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IMPORTANCE Quantitative volumetric measures of retinal disease in optical coherence
tomography (OCT) scans are infeasible to perform owing to the time required for manual
grading. Expert-level deep learning systems for automatic OCT segmentation have recently
been developed. However, the potential clinical applicability of these systems
is largely unknown.

OBJECTIVE To evaluate a deep learning model for whole-volume segmentation
of 4 clinically important pathological features and assess clinical applicability.

DESIGN, SETTING, PARTICIPANTS This diagnostic study used OCT data from 173 patients with a
total of 15 558 B-scans, treated at Moorfields Eye Hospital. The data set included 2 common
OCT devices and 2 macular conditions: wet age-related macular degeneration (107 scans)
and diabetic macular edema (66 scans), covering the full range of severity, and from 3 points
during treatment. Two expert graders performed pixel-level segmentations of intraretinal
fluid, subretinal fluid, subretinal hyperreflective material, and pigment epithelial detachment,
including all B-scans in each OCT volume, taking as long as 50 hours per scan. Quantitative
evaluation of whole-volume model segmentations was performed. Qualitative evaluation of
clinical applicability by 3 retinal experts was also conducted. Data were collected from June 1,
2012, to January 31, 2017, for set 1 and from January 1 to December 31, 2017, for set 2;
graded between November 2018 and January 2020; and analyzed from February 2020 to
November 2020.

MAIN OUTCOMES AND MEASURES Rating and stack ranking for clinical applicability
by retinal specialists, model-grader agreement for voxelwise segmentations, and total
volume evaluated using Dice similarity coefficients, Bland-Altman plots, and intraclass
correlation coefficients.

RESULTS Among the 173 patients included in the analysis (92 [53%] women), qualitative
assessment found that automated whole-volume segmentation ranked better than or
comparable to at least 1 expert grader in 127 scans (73%; 95% CI, 66%-79%). A neutral or
positive rating was given to 135 model segmentations (78%; 95% CI, 71%-84%) and 309
expert gradings (2 per scan) (89%; 95% CI, 86%-92%). The model was rated neutrally or
positively in 86% to 92% of diabetic macular edema scans and 53% to 87% of age-related
macular degeneration scans. Intraclass correlations ranged from 0.33 (95% CI, 0.08-0.96)
to 0.96 (95% CI, 0.90-0.99). Dice similarity coefficients ranged from 0.43 (95% CI,
0.29-0.66) to 0.78 (95% CI, 0.57-0.85).

CONCLUSIONS AND RELEVANCE This deep learning–based segmentation tool provided
clinically useful measures of retinal disease that would otherwise be infeasible to obtain.
Qualitative evaluation was additionally important to reveal clinical applicability
for both care management and research.
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Q uantitative 3-dimensional (3-D) imaging tools that
accurately measure various anatomical features have
transformed multiple medical specialties,1 including

radiotherapy,2 neuroimaging,3 and cardiology.4 In ophthal-
mology, 3-D optical coherence tomography (OCT) imaging
has revolutionized retinal disease management5-7; however,
few tools exist to accurately quantify abnormalities.8

Treatment decisions for common retinal conditions,
including wet age-related macular degeneration (AMD) and dia-
betic macular edema (DME), rely on subjective assessment of
retinal fluid. This assessment is prone to intergrader disagree-
ment, particularly at lower volumes.9,10 Most commercial in-
struments include basic tools for 2-D measurements such as
retinal thickness but are susceptible to errors in the presence
of pathology.11-13 Such measures also do not elucidate under-
lying pathological features and thus correlate poorly with vi-
sual outcomes.14

Optical coherence tomography segmentation offers
the potential to objectively quantify disease burden and
standardize treatment decisions. Although theoretically pos-
sible through manual segmentation by specialists, OCT seg-
mentation is infeasible in both clinical and research settings
owing to the time-consuming task of delineating pathologi-
cal features across hundreds of sections per scan. Deep
learning–based methods offer a new approach, enabling
quick and accurate segmentation of pathological features15,16

and providing more granular assessments of disease pro-
gression.17,18 De Fauw et al19 previously published a 2-stage
deep learning system, involving segmentation as an inter-
mediate representation, and assessed its accuracy when
classifying macular diseases. Herein, we assessed the agree-
ment of automated segmentations in deliberately challeng-
ing scans with AMD and DME against a reading center crite-
rion standard that importantly involved manual human
segmentation of entire OCT volumes, rather than selecting
key sections as others have done. Given the challenges of
OCT interpretation in complex macular disease where
several clinical interpretations may be equally valid, we
performed both quantitative and blinded qualitative
evaluations with retinal specialists to assess potential
clinical applicability.

