport software
tMCimg (Boas et al., 2002), with 1 � 107 simulated photons
launched from each optode. Based on the anatomical registrations
reported above, alongside published results obtained using the



Fig. 1. (a) Schematic representation of one cycle of the block-design stimulus presentation paradigm; (b) Variability in optode positioning across six volunteers after registration to a
standard atlas brain. Optode positions for each volunteer are represented by different coloured dots. Variability was similar in the left hemisphere (data not shown); (c) Aggregate
sensitivity profiles for the predefined auditory regions-of-interest, which comprised the three highlighted measurement channels in each hemisphere. The colour scale depicts
relative sensitivity logarithmically from 0.001 to 1.
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same imaging system (Plichta et al., 2011) and our own piloting
data, we predefined two ROIs in which we expected to observe
significant auditory cortical activation. These ROIs, located over left
and right posterior superior temporal regions, each comprised
three measurement channels (left hemisphere: Ch#s 9, 10, 12; right
hemisphere: Ch#s 20, 21, 23). The selection of three channels in
each hemisphere, rather than more or fewer channels, was
considered an appropriate compromise to ensure adequate
coverage of the relevant cortical regions while also ensuring that
the ROIs remained focused only on areas that were expected to be
significantly activated. Fig. 1c shows the aggregate sensitivity pro-
files for the ROIs, which confirm that the measurements provided
good sensitivity to the posterior superior temporal gyri as well as
surrounding areas. For reference, the sensitivity profiles of all in-
dividual measurement channels are included as Supplementary
Fig. S1.
2.5. Data analysis

Data analysis was performed in MATLAB (MathWorks, Natick,
MA) using functions provided in the HOMER2 package (Huppert
et al., 2009) together with custom scripts.
2.5.1. Pre-processing
The raw fNIRS recordings were pre-processed to reduce the

influence of motion artefacts and physiological noise before esti-
mating changes in the concentration of HbO and HbR. First, the
raw intensity signals were converted to changes in optical density
(Huppert et al., 2009). Correction for motion artefacts was then
performed using wavelet filtering, which has emerged as a
promising approach to dealing with motion artefacts in fNIRS re-
cordings (Brigadoi et al., 2014; Cooper et al., 2012). We used a
simplified form of the algorithm described by Molavi and Dumont
(2012), as implemented in the HOMER2 hmrMotionCorrectWavelet
function. This function applies a probability threshold to remove
outlying wavelet coefficients, which are assumed to correspond to
motion artefacts. We excluded any coefficients lying more than 1.5
inter-quartile ranges below the first quartile or above the third
quartile.

Followingmotion-artefact correction, the optical density signals
were band-pass filtered between 0.01 and 0.5 Hz to attenuate low-
frequency drift and cardiac oscillations, and then converted into
estimates of changes in the concentration of HbO and HbR using the
modified Beer-Lambert law (Huppert et al., 2009). We used a
default value of 6 for the differential path-length factor at both
wavelengths. Since we did not account for the partial volume effect
associated with focal cortical activation, estimates of absolute
changes in haemoglobin concentrations are subject to considerable
uncertainty and should not be interpreted directly (Boas et al.,
2001). Relative response magnitudes remain interpretable, how-
ever, and form the basis of our assessment.
2.5.2. Haemodynamic measures
Changes in HbO and HbR concentration were separately

assessed as indicators of cortical activity, as is customary in the
fNIRS literature. In addition, we assessed a third haemodynamic
measure: the estimated functional component of the haemody-
namic response, derived using the haemodynamic modality sepa-
ration (HMS) algorithm described by Yamada et al. (2012). This
algorithm aims to reduce the influence of systemic physiological
signals by exploiting the fact that DHbO and DHbR are negatively
correlated in the functional cerebral response, while systemic
physiology (and head motion) tends to give rise to positively
correlated changes in HbO and HbR (Cui et al., 2010; Yamada et al.,
2012). Briefly, the fNIRS signal is modelled as a mixture of a func-
tional component, in which a fixed negative linear relationship is
assumed between DHbO and DHbR, and a systemic component, in
which a positive linear relationship is assumed between DHbO and
DHbR. The strength of the relationship between DHbO and DHbR in
the systemic component is expected to be task-dependent and is
therefore estimated from the data by minimizing the mutual in-
formation between the functional and systemic components. The
HMS algorithm returns separate estimates of the functional and
systemic components; we extracted DHbO for the functional
component for further analysis.
2.5.3. Statistical analysis
To quantify the amplitude of the haemodynamic response and

test for significant cortical activation we performed statistical
analyses based on the general linear model (GLM). We used a two-
stage ordinary least squares (OLS) estimation procedure similar to
that employed by Plichta et al. (2006; 2007b). The design matrix
included three boxcar regressors (one for each stimulation con-
dition), plus an additional regressor-of-no-interest comprising
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delta functions indicating the onsets of the control trials, all
convolved with the canonical haemodynamic response function
(HRF) provided in SPM8 [http://www.fil.ion.ucl.ac.uk/spm]. We
selected a parsimonious model that did not include any temporal
derivatives of the HRF, since preliminary analyses indicated no
benefit of including the derivative terms for the present dataset.
After completing the first-stage OLS estimation at the single-
subject level, we used the Cochrane-Orcutt procedure to correct
for serial correlation (Cochrane and Orcutt, 1949). Briefly, this
involved fitting a first-order autoregressive process to the model
residuals and transforming the original model according to the
estimated autoregressive parameter (see Plichta et al., 2007a). We
then re-estimated the beta weights based on the transformed
model (second stage). The beta weights, which represent the
amplitude of the haemodynamic response, formed the parameter
set for subsequent hypothesis testing. We tested for significant
cortical activation in each stimulation condition (compared to rest)
by using one-sided t-tests to compare the relevant beta weight to
zero (alpha level 0.05); cortical activation is indicated by positive t-
values for the estimated functional component and HbO, and by
negative t-values for HbR. We tested for significant cortical acti-
vation both at single-subject level and in a group-level random-
effects analysis.

