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ABSTRACT
One of the key challenges in solar and heliospheric physics is to understand the acceleration of the solar wind. As a super-
sonic, super-Alfvénic plasma flow, the solar wind carries mass, momentum, energy, and angular momentum from the Sun into
interplanetary space. We present a framework based on two-fluid magnetohydrodynamics to estimate the flux of these quantities
based on spacecraft data independent of the heliocentric distance of the location of measurement. Applying this method to the
Ulysses data set allows us to study the dependence of these fluxes on heliolatitude and solar cycle. The use of scaling laws
provides us with the heliolatitudinal dependence and the solar-cycle dependence of the scaled Alfvénic and sonic Mach numbers
as well as the Alfvén and sonic critical radii. Moreover, we estimate the distance at which the local thermal pressure and the
local energy density in the magnetic field balance. These results serve as predictions for observations with Parker Solar Probe,
which currently explores the very inner heliosphere, and Solar Orbiter, which will measure the solar wind outside the plane of
the ecliptic in the inner heliosphere during the course of the mission.
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1 IN T RO D U C T I O N

The Sun, like most other stars, continuously emits a magnetized
plasma in the form of the solar wind (Verscharen, Klein & Maruca
2019). This super-sonic and super-Alfvénic flow fills the interplan-
etary space and removes mass, momentum, energy, and angular
momentum from the Sun. The acceleration mechanisms of the solar
wind remain poorly understood and pose one of the greatest science
questions in the field of solar and heliospheric physics. Since the
early time of the space age, starting in the early 1960s, a fleet
of spacecraft have measured the properties of the solar wind at
different locations in the heliosphere. The Ulysses mission (Wenzel
et al. 1992; Balogh 1994; Marsden 2001), in operation from 1990
until 2009, plays a special role amongst them due to its unique
orbit that led the spacecraft above the Sun’s poles, enabling studies
of the solar-wind parameters as functions of heliolatitude. These
studies are of great importance to the question of the solar-wind
acceleration, since they enable the separation of different solar-
wind source regions and their relationships to the heliolatitude-
dependent magnetic-field structure in the corona (Neugebauer 1999).
Before Ulysses, all solar-wind missions were restricted to quasi-
equatorial orbits. These measurements could only be used to explore
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heliomagnetic latitudes up to ±25◦ (Bruno et al. 1986), exploiting
the tilt between the Sun’s magnetic dipole axis and its rotation
axis. The knowledge about the dependence of solar-wind parameters
on radial distance and heliolatitude helps constrain models for our
understanding of the acceleration of the solar wind. For example,
comparisons of in situ mass-flux measurements with coronagraph
observations suggest that the solar wind requires an additional
deposition of energy to the contribution from thermal conduction
alone (Munro & Jackson 1977) as assumed in the classic Parker
(1958) model of the solar wind. Moreover, measurements of the
plasma’s mass flux can be linked to photospheric measurements
of the magnetic field, which provide us with insight into the
location and the magnetic nature of the solar-wind heating pro-
cesses (Wang 2010). Ulysses data confirm this need for additional
energy deposition also in polar wind (Barnes, Gazis & Phillips
1995).

Ulysses observations corroborated the bimodal structure of the
solar wind during solar minimum (McComas et al. 1998a, b): near
the Sun’s equator at heliolatitudes below approximately ±20◦, the
wind is variable and slow (radial flow speeds �400 km s−1); in
polar regions, the wind is steadier and fast (radial flow speeds
�700 km s−1). During solar maximum, this bimodality vanishes
almost completely, and the solar wind exhibits large variations
in its plasma and field parameters (McComas et al. 2000). The
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measurements have been effectively visualized in polar plots, in
which the polar angle indicates the heliolatitude and the distance
from the origin indicates the solar-wind parameter (e.g. speed and
density, see McComas et al. 2000, Plate 1). These comprehensive
studies of Ulysses data also provide us with fit results for solar-wind
parameters depending on heliocentric distance and heliolatitude (see
also Ebert et al. 2009).

Although the Sun’s mass and energy loss due to the solar wind
are insignificant throughout the Sun’s life cycle, the loss of angular
momentum carried away by the solar wind is significant for the Sun’s
long-term evolution. The solar-wind particles begin their journey in
the corona in co-rotation with the Sun. At some distance, the particles
are released from the strong coronal magnetic fields and then carry
a finite azimuthal velocity component into interplanetary space,
which is responsible for the particle contribution to the angular-
momentum transport (Weber & Davis 1967). The azimuthal velocity
component Uφ of the solar wind decreases with distance from the
Sun (assuming a torque-free ballistic trajectory, Uφ ∝ 1/r), making
measurements of Uφ at large heliocentric distances particularly
difficult. However, observations of cometary tails suggest non-radial
solar-wind velocities (Brandt & Heise 1970), and even early in situ
measurements at 1 au have been used to estimate the Sun’s angular-
momentum loss (Hundhausen et al. 1970; Lazarus & Goldstein
1971).

As the solar wind accelerates from velocities near zero in the Sun’s
rest frame up to super-sonic, super-Alfvénic velocities, it must pass
two critical distances: the distance rS at which the outflow speed
crosses the local sound speed, and the distance rA at which the
outflow speed crosses the local Alfvén speed (Parker 1958). Their
locations generally depend on heliolatitude and undergo variations
depending on the properties of the wind’s source regions. The
sonic and Alfvénic Mach numbers cross the value of unity at these
locations, respectively. The heliocentric distance rβ , at which the
local thermal pressure in the particles is equal to the energy density
in the local magnetic field, is a third important critical distance. All
of these critical radii are key predictions of solar-wind models and
important for our understanding of the acceleration of the solar
wind.

Parker Solar Probe and Solar Orbiter are the latest additions to
the fleet of solar and solar-wind-observing missions (Fox et al. 2016;
Müller et al. 2020). Both missions carry modern instrumentation into
the inner heliosphere to measure the particles and the electromagnetic
fields of the solar wind in situ and monitor the solar-wind outflow
remotely. Over the coming years, their observations will improve our
understanding of the solar wind at different heliocentric distances and
heliolatitudes during solar-minimum and solar-maximum conditions.
The goal of our study is the use of radial conservation laws for
flux quantities relating to the mass, momentum, energy, and angular
momentum of the solar wind to understand their heliolatitudinal
variations. Since these quantities are independent of heliocentric
distance under a set of assumptions, we use data from Ulysses to study
their dependence on heliolatitude and solar cycle alone. Within the
validity of our assumptions, these measurements serve as contextual
information and predictions for the global solar-wind behaviour
encountered by Parker Solar Probe and Solar Orbiter. In addition, we
use our scaling parameters to estimate the scaled Alfvénic and sonic
Mach numbers as well as the critical radii rA, rS, and rβ as functions
of heliolatitude based on the Ulysses data during solar minimum
and solar maximum. In the future, these scaling laws will be refined
with data from Parker Solar Probe and Solar Orbiter, once both
missions have explored a wider range of heliocentric distances and
heliolatitudes.