Methods
This diagnostic study followed the Transparent Reporting
of a Multivariable Prediction Model for Individual Prognosis
or Diagnosis (TRIPOD) reporting guideline. This research
received approval from the Cambridge East Research
Ethics Committee. Deidentification was performed in line with
the Anonymisation: Managing Data Protection Risk Code
of Practice of the Information Commissioner’s Office20

and validated by Moorfields Eye Hospital information
technology and information governance. Only anonymized
retrospective data were used for research, without the active
involvement of patients, and informed consent was not
required. The study adhered to the tenets of the Declaration
of Helsinki.21

Data Sets
Five data sets were used, split between an initial pilot study
(set 1) and the main study (set 2). The pilot study was per-
formed to evaluate feasibility of the task and for guideline
iteration before the main study. For all data sets, 1 eye per
patient was selected.

For set 1 (1 data set), 15 OCT scans from patients with new
presentations of severe AMD to Moorfields Eye Hospital
were randomly selected from the test set of De Fauw et al,19

acquired using the 3D OCT-2000 device from Topcon
Corporation. For set 2 (4 data sets), a total of 164 OCT scans
not previously used to train the models were randomly se-
lected by Moorfields Ophthalmic Reading Centre from unique
patients attending Moorfields Eye Hospital from January 1
to December 31, 2017, with either AMD or DME.19 Scans were
acquired using the Topcon device or a Spectralis OCT device
from Heidelberg Engineering GmbH, resulting in 4 subsets:
(1) Topcon-AMD, (2) Heidelberg-AMD, (3) Topcon-DME, and
(4) Heidelberg-DME. To ensure a representative data set, se-
lection was enriched to fulfill different levels of disease sever-
ity (mild, moderate, and severe) (the definition of which is pro-
vided in the eMethods in the Supplement) and treatment status
(at initial referral, at 3 months after intravitreal therapy,
and at 12 months after initial presentation).

Each Topcon scan consisted of 128 B-scans. For Heidel-
berg, volumes with 25 or 49 B-scans were selected. All im-
ages were visually inspected for quality by a senior ophthal-
mologist (K.B.), consistent with previous work.19

Procedures
Grading Process
The full grading protocol is described in the eMethods in the
Supplement. Segmentations were drawn using ImageJ
(Fiji)22 and a drawing tablet (Wacom Co, Ltd). Gradings were
performed between November 2018 and January 2020.

For set 1, 2 specialist optometrist graders manually
segmented all B-scans for each OCT for 3 pathological
features: intraretinal fluid (IRF), subretinal fluid (SRF),
and pigment epithelial detachment (PED) (eTable 1 in the
Supplement). Segmentations were independently adjudi-
cated by 2 senior ophthalmologists (P.A.K. and K.B.) with

Key Points
Question Is deep learning–based segmentation of macular
disease in optical coherence tomography (OCT) suitable
for clinical use?

Findings In this diagnostic study of OCT data from 173 patients with
age-related macular degeneration or diabetic macular edema, model
segmentations qualitatively ranked better or comparable for clinical
applicability to 1 or more expert grader segmentations in 127 scans
(73%) by a panel of 3 retinal specialists. Scans with high quantitative
accuracy scores were not reliably associated with higher rankings.

Meaning These findings suggest that qualitative evaluation adds
to quantitative approaches when assessing clinical applicability
of segmentation tools and clinician satisfaction in practice.
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more than 10 years of experience and reading center certifi-
cation for OCT segmentation.

For set 2, each subset was segmented by 2 certified grad-
ers (from a pool of 4 Moorfields Ophthalmic Reading Centre
graders) and adjudicated by 1 senior ophthalmologist (K.B.).
The DME scans were segmented for IRF and SRF only,
and AMD scans were segmented for IRF, SRF, PED, and sub-
retinal hyperreflective material (SHRM).

