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Abstract. Critical decisions, such as in domains ranging from medicine to finance, are often 41 

made under threatening circumstances that elicit stress and anxiety. The negative effects of 42 

such reactions on learning and decision-making have been repeatedly underscored. In contrast, 43 

here we show that perceived threat alters the process by which evidence is accumulated in a 44 

way that may be adaptive. Participants (n = 91) completed a sequential evidence sampling task 45 

in which they were incentivized to accurately judge whether they were in a desirable state, 46 

which was associated with greater rewards than losses, or an undesirable state, which was 47 

associated with greater losses than rewards. Prior to the task participants in the ‘threat group’ 48 

experienced a social-threat manipulation. Results show that perceived threat led to a reduction 49 

in the strength of evidence required to reach an undesirable judgement. Computational 50 

modelling revealed this was due to an increase in the relative rate by which negative 51 

information was accumulated. The effect of the threat manipulation was global, as the 52 

alteration to evidence accumulation was observed for information which was not directly 53 

related to the cause of the threat. Requiring weaker evidence to reach undesirable conclusions 54 

in threatening environments may be adaptive as it can lead to increased precautionary action.  55 

 56 

Keywords: Threat, Anxiety, Stress, Evidence Accumulation, Valence, Sequential Sampling 57 

 58 

  59 
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Significant Statement 60 

To make good judgments people gather information. As information is often unlimited a 61 

decision has to be made as to when the data is sufficiently strong to reach a conclusion. Here, 62 

we show that this decision is significantly influenced by perceived threat. In particular under 63 

threat the rate of negative information accumulation increased, such that weaker evidence was 64 

required to reach an undesirable conclusion. Such modulation could be adaptive as it can result 65 

in enhanced cautious behavior in dangerous environments.  66 

 67 

  68 
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Many important decisions are made when people feel stressed and anxious (Beilock, 2010). 69 

Consider a doctor in the operating theatre who needs to decide on the best course of action, a 70 

soldier on the battlefield who must decide whether to attack, or a driver stuck in traffic 71 

selecting which route to take. Whether calm or stressed, to make good decisions people need 72 

to gather information over time (Platt & Glimcher, 1999; Usher & McClelland, 2001). For 73 

example, a doctor may decide to consult multiple colleagues before deciding to amputate. 74 

Because information can be unlimited, an agent needs to determine when the available data is 75 

strong enough to make a judgement (Gluth et al., 2012, 2013). Here, we examine how 76 

perceived threat impacts the process by which evidence is accumulated to reach a judgement.  77 

 78 

A feature of threatening environments is that the potential for adverse outcomes is high. In 79 

these instances, it is adaptive to err on the side of caution. For example, imagine you are 80 

walking through a dark alley and hear a ‘pop’. The sound may be a gunshot or perhaps 81 

uncorking of a champagne bottle. Interpreting the sound as the former will cause you to escape 82 

and mitigate potential risk. Thus, under perceived threat it may be adaptive to interpret a 83 

stimulus as undesirable even if the strength of the evidence supporting such judgement is only 84 

limited. The psychophysiological reaction induced by threat can provide a global, rather than 85 

specific, danger signal. We thus hypothesized that the effects of threat on evidence 86 

accumulation may be observed even when the source of the threat is unrelated to the decision 87 

at hand (e.g., a psychophysiological reaction triggered by a professional conflict may impact 88 

how the ‘pop’ is interpreted). 89 

 90 
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Computationally, this process may occur in at least two ways. First, under perceived threat 91 

people may be predisposed towards undesirable judgments before attaining any information 92 

(e.g., you may believe the road you are walking down is dangerous before observing any 93 

evidence to that effect). A second, not mutually exclusive possibility, is that under perceived 94 

threat an undesirable piece of evidence (e.g., an anxious looking man walking down the road) 95 

drives beliefs towards an undesirable judgment (‘this road is dangerous’), more so than a 96 

desirable piece of evidence (e.g., people are walking past you relaxed and happy) towards a 97 

desirable judgment (‘this road is safe’). These two distinct mechanisms will result in the same 98 

observable behavior. In particular, weaker evidence will be needed to support undesirable 99 

judgments under perceived threat.  100 

 101 

To tease apart these mechanisms, we used a sequential sampling model to model noisy 102 

evidence accumulation towards either of two judgment thresholds (Ratcliff, 1978; Ratcliff & 103 