To account for the multiple comparisons issue posed by sepa-
rately testing for significant activation in each channel, we used the
false discovery rate (FDR) method (Benjamini and Hochberg, 1995;
Benjamini and Yekutieli, 2001). The application of FDR methods in
fNIRS was investigated in detail by Singh and Dan (2006), and the
approach has been adopted in several previous assessments of
fNIRS test-retest reliability (Blasi et al., 2014; Kakimoto et al., 2009;
Kono et al., 2007; Schecklmann et al., 2008). We used the more
conservative version of the FDR procedure described by Benjamini
and Yekutieli (2001), since this did not require us to make any as-
sumptions about the pattern of dependencies between fNIRS
channels.
2.6. Tests for reliability

We used established metrics to assess the reliability of cortical
responses at both group and single-subject level. Specifically, we
aimed to quantify:

(1) Reproducibility in the pattern of cortical activation eli-
cited by auditory, visual, and audiovisual speech. Repro-
ducibility of the activation pattern across the entire probe set
was assessed by calculating the linear correlation between
the individual-channel t-values at sessions 1 and 2 (Plichta
et al., 2006, 2007b). For a more focused view, we calculated
the reproducibility of the quantity (RQUANTITY) and location
(ROVERLAP) of significantly activated channels (Blasi et al.,
2014; Kono et al., 2007; Plichta et al., 2006, 2007b;
Rombouts et al., 1997; Schecklmann et al., 2008). We used
the following definitions:

RQUANTITY ¼ 1� jA1 � A2j=ðA1 þ A2Þ;
ROVERLAP ¼ 2 x AOVERLAP=ðA1 þ A2Þ;

where A1 is the number of significantly activated channels at ses-
sion 1, A2 is the number of significantly activated channels at ses-
sion 2, and AOVERLAP is the number of identical channels that
showed significant activation at both sessions. RQUANTITY and
ROVERLAP take values between 0 (indicating no reproducibility) and
1 (indicating perfect reproducibility).
(2) Reliability of cortical responses within the ROIs. To
quantify the reliability of response amplitude, we used the
ICC. Conceptually, the ICC represents the proportion of the
total variance that can be attributed to between-subject
differences. That is:

ICC¼ Between� subjects variance
Between� subjects varianceþBetween� sessions variance

ICCs close to 1 represent high reliability and occur when the
between-subjects variance is much larger than the between-
sessions variance (i.e. the within-subject variance across repeated
measurements) (Johnstone et al., 2005); ICCs close to 0 represent
poor reliability. Negative ICCs, which can occur due to sampling
uncertainty, but which have no theoretical meaning, were replaced
by 0 (Li et al., 2015). In practice, the ICC is derived from an appro-
priate analysis of variance (ANOVA) (see Li et al., 2015 for details of
the calculation). Like previous studies that sought to quantify the
test-retest reliability of fNIRS (Blasi et al., 2014; Kakimoto et al.,
2009; Plichta et al., 2006, 2007b; Schecklmann et al., 2008), we
used the one-way random-effects model (Shrout and Fleiss, 1979).
Within each ROI, we calculated ICCs both for the constituent
channels (“single-channel ICCs”) and after averaging across chan-
nels (“cluster-level ICCs”). Two types of ICC were calculated: ICC-
SINGLE_SESS, which provides an indication of the reliability of
measurements made at a single session, and ICC2_SESS_AVG, which
indicates the reliability of the mean response across the two ses-
sions (Johnstone et al., 2005). Additionally, we tested for any sig-
nificant differences in mean response amplitude between sessions
using paired t-tests, reporting in each case an effect-size estimate
based on Cohen's d for paired observations (Cohen, 1988). Finally,
we assessed reproducibility in the shape of the haemodynamic
response by calculating the linear correlation between the block-
averaged time courses of haemoglobin concentration changes at
sessions 1 and 2 (Blasi et al., 2014; Kakimoto et al., 2009; Kono et al.,
2007; Sato et al., 2006; Schecklmann et al., 2008).

To guide interpretation of the results, we assessed the various
reliability metrics (linear correlation coefficients, ICCs, RQUANTITY
and ROVERLAP) against the following criteria put forward for ICCs by
Li et al. (2015): poor (<0.40), fair (0.40e0.59), good (0.60e0.74),
excellent (0.75e1.00). These criteria are broadly comparable to the
cut-off values adopted in previous studies of fNIRS and fMRI test-
retest reliability (Aron et al., 2006; Blasi et al., 2014; Manoach
et al., 2001; Plichta et al., 2006, 2007b; Schecklmann et al., 2008).
In assessing effect sizes based on Cohen's d, we adopted Cohen's
(1988) guideline criteria for small (0.20e0.49), medium
(0.50e0.79), and large (�0.8) effects.