2 FL U I D E QUAT I O N S A N D C O N S E RVAT I O N
L AW S

For simplicity, the solar wind is described here as a mostly proton–
electron plasma1 with isotropic pressure under the influence of
electromagnetic fields. A fluid approach is valid on spatial and
temporal scales greater than the characteristic kinetic plasma scales
as long as high-order velocity moments of the particle distribution
functions can be neglected. We use the proton-fluid continuity
equation

∂N

∂t
+ ∇ · (NU) = 0, (1)

and the proton-fluid momentum equation with isotropic, scalar
pressure

NM

[
∂U
∂t

+ (U · ∇)U
]

= −∇P + NQ

(
E + 1

c
U × B

)
+NM g, (2)

where N is the proton density, U is the proton bulk velocity, M is
the proton mass, P is the proton pressure, Q is the proton charge, E
is the electric field, c is the speed of light, B is the magnetic field,
and g is the gravitational acceleration. The electron-fluid equation,
neglecting all terms proportional to the electron mass m, is given by

− ∇p + nq

(
E + 1

c
u × B

)
= 0, (3)

where p is the electron pressure, n and q are the electron number
density and charge, and u is the electron bulk velocity. We combine
equations (2) and (3) to eliminate E. Evoking quasi-neutrality (N ≈
n), we use the definition of the current density

j = NQU + nqu (4)

to obtain

NM

[
∂U
∂t

+ (U · ∇)U
]

= −∇(P + p) + 1

c
j × B + NM g. (5)

Furthermore, we use Ampère’s law, ∇ × B = 4π j/c, to simplify
the remaining electromagnetic force terms, and assume steady-state
conditions (∂/∂t = 0), leading to

NM(U · ∇)U = −∇(P + p) − ∇ B2

8π
+ (B · ∇)B

4π
+ NM g. (6)

We now transform equations (1) and (6) into spherical coordinates.
Equation (1) then yields

1

r2

∂

∂r
(r2NUr ) + 1

r sin θ

∂

∂θ
(NUθ sin θ ) + 1

r sin θ

∂

∂φ
(NUφ) = 0,

(7)

where θ is the polar angle and φ is the azimuthal angle. In our
convention, the heliolatitude λ relates to θ through λ = 90◦ − θ . The
radial component of equation (6) is given by

NM

(
Ur

∂Ur

∂r
+ Uθ

r

∂Ur

∂θ
+ Uφ

r sin θ

∂Ur

∂φ
− U 2

θ + U 2
φ

r

)

= − ∂

∂r

(
P + p + B2

8π

)
+ 1

4π

(
Br

∂Br

∂r
+ Bθ

r

∂Br

∂θ

+ Bφ

r sin θ

∂Br

∂φ
− B2

θ + B2
φ

r

)
− NMg, (8)

1This approach neglects the contribution from α-particles, which we discuss
in Section 4.
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its polar component by

NM

(
Ur

∂Uθ

∂r
+ Uθ

r

∂Uθ

∂θ
+ Uφ

r sin θ

∂Uθ

∂φ
+ UrUθ

r
− U 2

φcotθ

r

)

= −1

r

∂

∂θ

(
P + p + B2

8π

)
+ 1

4π

(
Br

∂Bθ

∂r
+ Bθ

r

∂Bθ

∂θ

+ Bφ

r sin θ

∂Bθ

∂φ
+ BrBθ

r
− B2

φcotθ

r

)
, (9)

and its azimuthal component by

NM

(
Ur

∂Uφ

∂r
+ Uθ

r

∂Uφ

∂θ
+ Uφ

r sin θ

∂Uφ

∂φ
+ UrUφ

r
+ UφUθ cotθ

r

)

= − 1

r sin θ

∂

∂φ

(
P + p + B2

8π

)
+ 1

4π

(
Br

∂Bφ

∂r
+ Bθ

r

∂Bφ

∂θ

+ Bφ

r sin θ

∂Bφ

∂φ
+ BrBφ

r
+ BφBθ cotθ

r

)
. (10)

We now assume azimuthal symmetry (∂/∂φ = 0). Although the
observed solar wind exhibits a non-zero polar component Uθ of the
bulk velocity and a non-zero polar component Bθ of the magnetic
field at times, we assume that Uθ = Bθ = 0 on average as in the Parker
(1958) model. The condition ∇ · B = 0 under our assumptions
reduces to

∂

∂r
(r2Br ) = 0. (11)

Likewise, continuity according to equation (7) simplifies to

∂Fm

∂r
= 0, (12)

where

Fm = r2NMUr (13)

is the radial mass flux per steradian. The momentum equations in
equations (8) through (10) simplify to

NM

(
Ur

∂Ur

∂r
− U 2

φ

r

)
= − ∂

∂r
(P + p) − 1

r2

∂

∂r

(
r2

B2
φ

8π

)

−NMg, (14)

NMU 2
φ = 1

4π
B2

φ, (15)

and

NM

(
Ur

∂Uφ

∂r
+ UrUφ

r

)
= 1

4π

(
Br

∂Bφ

∂r
+ BrBφ

r

)
. (16)

By combining equation (12) with equations (14) and (15), we find
momentum conservation in the form

∂Fp

∂r
= −r2 ∂

∂r

(
P + p + B2

φ

8π

)
− NMGM�, (17)

where

Fp = r2NMU 2
r (18)

is the radial kinetic momentum flux per steradian, G is the grav-
itational constant, and M� is the Sun’s mass. The right-hand side
of equation (17) is zero if the solar wind is ‘coasting’ without
radial acceleration, which is a reasonable assumption for heliocentric
distances greater than about 0.3 au, especially in fast wind (Marsch
& Richter 1984). Slow wind, however, still experiences some
acceleration to distances �1 au (Schwenn et al. 1981). Although

this acceleration effect is small, we urge caution when extending
our framework into the inner heliosphere. Even if the coasting
approximation (i.e. Fp = constant) is not fulfilled at the location of
the measurement, Fp describes the radial component of the particle
momentum at this location; however, the scaling of this quantity to
different radial distances requires the inclusion of the right-hand side
of equation (17).