Rouder, 1998; Voss et al., 2013). The model allows estimation of both (i) starting point and (ii) 104 

rate of evidence accumulation, reflecting the quality of information processing. We can then 105 

measure whether either of these factors are influenced by the desirability of a judgement and 106 

how this is influenced by perceived threat.  107 

 108 

We exposed participants to an acute threat manipulation in the lab (Garrett et al., 2018), or a 109 

control condition, and then asked them to complete an evidence accumulation task (Gesiarz et 110 

al., 2019) that was unrelated to the cause of the threat. In the task, participants witness various 111 

stimuli that are contingent upon which one of two hidden states they are in. One state was 112 
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associated with greater rewards than losses (desirable state) and the other with greater losses 113 

than rewards (undesirable state). Participants had no control over which state they were in; 114 

their task was simply to judge the state, gaining additional rewards for accurate judgments and 115 

losing rewards for inaccurate judgments. Thus, it is in participants’ interest to be as accurate as 116 

possible. They were allowed to accumulate as much evidence as they wished before making a 117 

judgment. We examine if and how perceived threat impacts the accumulation of evidence 118 

towards a judgement. 119 

 120 

Methods.  121 

Experimental Design. 122 

Participants. A total of 91 individuals participated in this study at two sites: University College 123 

London (UCL, N = 51) and Massachusetts Institute of Technology (MIT, N = 40). They were 124 

recruited via the participant pools of UCL and MIT. All analyses were repeated separately for 125 

participants tested in the two different locations (MIT, UCL). There were no differences 126 

between locations in any of our results including model-free analysis, psychometric equations 127 

or DDM analysis.  128 

 129 

Participants gave written, informed consent and were remunerated £7.50/$15 for their 130 

participation plus an unspecified performance-related bonus. Ethical approval was provided by 131 

the Research Ethics Committees at UCL and MIT. One participant who terminated the 132 

experiment early and another who failed all comprehension checks were excluded from the 133 

analysis. In addition, we followed the exclusion criteria previously published for this task 134 
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(Gesiarz et al., 2019): we excluded two participants whose accuracy rate was below chance 135 

(50%) and four who provided responses based only on the first stimulus in over half the trials. 136 

Thus, data of 83 participants was included in the analysis (Mage = 30.29., SDAge = 12.20; 37 137 

females, 46 males, 43 at UCL and 40 at MIT). Each participant was randomly assigned to either 138 

the threat manipulation group (N = 40, Mage = 28.98, SDAge = 11; 14 females, 26 males, 21 at UCL 139 

and 19 at MIT) or the control group (N = 43, Mage = 31.51, SDAge = 13.23; 23 females, 20 males, 140 

22 at UCL and 21 at MIT). 141 

 142 

Manipulation procedure and Manipulation Check. We followed the exact same threat 143 

manipulation as in Garrett et al. (2018). Participants assigned to the threat manipulation group 144 

were informed that at the end of the experiment they would be required to deliver a speech on 145 

a surprise topic, which would be recorded on video and judged live by a panel of staff 146 

members. They were shown an adjacent room where chairs and tables were already organized 147 

for the panel. This manipulation is a variation of the Trier Social Stress Test (TSST; Birkett, 2011) 148 

with the key difference being that participants in this task were threatened by the possibility of 149 

a stressful social event and completed the main task under anticipation of the threat, but the 150 

threat was never executed. Having the participants believe the threatening event will take 151 

place at the end of the task, rather than before, increased the likelihood that participants’ 152 

anxiety levels remained high throughout the task. In addition, participants were presented with 153 

six difficult mathematical problems that they were asked to try and solve in 30 s. The exact 154 

same manipulation procedure previously executed in our lab, has been shown to significantly 155 

heighten cortisol levels, skin conductance and self-reported state anxiety (Garrett et al., 2018). 156 
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We have also shown that the manipulation-induced changes in self-reported state anxiety 157 