Adjudication involved an interactive process of feedback
and revision until each grading was completed to reading cen-
ter standards and approved by the senior ophthalmologist.
The aim was to achieve a reasonable clinical interpretation
without intent to converge toward a single ground truth. Grad-
ing and revisions for the pilot study were performed to the high-
est standard reasonably possible, without overt time con-
straints. All grading and adjudication were performed blinded
to model predictions.

Model Segmentation
All OCTs underwent automated segmentation using a previ-
ously published deep learning network.19 Briefly, a 3-D U-Net
architecture23 translates an OCT input to a map with 15 classes,
including anatomical and pathological features. Five in-
stances of the same network were trained with a different or-
der of inputs and different random weight initializations, which
were then ensembled to produce the final segmentation maps.
Features of interest were IRF, SRF, SHRM, and PED. Model-
predicted drusen, fibrovascular PED, and serous PED were
combined to a singular PED feature.

Qualitative Evaluation
Owing to inherent variability in human grading, no single
ground truth is available against which to compare the algo-
rithm; 2 segmentations of the same OCT scan may vary volu-
metrically or geometrically owing to alternative interpreta-
tions, whereas clinical applicability of each may be equivalent.
We therefore tasked 3 retinal specialists (S.V., H.K., and L.N.)
(eTable 2 in the Supplement) to qualitatively assess 3 segmen-
tations (2 experts and 1 model) for each OCT scan at the vol-
ume level. For each case, retinal specialists were presented
with the original OCT, followed by 3 blinded segmentations in
a randomly shuffled order (eFigure 1 in the Supplement).

To assess how representative segmentations were of the
specialists’ impression of the scan, each specialist stack
ranked the segmentations in the order that most closely
reflected their interpretation and selected the magnitude of
difference between each pair in the ranking as slightly bet-
ter, moderately better, or considerably better. To assess clini-
cal applicability, specialists were asked if they would be sat-
isfied to use each segmentation within their clinical practice,
using a 5-point Likert scale where 1 indicates strongly dis-
agree; 2, disagree; 3, neither agree nor disagree; 4, agree;
and 5 strongly agree.

Data Analysis
Qualitative Evaluation Analysis
For stack-ranking analysis, scans with slight or slight and
moderate differences were considered separately as compa-

rable to each other. Scans with moderate and considerable
or only considerable differences were determined to be
better or worse than one another. The number and percent-
age of scans for which the model was considered better
or comparable to at least 1 of the expert gradings by most of
the specialists was calculated. Likert ratings were analyzed
by taking the median specialist rating per segmentation
and determining the distribution of ratings for both
model and expert gradings. We used the Krippendorff α to
evaluate agreement between specialists for ordinal ranking
and ratings. The 95% CIs were calculated using Wilson’s
methods.24

Volumetric Analysis
Total feature volume (in cubic millimeters) was calculated by
multiplying the number of labeled voxels for each pathologi-
cal feature by the voxel volume. Bland-Altman plots with lim-
its of agreement were used to visualize agreement between
graders (intergrader) and between the model and each indi-
vidual grader (model-grader) for total volume segmented for
each feature. Because we expected that larger differences
would be observed at larger segmented volumes, limits of
agreement based on relative volume changes were calculated
from log-transformed variables.25 The intraclass correlation
coefficient (ICC) was calculated using the 2-way random-
effects model for agreement, and 95% CIs were calculated
using bootstrapping to ensure consistency between inter-
grader and model-grader metrics.

Geometric Analysis
The similarity of segmentations between model and expert
gradings for each feature was evaluated using the Dice simi-
larity coefficient (DSC)26 and was calculated only for scans
in which the respective feature was present (defined as ≥1 voxel
segmented in the whole scan) in all 3 gradings (both experts
and model).

Statistical Analysis
Data were analyzed from February 2020 to November 2020.
Statistical analysis was performed with Python, version 3.6.7
(Python Software Foundation). Volumetric and geometric
analyses were stratified by disease, disease severity, treat-
ment time point, and device type.