Under the same assumptions, we find that

∂

∂r

[
r2NMUr

(
U2

2
+ γ

γ − 1

P + p

NM
− GM�

r

)]

= r

4π
(UφBr − UrBφ)

∂

∂r
(rBφ), (19)

where γ is the polytropic index (assumed to be equal for protons and
electrons). In the derivation of equation (19), we use the polytopic
assumption for both protons and electrons:

P ∝ Nγ (20)

and

p ∝ nγ . (21)

We note that equation (19) can be easily extended to account for
different polytropic indices for protons and electrons. In order to
simplify the right-hand side of equation (19), we evoke the frozen-
in condition of the magnetic field (Parker 1958). In a frame that
co-rotates with the Sun, the magnetic field lines are parallel to U
(Weber & Davis 1967; Mestel 1968; Verscharen et al. 2015). This
condition leads to
Bφ

Br

= Uφ − ��r sin θ

Ur

, (22)

where �� is the Sun’s angular rotation frequency, which we assume
to be constant for all θ . From equation (22), we find the useful
identity

r(UφBr − UrBφ) = r2Br�� sin θ = constant, (23)

where the second equality follows from equation (11). This relation-
ship allows us to simplify the right-hand side of equation (19) so that
the energy-conservation law yields

∂FE

∂r
= 0, (24)

where

FE = r2NMUr

(
U2

2
+ γ

γ − 1

P + p

NM
− GM�

r

− rBrBφ

4πNMUr

�� sin θ

)
(25)

is the radial energy flux per steradian.
By combining equations (11) and (12) with equation (16), we

furthermore identify angular-momentum conservation in the form

∂FL

∂r
= 0, (26)

where

FL = r3NMUrUφ − r3 BrBφ

4π
. (27)

The quantities Fm, Fp (within the coasting approximation), FE ,
and FL are constant with heliocentric distance. We note that, albeit
useful for the description of averaged and global-scale variations, this
model ignores any variations due to asymmetries, stream interactions,
and natural fluctuations (for a further discussion of these effects, see
Section 4).
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Table 1. Summary of our measurement results. We show the mean values, minimum values, and maximum values of the quantities illustrated in Figs 1 through
9 for the three fast latitudinal scans (FLSs). The given error bars of the mean values represent the calculated standard errors of the mean.

Quantity FLS1 (solar minimum) FLS2 (solar maximum) FLS3 (solar minimum)
Mean Min Max Mean Min Max Mean Min Max

Fm (10−16 au2 g cm−2 s−1 sr−1) 3.549 ± 0.069 1.75 11.06 4.486 ± 0.169 0.680 21.30 2.682 ± 0.082 0.958 15.44
Fp (10−8 au2 g cm−1 s−2 sr−1) 2.426 ± 0.029 0.739 4.04 2.075 ± 0.076 0.349 9.81 1.705 ± 0.038 0.542 7.97
FE (au2 g s−3 sr−1) 0.913 ± 0.015 0.166 1.35 0.554 ± 0.025 0.076 2.64 0.601 ± 0.014 0.097 2.25
FL (10−9 au3 g cm−1 s−2 sr−1)∗ 1.162 ± 0.037 0.060 1.94 0.715 ± 0.074 0.001 3.58 0.765 ± 0.026 0.018 1.38
M̃A 18.892 ± 1.426 7.23 343.43 21.339 ± 1.597 4.21 200.44 22.300 ± 0.541 6.54 99.00
rA (R�) 12.080 ± 0.236 0.128 26.00 12.766 ± 0.522 0.008 47.15 9.504 ± 0.221 0.289 28.31
M̃S 11.409 ± 0.057 7.87 16.93 11.594 ± 0.148 7.04 18.72 12.079 ± 0.079 7.69 17.96
rS (R�) 0.309 ± 0.004 0.104 0.819 0.346 ± 0.012 0.079 1.11 0.273 ± 0.006 0.088 0.871
rβ (au)† 0.552 ± 0.028 0.011 3.18 0.658 ± 0.052 0.000 4.07 0.488 ± 0.048 0.036 6.69

Note. ∗The statistics for FL only include those times when FL > 0. †The statistics for rβ only include those times when rβ > 0.

3 DATA A NA LY SIS

We use 30-h averages of the proton and magnetic-field data recorded
by Ulysses during its three polar orbits. We choose an average interval
of 30 h to sample over time-scales that are greater than the typical
correlation time of the ubiquitous solar-wind fluctuations (typically
of order a few hours; Matthaeus & Goldstein 1982; Bruno &
Dobrowolny 1986; Tu & Marsch 1995; D’Amicis et al. 2010; Bruno
& Carbone 2013). At the same time, this averaging interval is short
enough to avoid significant variations in Ulysses’ heliolatitude during
the recording of each data point in our averaged data set. The proton
measurements were recorded by the Solar Wind Observations Over
the Poles of the Sun (SWOOPS) instrument (Bame et al. 1992). The
magnetic-field measurements were recorded by the Magnetic Field
experiment (Balogh et al. 1992). In order to visualize the differences
between solar minimum and solar maximum conditions, we only
use data from Ulysses’ three fast heliolatitude scans. The first scan
occurred during solar minimum, the second scan occurred during
solar maximum, and the third scan occurred during the following
(deep) solar minimum (McComas et al. 2008). We select data from
DOY 256 in 1994 until DOY 213 in 1995 (known as Fast Latitude
Scan 1, FLS1) and data from DOY 38 in 2007 until DOY 13 in 2008
(known as Fast Latitude Scan 3, FLS3), and label these data as ‘solar
minimum’. We select data from DOY 329 in 2000 until DOY 285
in 2001 (known as Fast Latitude Scan 2, FLS2) and label these data
as ‘solar maximum’. During these time intervals, Ulysses’ eccentric
orbit brought the spacecraft to heliocentric distances between 1.34 au
at the perihelia and 2.37 au at the furthest polar pass. We summarise
our results in Table 1.

3.1 Mass, momentum, energy, and angular-momentum flux

In Fig. 1, we show a polar plot of the radial mass flux per steradian
Fm based on the Ulysses measurements. The polar angle in this
diagram and in the following diagrams illustrates the heliolatitude
at which the measurement was taken. The red lines indicate the
heliolatitudes of ±20◦, which McComas et al. (2000) identify as
the separation between slow equatorial streamer-belt wind and fast
polar coronal-hole wind during solar minimum. The red circle
indicates a constant value of Fm = 3.5 × 10−16 au2 g cm−2 s−1 sr−1

and is meant as a help to guide the eye. During solar minimum, Fm

varies between about 1 × 10−16 and 15 × 10−16 au2 g cm−2 s−1 sr−1

in the equatorial region, while it is steadier over the polar regions
beyond ±20◦ at a value of about 3.5 × 10−16 au2 g cm−2 s−1 sr−1

during FLS1. The polar mass flux is lower at a value of about 2.2 ×
10−16 au2 g cm−2 s−1 sr−1 during FLS3. During solar maximum, Fm

Figure 1. Polar plot of the radial mass flux per steradian Fm. The polar angle
represents the heliolatitude λ at which Ulysses recorded the measurement.
The distance from the centre of the plot describes the local value of
Fm. The red lines indicate λ = ±20◦. The red circle has a radius of
3.5 × 10−16 au2 g cm−2 s−1 sr−1. The left half of the figure shows conditions
during solar minimum from FLS1 (blue) and FLS3 (green), and the right half
of the figure shows conditions during solar maximum from FLS2 (blue).

exhibits large variations consistent with the larger variability of
the solar-wind source regions. The maximum value during solar
maximum is about 2.1 × 10−15 au2 g cm−2 s−1 sr−1, which is almost
by a factor of 10 greater than the average value over polar regions
during solar minimum. The clear separation between equatorial and
polar wind vanishes during solar maximum.