(measured using the Spielberger State Trait Anxiety Inventory) correlated across participants 158 

with physiological indicators of stress (Garrett et al., 2018). 159 

 160 

Participants assigned to the control group were informed that at the end of the experiment 161 

they would be required to write a short essay on a surprise topic, which would not be judged. 162 

They were then presented with six elementary mathematical problems to solve in 30 s. This 163 

control manipulation has been shown not to heighten cortisol levels, skin conductance and self-164 

reported state anxiety (Garrett et al., 2018). As a manipulation check, before and after the 165 

induction procedure, we asked participants to complete the Spielberger State Trait Anxiety 166 

Inventory (STAI, Marteau & Bekker, 1992) as a measure of anxiety. 167 

 168 

Behavioral Task. After completing the threat/control manipulation, participants played 80 trials 169 

of the “Factory Game” , published previously by Gesiarz et al., (2019). On each trial participants 170 

witnessed an animated sequence of televisions and telephones passing along a conveyor belt. 171 

There were two types of trials: Telephone Factory trials and Television Factory trials. In 172 

telephone factory trials the probability of each item in the animated sequence being a 173 

telephone was 0.6 and of being a television 0.4. For Television Factory trials the proportions 174 

were reversed. The trial type was randomly determined with replacement on every trial with an 175 

equal probability for each trial type. Participants were tasked with judging whether they were 176 

in a Telephone Factory trial or a Television Factory trial. Since the trial type was not directly 177 

observable, their means of doing this was through reverse inference over the sequence of 178 
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objects they were seeing. Participants were free to respond as soon as they wished after 179 

initiating the trial and the sequence would continue until they made their choice.  180 

 181 

Participants began the game with an endowment of 5000 points. Each 100 points was worth 1 182 

pence/1cent. One of the two factory types was randomly assigned per participant to be the 183 

desirable factory type and the other to be an undesirable type. Participants were informed that 184 

each time they visited the desirable factory (desirable state), they would win points, and each 185 

time they visited the undesirable factory (undesirable state), they would lose points. We did not 186 

specify the exact number of points they will win or lose. Crucially, this bonus was entirely 187 

outside of the participants’ control, i.e., it was not affected by the judgments the participants 188 

made. Separately, participants were informed that they would earn an unspecified number of 189 

points for making a correct judgment and lose an unspecified number of points for making an 190 

incorrect judgment. We informed subjects that the magnitude of each unspecified bonus/loss 191 

were independent of each other, potentially unequal and varied randomly on each trial.  192 

 193 

The task was the same as published previously (Gesiarz et al., 2019), except that we jittered the 194 

presentation time of the stimuli, so that participants were less likely to have a clear expectation 195 

of when the next stimulus would be observed. Due to a technical error this jitter was slightly 196 

different across sites (average stimuli presentation time at UCL: 657.28ms, SD = 1060.73ms; 197 

MIT: 373.65ms, SD = 49.69ms). The lag between stimuli was ~150 ms.  198 

 199 
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Trials in which participants made their judgment before observing the second object were 200 

removed. In cases where a participant did this in over half their trials, we assumed that the 201 

participant was not appropriately engaging with the task and eliminated the entirety of their 202 

trials. Following Gesiarz et al., (2019) we dropped four participants for this reason, as well as a 203 

further 72 responses made before seeing the second item.  204 

 205 

Training. Prior to playing the task, participants received extensive instructions and were 206 

required to answer multiple-choice comprehension check questions on the key points of the 207 

task, with the question repeated until they either chose correctly or failed three times, upon 208 

which the correct answer was displayed. The comprehension check questions addressed the 209 

following key points of how the game worked: that telephone factories mostly produced 210 

telephones, but sometimes produced televisions; the bonus for visiting desirable factories was 211 

independent of the judgments they made; which factory was their desirable factory; and that 212 

trial types (i.e., if they were in a TV or phone factory) were randomly determined and it was not 213 

guaranteed that they would see exactly the same amount of each type of factory. Participants 214 

then played a practice session of 20 trials, where the trial type was visibly displayed to them 215 