Results
A total of 173 scans were used for analysis after 6 scans
were excluded (3 for poor quality; 3 owing to data extraction
failures) (Table). This included 107 AMD scans and 66 DME
scans, with 103 scans acquired using the Topcon device and
70 using the Heidelberg device. Expert grading took a
mean of 50 hours per scan for set 1 and 7 hours per scan
for set 2. The mean time taken by the model was less than
10 seconds per scan, running on graphics processing
units (5 Tesla V100; Nvidia). Example segmentations are
shown in Figure 1, the Video, and eFigures 2 to 12 in
the Supplement.
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Qualitative Evaluation by Retinal Specialists
When considering scans stack ranked with slight differences
as comparable, the model was better or comparable to at least
1 expert in 127 of 173 (73%; 95% CI, 66%-79%) and worse in 46
of 173 (27%; 95% CI, 21%-34%) (eTable 3 in the Supplement).
When both slight and moderate differences were considered
comparable, the model was better or comparable to at least 1
expert in 149 of 173 scans (86%; 95% CI, 80%-90%) and worse
in 24 of 173 (14%; 95% CI, 10%-20%). eFigure 13 in the
Supplement visualizes the complete distribution. Where the
model ranked highest, there was generally a slight difference
from the next expert grade (range, 40%-75%) (eTable 4 in the
Supplement).

Most of the specialists gave positive Likert ratings (4 or 5)
to 85 of 173 model segmentations (49%; 95% CI, 42%-57%)

and 225 of 346 expert segmentations (2 per scan) (65%;
95% CI, 60%-70%), which increased to 78% (95% CI, 71%-
84%) and 89% (95% CI, 86%-92%), respectively, when also
considering neutral ratings (Likert rating 3). Although special-
ist 3 generally rated all segmentations lower than specialists 1
and 2, the relative trend in ratings was similar among all 3 spe-
cialists (Figure 2). The full breakdown of ratings is provided
in eTables 5 and 6 in the Supplement. The Krippendorff α for
testing agreement between specialists was 0.57 (95% CI, 0.52-
0.62) for ranking and 0.36 (95% CI, 0.30-0.41) for rating.

For both qualitative tasks, the model was ranked and rated
highest in the Heidelberg-DME subgroup, followed by the
Topcon-DME group. In these subgroups, expert gradings were
rated least positively. The contrary was found for AMD
subgroups: the model was ranked third most often in the

Table. Data Set Characteristicsa

Characteristic

Set 1 Set 2
Topcon (3D
OCT-2000) Topcon (3D OCT-2000) Heidelberg (Spectralis OCT)

Condition Wet AMD Wet AMD DME Wet AMD DME

Features segmented IRF, SRF, PEDb IRF, SRF,
SHRM, PED

IRF, SRF IRF, SRF,
SHRM, PED

IRF, SRF

Total No. of OCT volumes 15 46 42 46 (19 with 49
B-scans, 27 with
25 B-scans)

24 (7 with 49
B-scans, 17 with
25 B-scans)

Sex, %

Female 47 59 55 50 50

Male 53 41 45 50 50

Age, mean (SD), y 75 (10) NC NC NC NC

No. of OCT volumes

First presentation
(treatment-naive)

15 16 14 20 10

After first treatment

3 mo 0 15 15 14 8

12 mo 0 15 13 12 6

Total No. of B-scans

Requiring assessment,
mean (SD)

1920 (128) 5888 (128) 5376 (128) 1606 (35) 768 (32)

With features manually
segmented, counting both
graders (mean [SD]
per grader volume)

3002
(100 [24])

6062
(66 [23])

5350
(64 [29])

2133 (23 [13]) 880 (18 [13])

Mean time taken per grader
to manually segment
a volume, h

50 7c

Abbreviations: AMD, age-related
macular degeneration; DME, diabetic
macular edema; IRF, intraretinal fluid;
NC, not collected; OCT, optical
coherence tomography;
PED, pigment epithelial detachment;
SHRM, subretinal hyperreflective
material; SRF, subretinal fluid.
a Scans were obtained using the 3D

OCT-2000 device from Topcon
Corporation (Topcon) and the
Spectralis device from Heidelberg
Engineering GmbH (Heidelberg) for
wet AMD and DME.

b Graders were asked to segment PED
in 13 of 15 volumes in this pilot set of
scans.

c Mean time for the entirety of set 2.