3. Results and discussion

3.1. Speech intelligibility

The speech intelligibility data (Fig. 2) collected immediately
after the fNIRS measurements confirmed that participants were
readily able to understand the auditory speech material with or
without visual cues (mean percentage of correctly reported key-
wordsz100% in the A-ONLYand AV conditions). In contrast, speech
intelligibility based on visual cues alone was uniformly poor (V-
ONLY condition, mean scores <10%). Similarly low levels of
speechreading performance by normally-hearing individuals when
tested on open-set sentence recognition tasks have been reported
in the literature (Altieri et al., 2011; Stacey et al., 2016). Thus, in
interpreting the following results, it is important to note that fNIRS
test-retest reliability in the A-ONLY and AV conditions reflects a
response to highly intelligible speech, while reliability in the V-
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Fig. 2. Mean percentage of correctly reported keywords in a test of speech intelligi-
bility conducted immediately after the fNIRS measurements and based on the same
speech corpus. Error bars show ±1 standard error of the mean, corrected to account for
the repeated-measures design (Field, 2009).
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ONLY condition reflects a response to a largely unintelligible
stimulus. Mean intelligibility scores were numerically similar at
sessions 1 and 2 (within 2.2%-points), suggesting that the speech
material was approximately equally intelligible at the two sessions.

3.2. Reproducibility of cortical activation patterns

3.2.1. Group level
Focusing on the results for the estimated functional component

of the haemodynamic response, we were able to reliably detect
significant group-level activation to auditory speech (with or
without visual cues) in and around the predefined ROIs over the left
and right superior temporal gyri (Fig. 3, A-ONLYand AV conditions).
This confirms the capability of fNIRS to detect group-level auditory
cortical activation in adults, in line with recent findings (Chen et al.,
2015; Plichta et al., 2011; Pollonini et al., 2014; Sevy et al., 2010).
Additional, although less consistent, activation was observed over
left frontal/motor areas: regions commonly implicated in wider
speech processing networks (Friederici, 2011). We did not detect
Fig. 3. Group-level activation maps overlaid on a standard brain. Results for each stimulation
highlighted (p < 0.05 after false discovery rate correction). Note that the maps are interpola
purposes only. This figure is for the estimated functional component of the haemodyna
Supplementary Figs. S2 and S3.
any statistically significant activation in response to visual-only
speech, although the channels that came closest to reaching sig-
nificance were similarly located to the channels that were activated
by auditory-only and audiovisual speech (Fig. 3).

Reproducibility of group-level activation patterns across the
entire probe set was fair (r ¼ 0.52, AV condition) to good (r ¼ 0.70,
A-ONLY condition; r ¼ 0.69, V-ONLY condition), as assessed by the
linear correlation between individual-channel t-values at sessions
1 and 2 (Fig. 4 and Table 1). Note that this metric is influenced by all
channels, regardless of whether they overlaid areas of significant
cortical activation or not. Taking a more focused view, reproduc-
ibility in both the quantity and location of significantly activated
channels was excellent for auditory-only (RQUANTITY ¼ 1.00,
ROVERLAP ¼ 0.83) and audiovisual (RQUANTITY ¼ 0.88, ROVERLAP ¼ 0.75)
speech. Since we did not observe any significantly activated chan-
nels at the group level in response to visual speech, RQUANTITY and
ROVERLAP could not be calculated for this condition.

Estimating the functional component of the haemodynamic
response (Yamada et al., 2012) was critical to our ability to reliably
detect significant group-level activation to auditory-only and au-
diovisual speech (Table 1). When assessing HbO and HbR sepa-
rately, a conventional approach taken in a majority of fNIRS studies,
we found reproducibility to be markedly poorer. Indeed, in the case
of HbO, we detected little significant activation at all.

3.2.2. Single-subject level
Consistent with previous studies (Blasi et al., 2014; Plichta et al.,

2006; Schecklmann et al., 2008), we found the reproducibility of
single-subject cortical activation patterns measured using fNIRS to
be highly variable (Table 2). While for some individuals all the re-
ported metrics suggested excellent reproducibility, for other in-
dividuals reproducibility across sessions was poor. On average,
reproducibility of the quantity of significantly activated channels at
single-subject level was good regardless of the mode of speech
presentation (RQUANTITY ¼ 0.68e0.72 for the estimated functional
component), although reproducibility of the location of significant
activations was only fair (ROVERLAP ¼ 0.41e0.56). Average repro-
ducibility across the entire probe set was fair at best
(r ¼ 0.32e0.46).
condition are shown in a separate row. Channels that showed significant activation are
ted from single-channel results and the overlay on the cortical surface is for illustrative
mic response; for corresponding figures for HbO and HbR assessed separately, see



Fig. 4. Scatter plots of the t-values from the group-level analysis. Results for each
stimulation condition are shown in a separate panel. Channels that showed significant
activation at either session are labelled with the channel number. A rectangular region
in the upper right corner of each panel demarcates channels that were commonly
activated at both sessions (if any). Relevant statistics are shown in the upper left corner
of each panel. This figure is for the estimated functional component of the haemo-
dynamic response; for corresponding figures for HbO and HbR assessed separately, see
Supplementary Figs. S4 and S5.

Table 1
Number of significantly activated channels (p < 0.05 after false discovery rate
correction) and reproducibility metrics for the group-level activation maps.