(i.e., if they were in a TV or phone factory), so they could have prior experience of the outcome 216 

contingencies and the trial type distribution.  217 

 218 

[insert Figure 1 here] 219 

 220 

Statistical Analysis.  221 
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Manipulation Check. An independent two-tailed t-test was computed to assess the difference 222 

in percentage change in STAI ((post STAI- pre STAI)/pre STAI) between the threat and control 223 

group. One-sample t-tests were computed to assess percentage change against zero within 224 

each group. 225 

 226 

Psychometric Function. We followed the same analysis as in Gesiarz et al., (2019) to relate 227 

participants’ judgments to the strength of evidence they observed. We fitted a psychometric 228 

function, using a generalized mixed effects equivalent of a logistic regression, with fixed and 229 

random effects for all independent variables. We fitted these functions separately for 230 

participants for whom TV factory was desirable and for whom TV factory was undesirable, and 231 

separately for each group (control, threat). 232 

𝑃(𝑇𝑉) =
1

1 + 𝑒−(𝛽1𝑋−𝛽0)
 

Where P(TV) is the probability of a participant indicating they are in a TV factory; X is the 233 

proportion of TV stimuli out of all stimuli observed in a trial. This variable was centered, thus 234 

ranging from 0.5 when all samples were TVs to -0.5 when all samples were phones; β0 is the 235 

indifference point – reflecting the proportion of TVs required to respond TV 50% of the time. If 236 

β0 = 0, participants would indicate they are in a TV factory half the time when half the samples 237 

were TVs. When β0 is low the function will move left and vice versa; β1 is the slope, reflecting 238 

by how much the probability of a participant indicating they are in a TV factory increases when 239 

the proportion of TVs increases by one unit. 240 

 241 
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Drift-diffusion modelling. Our aim in modelling our task using the drift-diffusion framework 242 

was to assess how perceived threat impacted the evidence accumulation process. In particular, 243 

we wanted to assess 1) whether the evidence accumulation process in the threat and control 244 

groups was best represented by the same model or a different model, and 2) whether 245 

perceived threat impacted the parameters of the evidence accumulation process in our data.  246 

 247 

We implemented and compared four different specifications of a DDM (see Table 1). The 248 

models included the following parameters: (1) t0—amount of non-accumulation/non-decision 249 

time; (2) α —distance between decision thresholds; (3) z—starting point of the accumulation 250 

process; and (4) v–drift rate - is the rate of evidence accumulation. Crucially, in models 1 and 3 251 

the starting point was fixed to 0.5, while in models 2, 4 we allowed the starting point to vary 252 

towards one threshold (its value could vary between 0 and 1, thus allowing a valence-253 

dependent starting point bias). In models 1,2 with an unbiased drift rate, the parameter was 254 

symmetric for desirable and undesirable factories (v and -v). In models 3,4 we allowed the drift 255 

rate to vary (which we call a valence-dependent drift rate bias) depending upon whether the 256 

participant was visiting a desirable factory or an undesirable factory (thus allowing a process 257 

bias). In these models we included a term reflecting the difference between drift rates for 258 

desirable and undesirable factories (β1factory desirability). “Factory desirability”—is the true 259 

factory visited coded as 1 for desirable factories and 0 for undesirable factories. Positive values 260 

indicated a bias towards desirable judgements, and negative values indicated a bias towards 261 

undesirable judgements. β0 is a constant for the drift rate.  262 

 263 
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[insert Table 1 here] 264 

 265 

We used the HDDM software toolbox (Wiecki, Sofer, & Frank, 2013) to estimate the parameters 266 

of our models. The HDDM package employs hierarchical Bayesian parameter estimation, using 267 