We show the polar plot of the radial particle momentum flux
per steradian Fp in Fig. 2 for solar-minimum and solar-maximum
conditions. During solar minimum, Fp presents variations between
about 0.5 × 10−8 and 8 × 10−8 au2 g cm−1 s−2 sr−1 at equatorial
heliolatitudes below ±20◦. Outside the equatorial region, Fp is
almost independent of heliolatitude at a value of approximately
2.5 × 10−8 au2 g cm−1 s−2 sr−1 during FLS1 and at a value of ap-
proximately 1.7 × 10−8 au2 g cm−1 s−2 sr−1 during FLS3. Like in
the case of Fm, also Fp shows a strong variation during solar
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Figure 2. Polar plot of the radial particle momentum flux per steradian Fp

during solar minimum (left half, FLS1 in blue, FLS3 in green) and solar
maximum (right half, FLS2). The format of this plot is the same as in Fig. 1.
The red circle has a radius of 2.5 × 10−8 au2 g cm−1 s−2 sr−1.

Figure 3. Polar plot of the radial energy flux per steradian FE during solar
minimum (left half, FLS1 in blue, FLS3 in green) and solar maximum (right
half, FLS2). We use γ = 5/3 and assume that p = P. The format of this plot
is the same as in Fig. 1. The red circle has a radius of 1 au2 g s−3 sr−1.

maximum between values from less than 3 × 10−9 to almost
10−7 au2 g cm−1 s−2 sr−1 at times. At equatorial heliolatitudes, the
average Fp does not differ much between solar minimum and solar
maximum, although its variability is greater during solar maximum.

Fig. 3 shows our polar plot of the radial energy flux per steradian
FE . During solar minimum, FE exhibits a significant difference

Figure 4. Polar plot of the radial angular-momentum flux per steradian
FL during solar minimum (left half, FLS1 in blue, FLS3 in green) and
solar maximum (right half, FLS2). We only plot FL if FL > 0. The format
of this plot is the same as in Fig. 1. The red circle has a radius of 1.5 ×
10−9 au3 g cm−1 s−2 sr−1.

between equatorial and polar regions. Near the equator between λ

= ±20◦, we observe FE between about 0.1 and 2.2 au2 g s−3 sr−1.
Outside the equatorial heliolatitudes, we observe an average value
of about 1 au2 g s−3 sr−1 during FLS1 and about 0.7 au2 g s−3 sr−1

during FLS3, independent of λ. During solar maximum, FE expect-
edly shows a larger variability between values from below 0.1 to
above 2.6 au2 g s−3 sr−1. At the location of the measurement, FE is
dominated by the kinetic-energy contribution of the protons.

We show the polar plot of the radial angular-momentum flux per
steradian FL in Fig. 4. Due to pointing uncertainties in the Ulysses
data set (for details, see Section 4), the measurement of Uφ is prone to
a much larger uncertainty than the measurement of Ur. We therefore
only plot FL when FL > 0. Due to the data gaps when FL < 0,
it is impossible to define a meaningful average value for FL > 0
at Northern heliolatitudes above the equatorial plane during FLS1
and at Southern heliolatitudes below the equatorial plane during
FLS3. Even the equatorial values need to be treated with caution.
During solar minimum, we find that FL is approximately 1.2 ×
10−9 au3 g cm−1 s−2 sr−1 in the Southern polar region (FLS1) and
approximately 0.8 × 10−9 au3 g cm−1 s−2 sr−1 in the Northern polar
region (FLS3). During solar maximum, its value varies between 6 ×
10−13 au3 g cm−1 s−2 sr−1 and about 3.6 × 10−9 au3 g cm−1 s−2 sr−1.
However, we re-iterate that these values need to be treated with
caution based on the pointing uncertainty of the spacecraft.

3.2 Alfvénic Mach number and the Alfvén radius

In this section, we derive the value of the Alfvénic Mach number
scaled to a heliocentric distance of 1 au and the location of the Alfvén
radius as functions of heliolatitude. For this calculation, we require a
scaling law for the magnetic field B. Throughout this work, we use
the tilde symbol to indicate a quantity that has been scaled to its value
at a heliocentric distance of 1 au. Using assumptions consistent with
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ours, Parker (1958) provides expressions for the averaged global-
scale heliospheric magnetic field as

Br (r) = Br (r0)
( r0

r

)2
, (28)

Bθ = 0, (29)

and

Bφ(r) = Br (r)
�� sin θ

Ur

(b − r), (30)

where r0 is any arbitrary reference distance from the Sun and b
is the effective source-surface radius. In order to scale the measured
magnetic field from the Ulysses data set to its value at 1 au, we assume
that the averaged heliospheric magnetic field follows, to first order,
the Parker magnetic field. Since b 	 r, we approximate equation (30)
as

Bφ(r) ≈ Bφ(r0)
( r0

r

)
. (31)

Using equations (28) and (31), we approximate the magnitude of the
scaled magnetic field at a heliocentric distance of 1 au as

B̃ =
( r

1 au

)√( r

1 au

)2
B2

r + B2
φ, (32)

where Br and Bφ are the measured magnetic-field components at
the heliocentric distance r, and r is the heliocentric distance of
the measurement location. Assuming that the proton bulk velocity
remains independent of r for r � 1 au, equation (12) suggests that
N ∝ r−2, allowing us to define the scaled proton density at a
heliocentric distance of 1 au as

Ñ = N
( r

1 au

)2
. (33)

Using equations (32) and (33), we define the scaled Alfvén speed at
a heliocentric distance of 1 au as

ṽA = B̃√
4πÑM

. (34)

Likewise, we define the scaled Alfvénic Mach number at a heliocen-
tric distance of 1 au as

M̃A = Ur

ṽA
, (35)

again relying on the assumption that Ur is independent of r for
r � 1 au.

We show our polar plot of the scaled Alfvénic Mach number
M̃A in Fig. 5. The scaled solar wind at 1 au is super-sonic (M̃A >

1) at all heliolatitudes and both during solar minimum and solar
maximum. During solar minimum, M̃A exhibits more variation at
equatorial heliolatitudes with values between 7 and 343. Outside the
equatorial region, the solar-minimum value of M̃A varies between
12 and 30 during FLS1 and between 13 and 57 during FLS3. On
average, M̃A is greater during FLS3 than during FLS1. We observe a
slight increase of M̃A with increasing |λ| even above ±20◦. During
solar maximum, M̃A exhibits a large variability between values from
about 4 to extreme cases with values over 200 at times. During solar
maximum, the maxima and the variations in M̃A are greater in polar
regions than near the equator.