No. of significantly activated channelsa Reproducibility metricsb

Session 1 Session 2 r RQUANTITY ROVERLAP

A-ONLY
Functional 6 (3L, 3R) 6 (3L, 3R) 0.70 1.00 0.83
HbO 3 (1L, 2R) 0 (0L, 0R) 0.73 0.00 0.00
HbR 1 (1L, 0R) 7 (4L, 3R) 0.76 0.25 0.25
V-ONLY
Functional 0 (0L, 0R) 0 (0L, 0R) 0.69 e e

HbO 0 (0L, 0R) 0 (0L, 0R) 0.74 e e

HbR 6 (3L, 3R) 0 (0L, 0R) 0.75 0.00 0.00
AV
Functional 9 (6L, 3R) 7 (3L, 4R) 0.52 0.88 0.75
HbO 0 (0L, 0R) 0 (0L, 0R) 0.60 e e

HbR 6 (4L, 2R) 11 (7L, 4R) 0.42 0.71 0.47

a Values in parentheses give the number of significantly activated channels in
each hemisphere.

b Missing values indicate that there were no significantly activated channels at
either session.
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Reproducibility in the quantity and location of significantly
activated channels at single-subject level was poorer for HbO than
for either HbR or the estimated functional component (Table 2).
However, there was no clear evidence that estimating the func-
tional component of the haemodynamic response (Yamada et al.,
2012) could significantly improve reproducibility at single-subject
level, compared to assessing HbR alone. These observations were
confirmed through statistical analyses using the linear mixed
model approach (West et al., 2006). Models included fixed effects
for stimulation condition (A-ONLY/V-ONLY/AV), haemodynamic
measure (estimated functional component/HbO/HbR), plus the
stimulation condition x haemodynamic measure interaction, and a
random intercept for each individual. There was a significant main
effect of haemodynamic measure for both RQUANTITY (F(2,
128) ¼ 20.82, p < 0.001) and ROVERLAP (F(2, 128) ¼ 16.40, p < 0.001).
For bothmetrics, Bonferroni-corrected pairwise comparisons of the
estimated marginal means confirmed that reproducibility was
significantly poorer for HbO than for either HbR or the estimated
functional component (p < 0.001 in all cases), but HbR and the
estimated functional component did not differ significantly
(p ¼ 1.00 for both metrics).

We assessed the spatial distribution of significant activations at
single-subject level by plotting the percentage of participants who
showed significant activation (p < 0.05 after FDR correction) on a
channel-wise basis (Fig. 5). For the A-ONLY and AV conditions
especially, the majority of significant activations fell within the
predefined ROIs. This suggests that these activations likely reflected
genuine stimulus-driven cortical activity. However, most channels,
including ones well outside the ROIs, were still reported as being
significantly activated in around one-third to one-half of in-
dividuals. This could reflect genuine dispersed and individually
variable cortical activation in wider speech processing networks
(FitzGerald et al., 1997; Hall et al., 2005). Alternatively, it could
suggest a possible susceptibility to false-positive activations when
assessing fNIRS data at single-subject level, even after correcting for
serial correlation and multiple comparisons. Further research is
needed to quantify the sensitivity and specificity of fNIRS for
detecting speech-evoked cortical responses in individual listeners.

3.3. Reliability of cortical responses within the ROIs

3.3.1. Time course of haemoglobin concentration changes
At group level, reproducibility in the shape of the haemody-

namic time course (block-averaged across the five repetitions of
each stimulation condition) was excellent regardless of themode of
speech presentation (Fig. 6, r ¼ 0.79e0.98 for the between-session



Table 2
Reproducibility metrics for single-subject activation maps. Missing values indicate that there were no significantly activated channels at either session.