Markov chain Monte Carlo (MCMC) methods to sample the posterior probability density 268 

distributions for the estimated parameter values. We estimated both group-level parameters as 269 

well as parameters for each individual participant. Parameters for individual participants were 270 

assumed to be randomly drawn from a group-level distribution. Participants’ parameters both 271 

contributed to and were constrained by the estimates of group-level parameters. In fitting the 272 

models, we used priors that assigned equal probability to all possible values of the parameters. 273 

Models were fit to log-transformed RTs as done previously (Gesiarz et al., 2019), because RTs 274 

were non-normally distributed and had a heavy positive skew. Also, since our “error” RT 275 

distribution included relatively fast errors we included an inter-trial starting point parameter 276 

(sz) for both models to improve model fit (Ratcliff & Rouder, 1998). We sampled 20000 times 277 

from the posteriors, discarding the first 5000 as burn in and thinning set at 5. MCMC are 278 

guaranteed to reliably approximate the target posterior density as the number of samples 279 

approaches infinity. To test if the MCMC converged within the allotted time, we used Gelman-280 

Rubin statistic (Rubin & Gelman, 1992) on 5 chains of our sampling procedure. The Gelman–281 

Rubin diagnostic evaluates MCMC convergence by analyzing the difference between multiple 282 

Markov chains. The convergence is assessed by comparing the estimated between-chains and 283 

within-chain variances for each model parameter. In each case, the Gelman-Rubin statistic was 284 

close to one (<1.1), suggesting that MCMC were able to converge. To assess if the parameters 285 
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describing the bias in prior and drift rate are significantly different in the control and threat 286 

group, we compared 95% confidence intervals of the parameters’ values. In addition, model fits 287 

were compared using the Deviance information criterion (Spiegelhalter et al., 2002), which is a 288 

generalization of the Akaike Information Criterion (AIC) for hierarchical models. The DIC is 289 

commonly used when the posterior distributions of the models have been obtained by Markov 290 

chain Monte Carlo (MCMC) simulation (Gamerman & Lopes, 2006). It allows one to assess the 291 

goodness of fit, while penalizing for model complexity. 292 

 293 

To validate the winning model, we used each group’s parameters obtained from participants’ 294 

data to simulate log RTs and judgments separately for the threat and control group. We used 295 

the exact number of subjects, total number of trials and trial structure as in the experiment. 296 

Simulated data was then used to (i) perform model recovery analysis and (ii) to compare the 297 

pattern of participants’ response to the pattern of simulated responses, separately for each 298 

group. We sampled 2000 times from the posteriors, discarding the first 500 as burn in. 299 

Simulation and model recovery analysis were performed using the HDDM software toolbox 300 

(Wiecki et al., 2013). 301 

 302 

Proportion of correctly identified factories. We computed a linear mixed effects model to 303 

assess how group (control/threat) and valence of factory visited (desirable factory/undesirable 304 

factory) affected proportion of correctly identified factories as desirable or undesirable. Group, 305 

valence of factory, and group*valence of factory interaction were included as fixed and random 306 
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variables. We included both fixed and random intercepts. We compared the pattern of results 307 

obtained from participants’ real data to those obtained from the simulated data.  308 

 309 

Results.  310 

Threat manipulation was successful. The manipulation was successful in inducing perceived 311 

threat. Participants in the threat group reported a significantly higher increase in anxiety as a 312 

result of the manipulation (increase in STAI score after the manipulation relative to before M = 313 

40.82%, SD = 37.49, t(39) = 6.89, p<0.001), compared to those in the control group, who in fact 314 

showed a reduction in anxiety (M = -5.74%, SD = 8.24, t(42) = -4.57, p<0.001, difference 315 

between the two groups: t(82) = -7.94, p<0.001, d’ = 1.715, Figure 2) an effect often observed 316 

in control participants, who tend to relax as they learn more about the task at hand (Garrett et 317 

al., 2018). 318 

 319 

[insert Figure 2 here] 320 

 321 

Under threat participants required weaker evidence to conclude they are in an undesirable 322 

factory. We first examined whether perceived threat alters the strength of evidence 323 

participants require to make desirable and undesirable judgements. To that end, we fit a 324 

psychometric function to the data which relates the percentage of TVs observed on a trial (i.e., 325 

the strength of the evidence to judge a factory as TV) to participants’ judgment on whether 326 

they are visiting a TV or telephone factory. This was done separately for participants for whom 327 

the TV factory was desirable and for whom it was undesirable in the threat and control group.  328 
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 329 