The Alfvén radius rA is generally defined as the heliocentric
distance r, at which the radial proton bulk velocity fulfills

Ur = vA(r), (36)

where vA(r) is the local Alfvén speed. Our scaling assumptions
require that b 	 r and that Ur is constant with distance from the

Figure 5. Polar plot of the scaled Alfvénic Mach number M̃A at r = 1 au
during solar minimum (left half, FLS1 in blue, FLS3 in green) and solar
maximum (right half, FLS2). The format of this plot is the same as in Fig. 1.
The red circle has a radius of 20.

Sun as in the original Parker (1958) model for the interplanetary
magnetic field. We now extend the assumption that ∂Ur/∂r = 0 to
all distances r � rA. We recognize that this assumption is sometimes
violated. It allows us, however, to set a reasonable upper limit on
Ur as a function of r. As long as the actual Ur(rA) is less than the
measured Ur at distance r and vA is a monotonic function of r, the
extension of our scaling relations in equations (32) and (33) to r =
rA provides us then with a lower-limit estimate for the Alfvén radius.
Using the condition in equation (36), we find

rA = r

√
B2

r

4πNMU 2
r − B2

φ

, (37)

where Br, Bφ , N, and Ur are the measured quantities at heliocentric
distance r. We show the polar plot of the estimated Alfvén radius
rA according to equation (37) in Fig. 6. During solar minimum,
rA exhibits more variation in the equatorial region compared to
the polar region. Within heliolatitudes of ±20◦ of the equator, rA

varies between about 0.1 and 28 R�. Polewards from this equatorial
region, we find rA between about 7 and 16 R� with a mean of
approximately 12 R� during FLS1. During FLS3, rA is on average
smaller in the polar regions with a mean value of approximately
10 R�. As expected, the value of rA exhibits more variability during
solar maximum between values from less than 0.01 to 47 R� in
extreme cases. We note that values of rA < 1 R� are unphysical as
these would lie within the sphere of the Sun.

3.3 Sonic Mach number, the sonic radius, and the β = 1 radius

In this section, we derive the value of the sonic Mach number scaled
to a heliocentric distance of 1 au, the location of the sonic radius, and
the location of the β = 1 radius as functions of heliolatitude. For this
calculation, we require a scaling law for the proton temperature
T. Fits to the proton temperature profiles observed by Ulysses
during its first polar orbit reveal a temperature dependence on
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Magnetohydrodynamics and Ulysses observations 4999

Figure 6. Polar plot of the estimated Alfvén radius rA based on the scaled
magnetic field and proton density during solar minimum (left half, FLS1 in
blue, FLS3 in green) and solar maximum (right half, FLS2). The values of
rA give lower estimates for the Alfvén radius. We only plot rA if rA > 0.
The format of this plot is the same as in Fig. 1. The red circle has a radius of
12 R�.

heliocentric distance and heliolatitude of the form (McComas et al.
2000)

T =
[

2.58 × 105 K + (223 K)

(
λ

1◦

)]( r

1 au

)−1.02
(38)

at high heliolatitudes (|λ| ≥ 36◦). The temperature distribution at
equatorial heliolatitudes during solar minimum and, in general,
during solar maximum is more complex (McComas et al. 2002).
Nevertheless, we apply the power-law scaling in equation (38) to
approximately scale T at the location of measurement back to its
value at 1 au as

T̃ = T
( r

1 au

)1.02
. (39)

The Ulysses data set provides us with proton temperature measure-
ments achieved in two different ways: one data product corresponds
to the integrated second velocity moment of the 3D velocity
distribution function. The other data product corresponds to the
sum of the second-order moments of 1D energy spectra, avoiding
any channels above the proton peak to avoid contamination by α-
particles. These one-dimensional spectra are calculated as the sum
of the measurements over all angles at each fixed energy. Unless
the solar-wind temperature T assumes extreme values, the integrated
second velocity moment of the 3D velocity distribution function is
expected to provide an upper limit on T. In these cases, the sum of
the second-order moments of the 1D energy spectra is expected to
provide a lower limit on T. We use the arithmetic mean of the time
averages of both data products as our value of T.

We define the scaled sound speed at a heliocentric distance of 1 au
as

c̃S =
√

γ kBT̃

M
, (40)

Figure 7. Polar plot of the scaled sonic Mach number M̃S at r = 1 au during
solar minimum (left half, FLS1 in blue, FLS3 in green) and solar maximum
(right half, FLS2). The format of this plot is the same as in Fig. 1. The red
circle has a radius of 11.

where kB is the Boltzmann constant. For the sake of simplicity, we
set γ = 5/3. This definition allows us to introduce the scaled sonic
Mach number at a heliocentric distance of 1 au as

M̃S = Ur

c̃S
(41)

under the assumption that ∂Ur/∂r = 0 at distances r � 1 au. Fig. 7
displays the polar plot of the scaled sonic Mach number M̃S. The
value of M̃S shows the least relative variability compared to the other
quantities shown in this work throughout the three polar passes that
we study. During solar minimum, M̃S varies between 8 and 18. At
|λ| > 20◦, M̃S is approximately constant at a value of 11 during
FLS1 and at a value of 12 during FLS3. During solar maximum,
M̃S exhibits moderate variations with values between approximately
7 and 19. The difference between equatorial and polar wind is less
pronounced during solar maximum.

Assuming an average radial scaling of T at heliocentric distances
< 1 au in addition to the scaling in equation (39), which is valid at
heliocentric distances >1 au, allows us to estimate the value of the
sonic radius rS based on the Ulysses measurements depending on
heliographic latitude in cases when rS < 1 au. The sonic radius is
defined as the heliocentric distance r, at which the radial proton bulk
velocity fulfills

Ur = cS(r), (42)

where cS(r) is the local sound speed. Like in the case of the Alfvén
radius, we apply our assumption that ∂Ur/∂r = 0 to all distances r �
rS, an assumption that is prone to the same caveats as in the case of
rA. Fits to radial profiles of T measured by Helios in fast solar wind
reveal (Hellinger et al. 2011)

T (r) = 2.5 × 105 K
( r

1 au

)−0.74
. (43)

Like in the case of our Ulysses measurements, the Helios proton
temperature profiles also depend on the solar-wind speed (Marsch
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Figure 8. Polar plot of the estimated sonic radius rS based on the scaled
proton temperature during solar minimum (left half, FLS1 in blue, FLS3 in
green) and solar maximum (right half, FLS2). The values of rS give lower
estimates for the sonic radius. We only plot rS if rS > 0. The format of this
plot is the same as in Fig. 1. The red circle has a radius of 0.3 R�.

et al. 1982b). The power index for the scaling of the perpendicular
proton temperature varies from −1.17 in fast wind to −0.9 in slow
wind, and the power index for the scaling of the parallel proton
temperature varies from −0.69 in fast wind to −1.03 in slow wind.
We combine the scaling in equation (39) with the scaling

T = T̃
( r

1 au

)−0.74
(44)

according to equation (43) to estimate the r-dependence of the proton
temperature from the location of the Ulysses measurement to the
heliocentric distance rS. We acknowledge that the assumption of
a single power index neglects the differences in the temperature
profiles between fast and slow wind and should be seen as an average
estimate.