Participant Functional HbO HbR

r RQUANTITY ROVERLAP r RQUANTITY ROVERLAP r RQUANTITY ROVERLAP

A-ONLY
1 0.44 0.00 0.00 0.22 0.60 0.40 0.39 0.17 0.00
2 0.16 0.40 0.30 �0.36 0.00 0.00 0.52 0.67 0.60
3 �0.12 0.85 0.61 �0.67 0.36 0.18 �0.26 0.90 0.55
4 0.26 0.95 0.53 0.18 0.17 0.17 0.07 0.55 0.36
5 0.82 0.91 0.73 0.80 0.80 0.70 0.74 0.74 0.63
6 0.34 0.77 0.31 0.50 0.94 0.47 0.12 0.71 0.29
7 0.80 0.93 0.80 �0.13 0.00 0.00 0.73 0.70 0.60
8 0.66 0.84 0.84 0.66 0.40 0.40 0.66 0.95 0.90
9 0.30 0.69 0.69 0.42 0.74 0.74 0.39 0.58 0.58
10 0.49 0.57 0.57 0.50 0.71 0.57 0.37 0.64 0.64
11 0.22 0.73 0.36 0.11 0.78 0.22 0.02 0.75 0.25
12 0.40 0.86 0.81 0.49 0.86 0.86 0.41 1.00 0.83
13 0.42 0.00 0.00 0.53 0.00 0.00 0.40 0.31 0.31
14 0.39 0.95 0.57 0.49 0.00 0.00 0.24 1.00 0.50
15 0.86 0.69 0.69 0.55 0.37 0.37 0.82 0.54 0.54
16 0.80 0.97 0.91 0.36 0.00 0.00 0.41 0.98 0.93
17 0.65 0.77 0.62 0.66 0.00 0.00 0.71 0.88 0.63
Mean 0.46 0.70 0.55 0.31 0.40 0.30 0.40 0.71 0.54
V-ONLY
1 �0.59 0.38 0.31 �0.15 0.69 0.63 �0.54 0.24 0.16
2 0.48 0.67 0.22 0.79 0.00 0.00 0.62 0.87 0.82
3 0.17 0.67 0.00 0.75 0.00 0.00 0.16 0.50 0.00
4 0.55 1.00 0.00 0.01 0.00 0.00 0.67 0.29 0.29
5 0.50 0.97 0.76 0.68 0.96 0.80 0.28 0.91 0.79
6 0.50 0.76 0.62 0.46 0.92 0.58 0.33 0.88 0.69
7 0.41 0.63 0.50 �0.17 0.29 0.00 0.55 0.59 0.59
8 0.24 0.71 0.65 0.48 0.00 0.00 �0.12 0.92 0.76
9 �0.52 0.67 0.40 �0.59 0.96 0.24 �0.27 0.58 0.52
10 0.18 0.67 0.33 �0.11 0.00 0.00 0.46 0.82 0.55
11 0.35 0.50 0.00 0.25 0.00 0.00 �0.01 0.00 0.00
12 0.68 0.80 0.72 0.26 0.52 0.52 0.76 0.91 0.73
13 0.37 0.08 0.08 0.05 0.08 0.08 0.15 0.00 0.00
14 0.70 0.80 0.72 0.34 0.40 0.00 0.68 0.85 0.77
15 0.47 0.97 0.69 0.49 0.14 0.14 0.40 0.97 0.69
16 0.66 0.87 0.73 0.35 e e 0.54 0.80 0.73
17 0.36 0.50 0.17 0.38 e e 0.46 0.74 0.67
Mean 0.32 0.68 0.41 0.25 0.33 0.20 0.30 0.64 0.51
AV
1 �0.14 0.63 0.21 0.53 0.00 0.00 �0.27 0.61 0.26
2 0.64 0.81 0.74 0.70 0.87 0.80 0.06 0.00 0.00
3 �0.21 0.27 0.27 0.59 0.80 0.60 �0.18 0.11 0.11
4 0.38 0.97 0.73 0.57 0.88 0.75 0.06 1.00 0.67
5 0.17 0.43 0.43 0.28 0.35 0.24 0.31 0.64 0.64
6 0.37 0.52 0.43 0.59 0.40 0.40 0.31 0.64 0.56
7 0.66 0.76 0.48 0.18 0.52 0.52 0.63 0.90 0.60
8 0.62 1.00 0.91 0.72 0.72 0.72 0.66 0.95 0.91
9 0.15 0.85 0.80 �0.04 0.67 0.44 0.13 0.67 0.67
10 0.19 0.60 0.20 �0.17 0.00 0.00 0.06 0.93 0.57
11 0.05 0.89 0.44 �0.30 0.29 0.00 0.52 0.50 0.50
12 0.52 0.86 0.81 0.58 0.93 0.93 0.57 0.79 0.73
13 0.19 0.18 0.18 0.64 0.67 0.67 0.13 0.29 0.14
14 0.21 0.94 0.56 0.12 0.69 0.56 0.31 0.96 0.59
15 0.83 0.95 0.84 0.62 0.00 0.00 0.78 0.98 0.93
16 0.92 0.94 0.94 0.11 0.00 0.00 0.81 0.97 0.92
17 0.62 0.62 0.46 0.60 0.00 0.00 0.71 0.75 0.63
Mean 0.36 0.72 0.56 0.37 0.46 0.39 0.33 0.69 0.55
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correlations based on the estimated functional component).
Reproducibility was generally excellent for HbO and HbR also
(r � 0.75). However, the HbO time courses exhibited features that
appear consistent with this chromophore having greater suscepti-
bility to interference from systemic physiological signals of extra-
cerebral origin (Franceschini et al., 2003; Kirilina et al., 2013).
Specifically, the HbO time courses generally showed i) a response
that was not sustained for the duration of stimulation, and ii)
pronounced excursions outside of the stimulation period. None-
theless, the fact that the HbO time courses were still highly
reproducible across sessions (r ¼ 0.79e0.99) suggests that even
extra-cerebral contributions to the measured signal may have been
time-locked to the stimulation cycle (cf. Kirilina et al., 2012). In
support of this, when we examined the estimated systemic
component of the haemodynamic signal, instead of the functional
component as considered elsewhere in the manuscript, we found
that the systemic component was itself highly reproducible across
sessions (r ¼ 0.72e0.98). The systemic component suggested a
gradual reduction in superficial haemoglobin concentrations that
began shortly after the onset of stimulation and did not reach a
minimum until several seconds after the offset of stimulation
(Supplementary Fig. S11).



Fig. 5. Percentage of individual participants who showed significant activation in each channel (p < 0.05 after false discovery rate correction). Results for each stimulation condition
are shown in a separate row. This figure is for the estimated functional component of the haemodynamic response; for corresponding figures for HbO and HbR assessed separately,
see Supplementary Figs. S6 and S7.