As observed in Figure 3a, under perceived threat the psychometric function of participants for 330 

whom the TV factory was undesirable (solid orange line) was shifted left compared to controls 331 

(dotted orange line). This means that compared to control, under threat participants required a 332 

smaller proportion of TVs to be observed before reaching the conclusion that they were in a TV 333 

factory when the TV factory was undesirable (indifference parameter was higher for the threat 334 

group: β0 = 0.11, 95% CI [-0.19, 0.41], than controls: β0 = -0.58, 95% CI [-0.96, -0.20], d’ = 0.61, 335 

Figure 3a). No such difference is observed when the TV factory is desirable; participants in both 336 

groups require an equal proportion of TVs to be observed before reaching the conclusion that 337 

they were in a TV factory. This can be seen in Figure 3b where the psychometric function for 338 

threat and control participants overlap (indifference parameter was not different for the threat 339 

group: β0 = 0.28, 95% CI [-0.07, 0.62] and control group: β0 = 0.23, 95% CI [-0.08, 0.53], d’ = 340 

0.045, Figure 3b).  341 

 342 

While controls required weaker evidence to conclude they were in a desirable factory than 343 

undesirable factory (replicating previous findings - Gesiarz et al., 2019), the difference was 344 

abolished under perceived threat. This can be observed where the psychometric function of 345 

control participants for whom the TV factory was desirable (dotted blue line, Figure 3c) is 346 

shifted to the left of control participants for whom the TV factory was undesirable (dotted 347 

orange line, Figure 3c) (indifference parameter was greater for desirable factory: β0 = 0.23, 95% 348 

CI [-0.08, 0.53] than undesirable: β0 = -0.58, 95% CI [-0.96, -0.20], d’ = 0.694, Figure 3c), while 349 

for participants in the threat group they overlap (indifference parameter when the TV factory 350 
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was desirable β0 = 0.28, 95% CI [-0.07, 0.62] and undesirable β0 = 0.11, 95% CI [-0.19, 0.41], d’ 351 

= 0.157, Figure 3d).  352 

 353 

As expected, both in the threat and control group the greater the proportion of TVs in a trial 354 

the more likely participants were to judge the factory as a TV factory (control: TV factory 355 

desirable: β1 = 25.55, 95% CI [23.20, 27.90], TV factory undesirable: β1 = 24.94 [15.62, 34.26], 356 

d’ = 0.026, Figure 3c; threat: TV factory desirable: β1 = 27.79, 95% CI [19.17, 36.41], TV factory 357 

undesirable: β1 = 23.04, 95% CI [17.31,28.78], d’ = 0.201, Figure 3d). 358 

 359 

[insert Figure 3 here] 360 

 361 

Note, that the total number of pieces of evidence (televisions + telephones) did not differ when 362 

participants reached an undesirable or desirable conclusion (F(1,82.77) = 1.39, p = 0.24), nor did 363 

it differ as a function of perceived threat (F(1,81.95) = 1.24, p = 0.27), neither was there an 364 

interaction between these two factors (F(1,82.77) = 1.66, p = 0.20). Rather, as shown above, it 365 

is the proportion of evidence (which signifies the strength of the evidence) needed to reach a 366 

conclusion that differed as a function of perceived threat and valence.  367 

 368 

Thus far our analysis suggests that perceived threat leads to a reduction in the strength of the 369 

evidence needed to reach undesirable conclusions, even though the cause of the threat 370 