Figure 1. Examples of Segmentations of Optical Coherence Tomography (OCT)

OCT B-scanA First expert gradingB Second expert gradingC Model segmentationD

Pigment epithelial detachment
Intraretinal fluid

B-scan 23/49

Scans are from set 2, using the Spectralis OCT device (Heidelberg Engineering GmbH) for wet age-related macular degeneration (AMD). For AMD scans, as many as
4 features were segmented: intraretinal fluid, subretinal fluid, subretinal hyperreflective material, and pigment epithelial detachment. The Video shows the whole
volume segmentation.
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Heidelberg-AMD set, and better or comparable in 24 of 46 scans
(52%; 95% CI, 38%-66%) scans. A neutral or positive rating
was given to 29 of 46 model segmentations (63%; 95% CI, 49%-
75%). A greater proportion of model segmentations were
ranked and rated higher in set 2 for Topcon-AMD (87%;
95% CI, 74%-94%) compared with set 1 (53%; 95% CI, 30%-
75%), although the latter consisted of fewer scans. Expert
gradings were rated neutral or positive in more than 90%
of scans in each AMD subgroup.

eFigures 3 to 5 in the Supplement present examples of
success cases where the model was rated 4 or 5 and/or
ranked first compared with expert gradings. eFigures 7 to
10 in the Supplement are examples of model failure cases
that were qualitatively rated poorly compared with expert
gradings. Specialists were not always in consensus; eFigures
11 and 12 in the Supplement provide examples of substantial
disagreements.

Quantifying Segmented Feature Volumes
Compared with expert graders, the model segmented greater
volumes of IRF (mean difference, −0.16 mm3), comparable vol-
umes of SRF and SHRM (mean differences, 0.01 and 0.002

mm3, respectively), and lower volumes of PED (mean differ-
ence, 0.14 mm3). For all segmented features, both linear and
logarithmic limits of agreement were wider for model-grader
agreement (Figure 3) compared with intergrader agreement
(eFigure 14 in the Supplement).

Cases outside both conventional and log-transformed
limits of agreement for IRF were almost all DME cases, par-
ticularly when the model segmented more fluid than the
graders. Conversely, outliers for SHRM and PED were where
the model had segmented less than the mean volume seg-
mented by the expert graders. Similar numbers of outliers
were seen on either side of the limits of agreement for SRF;
however, the largest outliers were where the volume seg-
mented by the model was greater than that segmented by
the expert graders. Outliers were a mixture of model suc-
cesses, model failures, and ambiguous cases (eFigures 3-10
in the Supplement).

Pairwise ICCs were highest for set 1, ranging from 0.90
(95% CI, 0.75-0.99) to 0.99 (95% CI, 0.90-1.00) for inter-
grader agreement and from 0.93 (95% CI, 0.85-0.99) to 1.00
(95% CI, 0.84-1.00) for model-grader agreement for the 3
segmented features (eTables 7 and 8 in the Supplement).

Figure 2. Diverging Stacked Bar Charts Showing Distribution of the Likert Ratings of the Segmentations Given to the Expert Gradings
and to the Model

Set 2
Heidelberg-AMD (n = 46)

Set 2
Heidelberg-DME (n = 24)

Set 2
Topcon-DME (n = 42)

Set 2
Topcon-AMD (n = 46)

Set 1
Topcon-AMD (n = 15)

All scans (n = 173)

Retinal specialist Likert rating distribution, %
1007550250100 75 50 25

Strongly
disagree

Disagree Neither agree
nor disagree

Agree Strongly
agree

S1

S2

S2

S2

S2

S2

S2

S3

S1

S3

S1

S3

S1

S3

S1

S3

S1

S3

Specialist
Set 2

Heidelberg-AMD (n = 92)

Set 2
Heidelberg-DME (n = 48)

Set 2
Topcon-DME (n = 84)

Set 2
Topcon-AMD (n = 92)

Set 1
Topcon-AMD (n = 30)

All scans (n = 346)

Retinal specialist Likert rating distribution, %

ModelA All gradersB

1007550250100 75 50 25

S1

S3

S1

S1

S3

S1

S2

S2

S2

S2

S2

S2

S3

S3

S1

S3

S1

S3

Specialist

The distribution is shown for all scans and per subset for the statement “I would be satisfied to use this segmentation within my clinical practice.” Each bar
represents ratings given by an individual specialist (S1, S2, and S3). Specialists selected a single point on the Likert scale. The bars are centered on the neutral
rating, with negative ratings stacked to the left and positive ratings stacked to the right.
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The ICCs were lowest for IRF in the Topcon-DME (0.33;
95% CI, 0.22-0.63) and Heidelberg-DME (0.31; 95% CI, 0.17-
0.48) subgroups. Overall, model-grader ICCs ranged from
0.33 (95% CI, 0.08-0.96) for SHRM to 0.96 (95% CI, 0.90-
0.99) for SRF.