Fig. 6. Grand-average time courses within the predefined ROIs for session 1 (solid lines) and session 2 (dotted lines). Results for each stimulation condition are shown in a separate
row. Data are plotted for the estimated functional component of the haemodynamic response (green), and for HbO (red) and HbR (blue) assessed separately. Pearson correlation
coefficients between session 1 and session 2 time courses are shown in the lower left corner of each panel. The shaded grey areas indicate the stimulation period. See
Supplementary Figs. S8eS10 for versions of this figure showing across-subject measurement variance for the estimated functional component, HbO and HbR, respectively. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Consistent with previous studies (Blasi et al., 2014; Kakimoto
et al., 2009; Kono et al., 2007), we found the reproducibility of
single-subject haemodynamic time courses to be highly variable
(see Supplementary Figs. S12eS14). Between-session correlation
coefficients varied widely across individuals and conditions, taking
values between �0.62 and þ0.97 in the extreme cases. On average,
reproducibility in single-subject haemodynamic time courses was
fair (r z 0.4e0.5). Collapsed across the left- and right-hemisphere
ROIs, mean correlations were consistently highest for the estimated
functional component and lowest for HbO, with intermediate
values for HbR. However, statistical analysis based on a linear
mixed model did not confirm any significant difference between
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the three haemodynamic measures (main effect of haemodynamic
measure: F(2, 272) ¼ 2.64, p ¼ 0.07).

3.3.2. Reliability of response amplitude
Reliability of response amplitude within the ROIs was assessed

using the ICC (Table 3). The results exhibit overall patterns that are
consistent with the findings of previous studies (Plichta et al., 2006,
2007b; Schecklmann et al., 2008). Firstly, values of ICC2_SESS_AVG
were typically around 30% higher than corresponding values of
ICCSINGLE_SESS (both at single-channel and cluster level). This dem-
onstrates that mean fNIRS responses across two sessions are more
reliable than those measured at a single session. Secondly, cluster-
level ICCs were on average around 20% higher than the mean of the
ICCs for the constituent channels. This confirms that reliability can
be improved by averaging across a small number of channels that
overlie a cortical ROI.

Based on the ICCs for the estimated functional component, the
reliability of responses to auditory speech (with or without visual
cues) was fair when assessed at single-channel and single-session
level (ICCSINGLE_SESS ¼ 0.42e0.59, mean of single-channel ICCs in
the A-ONLY and AV conditions). Reliability was improved by
assessing responses at cluster level, and by considering the average
response across the two sessions: good reliability was achieved in
the right-hemisphere ROI (ICC2_SESS_AVG ¼ 0.68e0.73), and excel-
lent reliability in the left-hemisphere ROI
(ICC2_SESS_AVG¼ 0.77e0.85). Responses to purely visual speechwere
less reliable, especially in the right-hemisphere ROI where reli-
ability was consistently poor (ICCs < 0.40); however, left-
hemisphere responses to visual speech showed fair to good reli-
ability when assessed at cluster level (ICCSINGLE_SESS ¼ 0.56,
ICC2_SESS_AVG ¼ 0.71). Generally better reliability of response
amplitude in the left-versus the right-hemisphere ROI may reflect
left-hemispheric dominance for the processing of connected
speech (Peelle, 2012).

Estimating the functional component of the haemodynamic
response (Yamada et al., 2012) consistently led to higher reliability,
compared to assessing HbO and HbR separately. Indeed, at cluster
level, only 1 out of 12 ICCs for each of HbO and HbR indicated good
reliability. In contrast, 7 out of 12 cluster-level ICCs for the
Table 3
Reliability of response amplitude within the predefined ROIs based on the intraclass cor

Single channelsa

ICCSINGLE_SESS

A-ONLY
Functional Left 0.59 (0.44e0.70)

Right 0.42 (0.41e0.44)
HbO Left 0.23 (0.04e0.40)

Right 0.10 (0.00e0.27)
HbR Left 0.43 (0.04e0.70)

Right 0.27 (0.02e0.54)
V-ONLY
Functional Left 0.33 (0.18e0.44)

Right 0.20 (0.00e0.41)
HbO Left 0.22 (0.12e0.40)

Right 0.01 (0.00e0.01)
HbR Left 0.27 (0.26e0.29)

Right 0.06 (0.00e0.18)
AV
Functional Left 0.50 (0.31e0.65)

Right 0.58 (0.54e0.62)
HbO Left 0.34 (0.25e0.51)

Right 0.40 (0.32e0.57)
HbR Left 0.28 (0.13e0.56)

Right 0.38 (0.18e0.63)

a Values in parentheses give the range of ICCs across individual channels within the R
b Beta weights were averaged across the constituent channels prior to calculating clus
estimated functional component indicated good or better reli-
ability, with 2 of these indicating excellent reliability.

We additionally tested for any significant group-level differ-
ences in mean response amplitude between sessions (Table 4).
There was no evidence that response amplitude either consistently
increased or decreased from session 1 to session 2. Indeed, none of
the paired t-tests came close to the threshold for statistical signif-
icance (p < 0.05), evenwhen uncorrected for multiple comparisons
(a conservative approach in this context given our interest in con-
firming the null hypothesis). Furthermore, the effect size estimates
indicated that the effect of session was in most cases negligible
(d < 0.2).

3.4. General discussion

This study aimed to establish the test-retest reliability of
speech-evoked fNIRS responses in adults. The basis of any such
reliability assessment is the assumption that the underlying phys-
iological processes remain stable over the time period in question:
in the present case, a test-retest interval of 3 months. Since none of
our participants reported any change in hearing or visual acuity
during the study, and speech intelligibility was similar across the
two sessions (albeit at ceiling level in the case of auditory and au-
diovisual speech), we assume that speech-evoked cortical activity
was generally stable also. In support of this, we did not find any
evidence for a systematic difference in response amplitude be-
tween sessions. However, we cannot exclude the possibility that
increased familiarity with the test procedure and speech materials
at session 2 compared to session 1 may have influenced our results.
Indeed, Schecklmann et al. (2008) highlighted that fNIRS test-retest
reliability may be affected by variations in both physiological (e.g.
stress, arousal) and psychological (e.g. learning, strategy, efficiency)
factors across sessions, depending on the time interval in question.
In this respect, one limitation of the present study is that mea-
surements were made at only two time points: inclusion of addi-
tional time points, including ideally a within-session control based
on repeated administration of the paradigm during the initial visit,
would have provided a stronger baseline against which to compare
test-retest reliability over the longer term.
relation coefficient (ICC).