The procedure for the calculation of rS is as follows. We first
calculate T̃ according to equation (39). Then we apply the scaling
in equation (44) to achieve an r-dependent value of T(r) in the inner
heliosphere. Based on this value, we calculate cS(r) and evaluate the
distance at which equation (42) is fulfilled. This leads to

rS = (1 au) M̃−2.70
S . (45)

As for our estimate of rA, equation (45) gives a lower limit on
the sonic radius due to our assumption that ∂Ur/∂r = 0 at r � rS.
We show the polar plot of the estimated sonic radius rS according
to equation (45) in Fig. 8. Overall, we observe an increase of rS

with increasing |λ| both during solar minimum and solar maximum.
During solar minimum, rS varies between values of about 0.09
and 0.9 R� at equatorial heliolatitudes. At polar heliolatitudes, rS

≈ 0.3 R� during both FLS1 and FLS3, although the average rS is
slightly smaller during FLS3. During solar maximum, the value of
rS varies between about 0.08 and 1.1 R�. We discuss in Section 4
that our assumptions in the derivation of equation (45) are strongly
violated at these distances, casting doubt on the reliability of our

Figure 9. Polar plot of the estimated β = 1 radius rβ based on the scaled
moment profiles during solar minimum (left half, FLS1 in blue, FLS3 in
green) and solar maximum (right half, FLS2). We only plot rβ if rβ > 0. The
format of this plot is the same as in Fig. 1. The red circle has a radius of
0.5 au.

estimate of rS. In addition, numerical values of rS < 1 R�, like for
the case of rA, are clearly unphysical as they lie within the sphere of
the Sun.

Lastly, we estimate the radius rβ at which β = 1, where

β = 8πNkBT

B2
(46)

is the ratio between the thermal pressure of the protons and the
magnetic energy density. Since rβ can be greater than or less than
1 au, we must account for the different T-scalings according to
equations (39) and (44) in the outer and inner heliosphere. The radius
rβ then fulfils the conditions

B2
r +

( rβ

r

)2
B2

φ − 8πNkBT
( rβ

r

)0.98
= 0 (47)

if rβ > 1 au and

B2
r +

( rβ

r

)2
B2

φ − 8πNkBT
( rβ

r

)1.26 ( r

1 au

)0.28
= 0 (48)

if rβ < 1 au. We solve this set of conditional equations (47) and (48)
numerically for rβ through a Newton-secant method. We ignore all
cases in which the solution leads to rβ < 0. We show the polar plot
of the estimated β = 1 radius rβ according to equations (47) and
(48) in Fig. 9. The data gaps in Fig. 9 show that our method at times
fails to provide a reliable estimate for rβ in equatorial regions. Under
solar-minimum conditions, we find solutions with 0.01 au < rβ <

3.2 au in the equatorial plane for some time intervals. We find that rβ

assumes average values between about 0.2 and 0.5 au at heliolatitudes
polewards of ±20◦ during solar minimum. During FLS3, rβ is on
average less than rβ during FLS1. During solar maximum, rβ varies
from 0 to about 4 au. Like in the solar-minimum case, our approach
does not always provide us with reliable estimates for rβ near the
equatorial plane during solar maximum. We find equatorial solutions
with 0.2 au < rβ < 2.6 au during maximum conditions.
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4 D ISCUSSION

Our measurement of the mass flux per steradian Fm in the ecliptic
plane is consistent with earlier measurements (Feldman et al. 1978;
McComas et al. 2000; Cranmer, Gibson & Riley 2017; Finley, Matt &
See 2018). These observations report that 4πr2UrNM ≈ 1012 g s−1,
which corresponds to Fm ≈ 4 × 10−16 au2 g cm−2 s−1 sr−1 in our
units. In agreement with previous measurements from Ulysses during
solar minimum (Forsyth et al. 1996b; Goldstein et al. 1996), we find
that Fm is approximately constant for |λ| > 20◦, although we find
a slight decrease of Fm towards the poles during FLS1, especially
during the Northern pass at solar minimum (see also McComas et al.
2000). In general, Fm is by almost 25 per cent smaller during the
minimum recorded in FLS3 than during the minimum recorded in
FLS1. This finding confirms the extraordinary conditions during the
very deep solar minimum that extended into 2009 (McComas et al.
2013). The mass flux is a useful quantity to distinguish solar-wind
acceleration models. As pointed out by Holzer & Leer (1980), for
instance, a constancy of the mass flux with solar-wind speed would
suggest that most of the energy deposition occurs above the Alfvén-
critical point. The observed variability in Fm, however, confirms
the notion that most of the energy deposition occurs below the
critical point. We note that α-particles, which we neglect, can make a
substantial contribution (�20 per cent) to the solar-wind mass flux,
especially in fast solar wind (Marsch et al. 1982a).

Our estimate for the momentum flux per steradian Fp is not
fully scalable to different r across the heliosphere, since it does not
include the contributions from plasma-pressure gradients, magnetic-
pressure gradients, and gravity. Although these effects are small at
the location of the measurement, we warn that the scaling of Fp

to the inner heliosphere deserves particular attention due to our
application of the coasting approximation. Including α-particles,
which can make a substantial contribution to the momentum flux
of the solar wind, McComas et al. (2000) report a momentum
flux of approximately 2.9 × 10−8 au2 g cm−1 s−2 sr−1 during FLS1
in solar-minimum conditions with a variation of 0.3 per cent per
degree in heliolatitude. Our measurements confirm that, both during
solar minimum and (to a lesser degree) during solar maximum, the
average momentum flux is lower in equatorial regions with only a
small variation with heliolatitude in the polar regions (Phillips et al.
1995). We note, however, that, during all FLS orbits, the Ulysses
spacecraft has a larger latitudinal angular speed in the equatorial
regions than in the polar regions. Therefore, the spacecraft may
statistically encounter fewer transient events near the equator which
potentially skews the measured variability. The deep solar minimum
during FLS3 exhibits polar Fp-values that are by about 30 per cent
smaller than the average polar Fp during FLS1. The momentum
flux is of particular interest since it represents the solar-wind ram
pressure, the key internal driver that determines the shape and extent
of the heliosphere at the location of the heliospheric termination
shock (McComas et al. 2000; Jokipii 2013).