Similarity of Segmentations Between Experts and Model
Intraretinal fluid was present in both expert gradings and the
model prediction in 121 of 173 scans (70%); SRF, in 67 of 173
scans (39%); SHRM, in 32 of 92 scans (35%); and PED, in 105
of 105 scans (100%) (eFigure 15 in the Supplement). There
was no consensus on presence or absence of IRF in 42 of 173
scans (24%), SRF in 37 of 173 scans (21%), and SHRM in 37 of
92 scans (40%).

Across all the scans, SRF had the highest DSCs for both
intergrader (0.80 [95% CI, 0.66-0.87]) and model-grader

comparison (0.78 [95% CI, 0.57-0.85]), whereas IRF had the
lowest DSCs (0.56 [95% CI, 0.40-0.69] and 0.43 [95% CI,
0.29-0.66], respectively). Similar patterns were found
within each subset (Figure 4 and eTable 9 in the Supple-
ment). There were too few DME scans with SRF present
to make reliable conclusions for this feature. Of the
subgroups, DSCs were consistently highest among seg-
mented features for set 1, for both intergrader and model-
grader comparisons. As intergrader DSC increased, model-
grader DSC also increased (eFigure 16 in the Supplement).
Mean manually segmented volumes were calculated
and bucketed by quartiles. Median DSC increased as mean
volume quartile increased for all 4 features (eFigure 17
in the Supplement). The DSCs stratified by severity and
time point are presented in eTable 10 and eFigure 18 in
the Supplement.

Figure 3. Bland-Altman Plots Comparing Volumes of Individual Features Segmented Between the Model and Grader
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Discussion

In this diagnostic study, we evaluated the clinical applicabil-
ity of a deep learning model to segment clinically relevant

pathology in a comprehensive external validation data set
of real-world OCT scans, covering a wide range of different dis-
ease severities and treatment points. We compared model seg-
mentations with carefully adjudicated expert gradings per-
formed at a specialist reading center and rigorously evaluated

Figure 4. Distribution of Dice Similarity Coefficients (DSCs) for All Optical Coherence Tomographic (OCT) Scans
and Stratified by Data Set Subgroup
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quantitative agreement through both volumetric and spatial
methods. Quantifying pathology through segmentation un-
locks a wealth of novel information within OCT scans, but hu-
man segmentation is not feasible in practice owing to the vast
time requirements to label even a single scan. Deep learning
provides a route to consistent segmentation on a massive
scale, potentially enabling new forms of disease manage-
ment, clinical trial analysis, and scientific discovery.

We investigated the potential clinical applicability of the
segmentations through an independent qualitative evalua-
tion by 3 experienced retinal specialists and compared this
with quantitative volumetric and 3-D geometric measures of
agreement. We found that the model segmentations ranked at
least as well as 1 expert grader’s segmentation in three-
quarters of scans; however, 14% of model segmentations were
considered worse than both expert gradings. Qualitatively, DME
sets had the greatest proportion of first rankings and positive
Likert scores for the model compared with the expert grad-
ers. However, from quantitative metrics alone, the model
appears to have performed inferiorly to the experts in these
sets. We observed numerous examples in which cases with
lower quantitative agreement were still judged as clinically
acceptable. We conclude that qualitative assessment of clini-
cal applicability is essential and that quantitative evaluation
alone is not sufficient.

The highest intergrader and model-grader DSCs and ICCs
were achieved for set 1. These gradings were exhaustively
segmented, taking a mean of 50 hours per volume. In related
work, models developed and evaluated on single 2-D sec-
tions have achieved higher DSCs, where exhaustive grading
can be performed more feasibly.27,28 Other reasons for higher
DSCs in related work may be owing to a lack of independence
of scans between the development and evaluation set,29 and
the derivation of ground truth labels from the model being
evaluated.30 Our study used a pool of 6 graders, all blinded to
model predictions, with 2 graders segmenting each OCT vol-
ume. This provided multiple clinical interpretations result-
ing in the ability to benchmark the model against the natural,
rich variation seen in clinical practice. Importantly, our data
set did not overlap with the development set.