Cluster levelb

ICC2_SESS_AVG ICCSINGLE_SESS ICC2_SESS_AVG

0.74 (0.61e0.82) 0.74 0.85
0.60 (0.59e0.61) 0.51 0.68
0.35 (0.07e0.57) 0.25 0.41
0.15 (0.00e0.43) 0.04 0.08
0.54 (0.07e0.82) 0.48 0.65
0.39 (0.04e0.70) 0.18 0.31

0.49 (0.31e0.61) 0.56 0.71
0.29 (0.00e0.59) 0.06 0.11
0.34 (0.21e0.57) 0.30 0.46
0.02 (0.00e0.03) 0.00 0.00
0.43 (0.42e0.45) 0.33 0.50
0.10 (0.00e0.30) 0.00 0.00

0.66 (0.48e0.79) 0.63 0.77
0.74 (0.70e0.77) 0.58 0.73
0.50 (0.40e0.67) 0.39 0.56
0.57 (0.48e0.73) 0.45 0.62
0.41 (0.23e0.72) 0.33 0.50
0.53 (0.31e0.77) 0.22 0.36

OI.
ter-level ICCs.



Table 4
Results of paired t-tests comparing mean response amplitude within the predefined ROIs across sessions.

Mean (SD) ROI beta weight Direction of changea p-valueb Effect size (d)

Session 1 Session 2

A-ONLY
Functional Left 0.066 (0.059) 0.073 (0.061) þve 0.511 0.16

Right 0.071 (0.040) 0.069 (0.046) -ve 0.906 0.03
HbO Left 0.062 (0.078) 0.039 (0.178) -ve 0.573 0.14

Right 0.074 (0.067) 0.065 (0.160) -ve 0.828 0.05
HbR Left �0.042 (0.047) �0.050 (0.037) þve 0.490 0.17

Right �0.038 (0.042) �0.043 (0.026) þve 0.667 0.11
V-ONLY
Functional Left 0.036 (0.053) 0.029 (0.048) -ve 0.567 0.14

Right 0.035 (0.034) 0.035 (0.049) þve 0.954 0.01
HbO Left �0.008 (0.135) 0.008 (0.104) -ve 0.656 0.11

Right 0.004 (0.098) 0.020 (0.098) þve 0.668 0.11
HbR Left �0.037 (0.041) �0.030 (0.047) -ve 0.592 0.13

Right �0.034 (0.033) �0.030 (0.052) -ve 0.824 0.05
AV
Functional Left 0.077 (0.057) 0.068 (0.058) -ve 0.480 0.18

Right 0.068 (0.058) 0.074 (0.056) þve 0.630 0.12
HbO Left 0.066 (0.103) 0.040 (0.113) -ve 0.388 0.22

Right 0.078 (0.100) 0.074 (0.105) -ve 0.878 0.04
HbR Left �0.051 (0.049) �0.047 (0.040) -ve 0.772 0.07

Right �0.042 (0.045) �0.043 (0.035) þve 0.984 0.00

a þve indicates a stronger cortical response at session 2 than at session 1.
b Unadjusted (i.e. without correction for multiple comparisons).
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We found that fNIRS measurements were more reliable: i) at
group level than at single-subject level; and ii) when averaged
across a small number of channels overlying a cortical ROI than
when assessed on a single-channel basis. These have emerged as
consistent findings from previous fNIRS test-retest studies (Blasi
et al., 2014; Kakimoto et al., 2009; Kono et al., 2007; Plichta et al.,
2006, 2007b; Sato et al., 2006; Schecklmann et al., 2008;
Strangman et al., 2006; Watanabe et al., 2003), which have
involved a variety of imaging paradigms (block-design versus
event-related), brain regions (visual, motor, frontal, and temporal
cortices), tasks (from low-level sensory stimulation to higher-level
cognitive tasks), and subject populations (varying in age and clin-
ical status).

In the present study, no significantly activated channels were
detected at the group level in response to visual speech (after FDR
correction). This meant that it was not possible to assess the
reproducibility of the quantity (RQUANTITY) and location (ROVERLAP) of
significantly activated channels for this condition at the group level.
Evidence from a previous fMRI study corroborates this absence of
significant group-level activation in auditory brain regions during
silent speechreading, despite significant activation within in-
dividuals (Hall et al., 2005). This apparent discrepancy between
single-subject and group-level activation patterns may be due to
variability in the cortical networks that individual subjects recruit
to process visual linguistic cues. It should be noted, though, that
poorer reproducibility of responses to visual speech compared with
auditory or audiovisual speech was a consistent finding in the
present study, including at single-subject level. This may reflect the
fact that responses in the temporal brain regions studied here were
significantly weaker when the presented speech did not include an
auditory element, potentially resulting in a greater impact of
physiological and/or instrumentation noise. Alternatively, because
participants found silent speechreading highly challenging and
could understand at best only a few words, test-retest reliability in
this condition may have been more susceptible to influence from
within-subject variations in motivation, cognitive load or psycho-
linguistic strategy across sessions.