An earlier measurement of the solar wind’s kinetic-energy density
based on a combination of data from the Helios, Ulysses, and
Wind missions shows that W = NMUrU

2
r /2 + NMUrGM�/R� is

largely independent of solar-wind speed at a value of approximately
1.5 × 10−3 W m−2 at r = 1 au and in the plane of the ecliptic (Le
Chat, Issautier & Meyer-Vernet 2012). We note that W depends
on r, unlike our FE , which also includes contributions from the
plasma pressure, and the magnetic field. Nevertheless, since these
measurements are reported at r = 1 au, we can compare W with FE

by calculating r2W ≈ 1.5 au2 g s−3 sr−1, which is slightly larger than
our reported value. The estimate by Le Chat et al. (2012) includes

the required energy for the plasma to leave the Sun’s gravitational
potential from a distance of r = 1 R�. Since even for fast wind
GM�/R� ∼ U 2

r /2, this additional contribution to W explains the
difference in these two estimates. The contribution of the magnetic
field to FE is small in agreement with modelling results (Alexander
& de La Torre 1995). At the distance at which Ulysses measured FE ,
the energy flux is dominated by the kinetic-energy flux. An earlier
analysis of Ulysses data reveals that the equatorial kinetic-energy
flux is approximately 30 per cent less than the polar kinetic-energy
flux (Phillips et al. 1995) consistent with our results, although this
earlier study did not analyse its heliolatitudinal dependence during
conditions near solar maximum. The deep solar minimum during
FLS3 exhibits a polar energy flux that is by about 34 per cent smaller
than the polar energy flux during FLS1.

Due to pointing uncertainties explicitly communicated by the
instrument team, Ulysses is unable to provide us with a reliable
measurement of Uφ on the required time-scales. Uφ is a key
component in the calculation of FL. Therefore, our polar plot of
FL in Fig. 4 must be treated with caution. In addition, Uφ often
exhibits relative variations greater than order unity so that it even
assumes negative values in the solar wind. Natural variations due to
turbulence or stream-interaction regions cause significant deflections
compared to the expected average (Egidi, Pizzella & Signorini 1969;
Siscoe, Goldstein & Lazarus 1969). Although time averaging reduces
the impact of these natural variations on the determination of the
average Uφ , the instrumental shortcomings remain. In addition to
uncertainties in Uφ , the accuracy of FL also depends on the average
values of Br and Bφ . Although Ulysses observations show that the
average interplanetary magnetic field largely agrees with Parker’s
prediction, Br decreases more slowly and Bφ more quickly with
heliocentric distance than expected (McComas et al. 2000). These
deviations are usually attributed to waves or more complex boundary
conditions near the Sun than those assumed in Parker’s model
(Forsyth et al. 1996a, b). In Section 3.2, we scale the magnetic
field towards smaller r assuming the radial scaling according to
Parker’s model. We expect that our averaging over 30 h removes
most of the Alfvénic fluctuations that lead to variations in Uφ and Bφ

around their mean values. Some of the inaccuracies due to complex
boundary conditions can be reduced using a more complex model
for the interplanetary magnetic field such as the Fisk (1996) model,
which accounts for the Sun’s differential rotation and the tilt of the
Sun’s magnetic axis compared to its rotational axis. However, such
a more complex treatment is beyond the scope of this work.

Earlier measurements of the Sun’s angular-momentum loss pro-
vide a value of FL ≈ 5 . . . 10 × 10−10 au3 g cm−1 s−2 sr−1 (Pizzo
et al. 1983; Finley et al. 2018, 2019; Verscharen et al. 2021).
Despite the inaccuracies in the Ulysses measurement, these values
are consistent with our estimates of FL in the Southern hemisphere
during FLS1, in the Northern hemisphere during FLS3, and during
solar maximum (FLS2). The contribution to the angular-momentum
flux from α-particles, which we neglect in our estimate, can be
significant in the solar wind (Pizzo et al. 1983; Marsch & Richter
1984; Verscharen et al. 2015) and should be included in future studies
with spacecraft that provide readily available α-particle data. The
partition between the particle contributions and the magnetic-field
contributions to FL is an important question with implications for
solar-wind models. In the early Weber & Davis (1967) model, the
field contribution is greater than the particle contribution; however,
later measurements show that the partition can be opposite, especially
in slow wind (Hundhausen et al. 1970; Marsch & Richter 1984). In
typical fast wind, most of the angular-momentum is lost through
magnetic stresses, an effect which is expected to be even stronger in
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the inner heliosphere (see also Pizzo et al. 1983; Alexander & de La
Torre 1995). Likewise, the on average larger pressure anisotropies
in the inner heliosphere (Marsch et al. 1982b) contribute to the
angular-momentum equation (Hundhausen 1970), even though we
neglect their effect in our treatment based on the assumption of a
scalar pressure. Due to the limitations in our measurement of Uφ ,
we are unable to determine reliably the partition of these different
contributions to the overall angular-momentum loss. In the very inner
heliosphere, Parker Solar Probe reports an azimuthal flow which is
significantly larger than expected by the Weber & Davis (1967) model
(Kasper et al. 2019). The source of this large Uφ component is still
unclear. A stronger effective co-rotation or deflections through, for
instance, stream interactions serve as potential explanations (Finley
et al. 2020). In this context, a more complex field geometry near the
Sun also affects the angular-momentum loss (Finley & Matt 2017),
which introduces further dependencies on the solar cycle (Réville &
Brun 2017; Finley et al. 2018).

A combination of Ulysses measurements with a self-similar solar-
wind model finds a scaled Alfvén Mach number M̃A of about 10–
20 (Sauty et al. 2005) consistent with our simpler scaling estimate
in Section 3.3. The earlier self-similar model, however, suffered
from inconsistencies in reproducing observed magnetic-field values
at 1 au, which could be resolved in a later update (Aibéo, Lima &
Sauty 2007). In the deeper solar minimum during FLS3, the polar
M̃A is on average slightly greater than the polar M̃A measured during
FLS1.