To be clinically applicable, it is important to test the ro-
bustness of the segmentation model when applied to images
of different diseases, or from different device manufacturers.
To do this, we used a representative data set of OCT images of
2 commonly treated retinal diseases of varying severities and
points during treatment and from 2 widely used OCT scan-
ners with fundamental differences in quality and resolution.
Furthermore, the image quality inclusion criteria were broad:
all scans were from real-world practice, excluding only 3 vol-
umes where relevant features could not be delineated. The dif-
ference in performance between devices and diseases may be
explained by the amount of data used to train the segmenta-
tion model, which included sparsely segmented B-scans of 877
Topcon OCTs and only 152 Heidelberg OCTs.19 Multiple groups
have reported promising segmentation results using the
RETOUCH (Retinal OCT Fluid Detection and Segmentation
Benchmark and Challenge) test set comprising 14 volumes that
are representative of multiple diseases and devices31; how-

ever, the set was too small to capture performance on differ-
ent subsets.15,32 In our study, we observed substantial vari-
ability in performance among devices, diseases, and features.

Each retinal pathological feature has an individual role in
functional and anatomical prognosis.33-37 Deep learning has
facilitated automated analysis of these at scale for AMD38 and
DME,17 and we show that each feature poses different chal-
lenges. Intraretinal fluid can be difficult to manually delin-
eate owing to suboptimal resolution or contrast of the im-
ages, which reduces clarity of cystoid boundaries, especially
in the presence of retinal thickening, common in DME. Sub-
retinal fluid presented the strongest DSC and ICC and is sim-
plest to delineate owing to high contrast between SRF and
surrounding tissues. Subretinal hyperreflective material can
be challenging owing to heterogeneous reflectivity and unde-
fined margins and a distribution that is often mixed with other
pathological features, including SRF and PED.

Limitations
This study has some limitations. A fundamental challenge
for quantitative validation of deep learning–based segmenta-
tion tools is the imperfection of human-based reference stan-
dards. Two expert segmentations of the same OCT can vary
considerably owing to alternative interpretations, whereas the
clinical applicability of each may be equivalent. Severe pa-
thology can be morphologically complex, making it difficult
to be certain of underlying processes and features. For ex-
ample, retinal specialists have low sensitivity for the binary
detection task of fluid presence, more so for IRF than SRF.10

Therefore, simple binary detection models may help to en-
sure that abnormalities are not missed. In addition, volumet-
ric estimation of fluid could help with objectively determin-
ing disease activity, especially in AMD, in which treatment
decisions and follow-up intervals are guided by subjective
interpretation. In DME, the presence of certain thresholds of
fluid could be clinically useful to determine whether edema
is substantial enough to warrant treatment.

Another limitation is the sheer scale of the OCT segmen-
tation task. Each Topcon OCT scan consisted of nearly 60 mil-
lion voxels. It is therefore unsurprising that DSC increased as
the mean segmented volume increased for all pathological
features, because the likelihood of overlap increases when
more voxels are segmented. This presents a limitation of the
DSC metric to compare segmentations owing to its sensitivity
to small volumes and where a feature is segmented in one
annotation but absent in another. This has been observed in
other studies, including segmentation of brain lesions on
computed tomography39 and magnetic resonance imaging.40

Conclusions
This diagnostic study evaluated the clinical applicability of a
deep learning system to quantify volumes of clinically rel-
evant pathology in OCT scans in AMD and DME that would
otherwise be infeasible to obtain. Segmentations were
acceptable to specialists in most cases, and qualitative
evaluation provided valuable insights in addition to more
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traditional quantitative analysis. This tool has already
advanced the understanding of the anatomical characteris-
tics in AMD38,41 and in the future may provide novel quanti-
tative end points for clinical trials to enable in-depth analy-

sis. Automated segmentation systems offer the potential to
transform clinical workflows; however, further research is
needed to directly assess their utility for disease monitoring
and management.
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