Previous studies of fNIRS test-retest reliability have obtained
mixed results regarding the relative merits of HbO and HbR. Several
studies reported that HbO had greater power to detect significant
activation (Blasi et al., 2014; Kono et al., 2007; Plichta et al., 2006),
although this did not always translate to better test-retest reli-
ability. The apparently lower statistical power of HbR has been
interpreted as reflecting greater local specificity for this chromo-
phore (Plichta et al., 2006, 2007b). Interestingly, in the present
study, we found HbR to have greater power to detect significant
activation than HbO, and activation patterns were also more
reproducible for HbR. One possible reason for this is our use of a
canonical HRF borrowed from fMRI analysis, since the blood-
oxygen-level dependent (BOLD) signal measured in fMRI is physi-
ologically more closely related to the HbR signal (Buxton et al.,
1998). Indeed, the BOLD response has been found to be tempo-
rally more highly correlated with HbR than with HbO (Huppert
et al., 2006). However, subtle timing differences between HbO
and HbR would generally not be expected to have amajor influence
in the case of a block-design paradigm as used here, on the basis
that the predicted haemodynamic time course will quickly reach a
steady-state plateau during blocked stimulation, regardless of
slight differences in the transition times at the onset and offset of
stimulation (Huppert et al., 2006). Rather, we believe that the
poorer sensitivity of HbO to reliably detect significant cortical
activation in the present study likely reflects greater contamination
of the HbO signal by physiological noise of extra-cerebral origin
(see Fig. 6 and associated discussion).

Regarding the comparative reliability of our fNIRS measure-
ments, when HbO and HbRwere assessed separately, we found the
reliability of speech-evoked activation in temporal cortex to be
somewhat lower than has been reported for other brain regions
and tasks (cf. Plichta et al., 2006; Plichta et al., 2007b;
Schecklmann et al., 2008). We are not certain why this should be
the case. One possibility is that fNIRS measurements have lower
sensitivity to auditory cortical regions than to other brain regions.
This is almost certainly true for the primary auditory cortex, which,
lying in the depths of the lateral sulcus (Penhune et al., 1996), is
likely too deep to be sampled effectively by depth-limited fNIRS
measurements (Strangman et al., 2013). Auditory association
areas, important for speech processing and located more laterally
(Friederici, 2011), are in principle more accessible, although
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regional differences in scalp and skull thickness can still affect the
sensitivity of fNIRS to grey matter (Strangman et al., 2014). Un-
fortunately, numerous differences between studies (in imaging
paradigm, measurement duration, retest interval, task demands,
test population, and so on), make it difficult to draw firm conclu-
sions regarding the relative reliability of fNIRS measurements
across different brain regions.

Despite the reliability issues that we observed when assessing
HbO and HbR separately, by combining the two chromophores to
estimate the functional component of the haemodynamic
response (Yamada et al., 2012), we were able to achieve group-
level reliability metrics that were comparable to best-case values
reported in the literature for other brain regions and tasks (Kono
et al., 2007; Plichta et al., 2006, 2007b; Schecklmann et al.,
2008). To our knowledge, this is the first time this type of physi-
ological noise reduction algorithm has been evaluated in a study of
fNIRS test-retest reliability. However, Biallas et al. (2012) did assess
an alternative technique for reducing the influence of systemic
physiological signals, which is to include a reference channel with
short inter-optode spacing. This allows signals that originate in
superficial tissue layers to be regressed out from the main mea-
surement channels (Gagnon et al., 2011). Biallas et al. (2012) found
that inclusion of the short-separation reference channel increased
the sensitivity of fNIRS for detecting visually evoked cortical re-
sponses from 36.8% to 55.2%. We conclude that any approach that
is effective in reducing the influence of systemic physiological
interference is likely to improve the reliability of fNIRS
measurements.

As previous studies have noted (e.g. Plichta et al., 2007b), the
positioning of optodes with respect to surface landmarks (as per-
formed here) may have a bearing on fNIRS test-retest reliability:
variation in optode placement across sessions may reduce reli-
ability at the single-subject level, while variability in cranio-
cerebral relationships among individuals may limit the reliability
of group-level analyses. Interestingly, our ICC analysis showed that
reliability was consistently improved by taking the average
response across the two sessions, suggesting that inconsistency in
optode placement across sessions is unlikely to have been a major
issue here. As for individual variability in cranio-cerebral re-
lationships, we anticipate that advances in optical imaging tech-
nology that allow three-dimensional reconstruction of activity
within an anatomically accurate brain model will bring further
improvements in reliability (see, for example, Hassanpour et al.,
2015).

4. Conclusions

We conclude that fNIRS is capable of measuring temporal-lobe
responses to auditory speech (with or without visual cues) that
have good-to-excellent test-retest reliability at the group level.
Thus, fNIRS holds promise as a silent, flexible, and non-invasive tool
for studying central auditory processing. On average, reliability at
the single-subject level was fair, with wide variation across in-
dividuals. Further refinements are therefore needed before reliable
measurements can be guaranteed at the individual level. We offer
the following advice to researchers conducting auditory fNIRS
studies and wishing to maximize the reliability of their measure-
ments: i) Use a proven strategy to reduce the influence of systemic
physiological noise; ii) Consider averaging across a small number of
channels that overlie a cortical ROI when assessing response
amplitude; iii) If it is not possible to collect sufficient data within a
single imaging session, measurement reliability may be improved
by averaging each individual's data across multiple sessions,
providing sufficient care is taken to maintain consistent optode
positioning.
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