Our estimates of the critical radii rA, rS, and rβ assume a constant
radial bulk speed of the solar wind between the location of measure-
ment and the respective critical radius. In the inner heliosphere, this
assumption can be violated, especially regarding the slow solar wind
(Schwenn et al. 1981). Therefore, our calculations only provide lower
estimates for the location of these critical radii. The location of the
Alfvén radius depends on the magnetic-field geometry near the Sun,
which deviates from our simplifying assumption of a Parker profile
(Finley & Matt 2017). A dipolar solar braking model constrained by
Ulysses data estimates that rA ≈ 16 R�, independent of heliolatitude
(Li 1999). This value is consistent with our largest estimate in regions
outside equatorial heliolatitudes. We find a larger variation between
this model estimate and ours though. Our findings are in agreement
with earlier estimates based on Helios measurements in the ecliptic
plane, which suggest that rA ≈ 12. . . 17 R� (Pizzo et al. 1983; Marsch
& Richter 1984). Previous scalings based on a hydrodynamic model
also estimate the values of rA and rS (Exarhos & Moussas 2000).
During solar-minimum conditions, these models suggest that rA ≈
14 and rS ≈ 1.5 R� at polar heliolatitudes, and that rA ≈ 17 and
rS ≈ 2 R� in equatorial regions (for an extension of this model, see
also Katsikas, Exarhos & Moussas 2010). While our estimates for
rA are largely consistent with this hydrodynamic model within the
observed variability, our estimates of rS are smaller by a factor of
approximately four to five. The reason for this discrepancy in our
model is based on the complication that the condition Ur = cS is
often fulfilled in a region where significant solar-wind acceleration
is still ongoing. Since typically rS < rA, our estimate of rS suffers
more strongly from the violation of our assumption that ∂Ur/∂r = 0
than our estimate of rA. In addition, the extrapolation of the T-profile
according to equation (43) from r = 0.3 au to distances of a few R�
is highly problematic. These shortcomings can be overcome in the
future by using (i) a more realistic acceleration profile near the Sun
and (ii) a more realistic T-profile near the Sun based on, for example,
measurements from Parker Solar Probe. Based on OMNI data and
their hydrodynamic model, Exarhos & Moussas (2000) predict a
dependence of rA on the solar cycle, which our measurements clearly

confirm (see also Kasper & Klein 2019). However, we cannot confirm
two predictions made by this model: (i) a more spherical shape of
both critical surfaces during solar maximum and (ii) a small variation
of rS with solar cycle. Our estimated positions of rA and rβ are largely
consistent with predictions from a magnetohydrodynamics model of
the solar wind over polar regions (Chhiber et al. 2019). We note,
however, that our finding of a larger value of rβ ∼ 1 au in the ecliptic
plane is more consistent with the observation that, on average, β ∼
1 at the first Lagrange point (Wilson III et al. 2018). Under the deep
solar-minimum conditions during FLS3, we find that, over the poles,
the positions of rA, rS, and rβ are on average slightly closer to the
Sun than during FLS1.

Our calculation neglects any super-radial expansion effects due
to expanding flux tubes in the solar wind. These effects can be
significant at very small distances from the Sun. Above a few solar
radii, however, the super-radial expansion of the coronal magnetic
field is expected to be small (Woo & Habbal 1997), although this
expectation has been discussed controversially (Neugebauer 1999).
If important, the super-radial expansion would especially affect our
calculations of rA and rS. Nevertheless, all higher-order multipoles
of the coronal magnetic field eventually (probably beyond a few
solar radii) drop faster than the dipole moment, so that super-radial
expansion then becomes negligible (Sandbaek, Leer & Hansteen
1994; Wang et al. 1997).

5 C O N C L U S I O N S

We use proton and magnetic-field data from the Ulysses mission
to study the dependence of mass, momentum, energy, and angular-
momentum fluxes on heliolatitude. Based on the multifluid frame-
work and assuming an isotropic electron–proton plasma, we derive
laws for the radial conservation of these fluxes. These conservation
laws allow us to separate the radial dependence from the heliolatitudi-
nal dependence in the Ulysses measurements. A major caveat of this
method lies in the neglect of the natural spatio-temporal variations
in the solar-wind plasma and magnetic field which occur over a
wide range of scales (Verscharen, Klein & Maruca 2019). Therefore,
our analysis only applies to the average large-scale behaviour of
the solar wind. Moreover, we neglect effects due to temporal and
heliolongitudinal changes in the source regions of the solar wind. The
variability of the flux parameters shown in our analysis, especially
during solar maximum, give us an estimate for the natural variability
of the solar wind on time-scales greater than our averaging time
of 30 h.

Although the Ulysses data set is unprecedented in its heliolatitudi-
nal coverage of the solar wind, we expect major advances regarding
the topics addressed in this work from the ongoing measurements
from Parker Solar Probe and Solar Orbiter. Parker Solar Probe
will explore the very inner regions of the heliosphere. Our analysis
suggests that it will cross the distance rA during the later stages of its
orbit, while it is unlikely to cross the distance rS. Solar Orbiter will
leave the plane of the ecliptic during its extended mission phase and
measure the solar wind at heliolatitudes up to ±33◦. Considering
that the axial tilt of the Sun’s magnetic-field dipole axis is �10◦

during solar minimum (Norton, Raouafi & Petrie 2008), Solar
Orbiter will cover an even larger range of heliomagnetic latitudes
during that phase of the mission.2 These measurements will therefore

2During the early phase of the Ulysses mission, a tilt between the Sun’s
magnetic-field dipole axis and its rotational axis of about 30◦ has been
reported (Bame et al. 1993; Hoeksema 1995).
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allow us to study the heliolatitudinal dependence of the relevant
solar-wind parameters in a similar way to this study. In addition,
both Parker Solar Probe and Solar Orbiter also provide us with
high-resolution measurements of the electron distribution function.
Although the electron contributions to the mass, momentum, and
angular-momentum fluxes are negligible, their contribution to the
energy flux is significant in the form of heat flux (Ogilvie, Scudder
& Sugiura 1971; Hollweg 1974; Feldman et al. 1975). It will be
worthwhile to include this effect in future studies of this kind. These
new observations will help us to further constrain solar-wind models
and drive forward our understanding of the acceleration of the solar
wind.

Lastly, we emphasize that our observations support the general
picture that the solar wind is much more variable during times
of solar maximum than during times of solar minimum. This
increased variability is likely to be caused by transient events such
as interplanetary coronal mass ejections (ICMEs). In our analysis,
we include such events in order to reflect the range and pattern
of the overall variability on the investigated time-scales. However,
it would be worthwhile in a future study to separate our data set
into time intervals with and without ICMEs according to existing
ICME catalogues for the Ulysses data set (e.g. Ebert et al. 2009;
Du, Zuo & Zhang 2010; Richardson 2014). This approach would
facilitate a detailed study of the contribution of transient events to
the variability of mass, momentum, energy, and angular-momentum
fluxes. We note, however, that some of our model assumptions, such
as the azimuthal symmetry, non-polar field and flow components, and
radial scalings must be treated with caution in transient events. In
addition, we also find a significant variation in some of the analysed
quantities between the solar minima recorded during FLS1 and FLS3.
It is of interest to study these conditions more closely. This should
especially include a closer inspection of the question to what degree
the observed variations are real and to what degree they result from
breakdowns in our assumptions.
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