(anticipating a negative social situation) had nothing to do with the task at hand. We next 371 
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sought to identify the precise computational factor affected by perceived threat during 372 

evidence accumulation.  373 

 374 

Under threat the drift rate towards undesirable conclusions is greater. Computationally, there 375 

are at least two different ways by which perceived threat can lower the strength of evidence 376 

needed to reach undesirable conclusions. First, threat may alter the starting point of the 377 

accumulation process. That is, if under perceived threat participants are a-priori more likely to 378 

believe they are in an undesirable state relative to controls than weaker evidence will be 379 

needed to reach that conclusion. Alternatively, perceived threat can enhance the weight given 380 

to each piece of negative evidence relative to control. This again will lead to weaker evidence 381 

needed to reach an undesirable conclusion. 382 

 383 

To tease apart these possibilities we modelled the responses as a drift-diffusion process 384 

(Ratcliff, 1978; Ratcliff & McKoon, 2008; Voss et al., 2013) with the following parameters: (1) 385 

t0—amount of non-accumulation/non-decision time; (2) α —distance between decision 386 

thresholds; (3) z—starting point of the accumulation process; and (4) v–drift rate - is the rate of 387 

evidence accumulation (for details see Methods). Crucially, in models 1 and 3 the starting point 388 

was fixed to 0.5, while in models 2, 4 we allowed the starting point to vary towards one 389 

threshold (thus allowing a starting point bias). In models 3,4 we allowed the drift rate to vary 390 

(which we call a drift rate bias) depending upon whether the participant was visiting a desirable 391 

factory or an undesirable factory (thus allowing a process bias). 392 

 393 
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The Deviance Information Criterion (DIC), a generalization of the Akaike Information Criterion 394 

for hierarchical models, was calculated for each model (Table 2). The DIC scores indicated that 395 

Model 4 (the valence-dependent model), which included a valence-dependent starting point 396 

and drift rate, outperformed all other models for both threat and control groups. As can be 397 

observed in Figure 4, while for the control group the valence-dependent model was clearly a 398 

better fit than the valence-independent model (replicating our previous results Gesiarz et al., 399 

2019), for the threat group the advantage in terms of fit was modest.  400 

 401 

[insert Table 2 here] 402 

 403 

[insert Figure 4 here] 404 

 405 

We next examined which of the accumulation parameters were affected by perceived threat. 406 

As observed in Table 3 and Figure 5, only one element in the accumulation process was 407 

significantly altered by perceived threat: the valence-dependent drift rate bias. The drift rate 408 

bias is the difference in drift rates between desirable and undesirable factories, the greater the 409 

bias the greater the drift rate for desirable factories relative to undesirable ones. As can be 410 

observed in Figure 5e the valence-dependent bias in drift rate in the control group was 411 

significantly greater than in the threat group (control: β1 = 0.17 [0.07, 0.27]; threat: β1 = -0.08 412 

[-0.20, 0.04]). For controls the bias in drift was significantly positive (95% confidence intervals 413 

(CI) do not include zero: β1 = 0.17 [0.07, 0.27]), leading to a drift rate that was more than 414 

double when participants were in the desirable factory (vdesirable = 0.63) than undesirable factory 415 
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(vundesirable = 0.46). In contrast, under perceived threat the bias in drift rate was numerically 416 

negative and not significantly different from zero (95% confidence intervals (CI) include zero: β1 417 

= -0.08 [-0.20, 0.04]), leading to a drift rate that was numerically and non-significantly larger 418 

when participants were in the undesirable factory (vundesirable = 0.63) than desirable factory 419 

(vdesirable = 0.55).   420 

[insert Table 3 here] 421 

 422 

[insert Figure 5 here] 423 

 424 

 425 

We simulated data using group parameters from the threat and control group separately (for 426 

details see Methods). We first examined if the model parameters could be successfully 427 

recovered based on the simulated data. To do so the valence-dependent model was fit to 428 

simulated data, in the same way as for the experimental data. We sampled 2000 times from the 429 

posteriors, discarding the first 500 as burn in. As shown in Table 4 model parameters could be 430 

successfully recovered based on the simulated data. Additionally, we examined if that the 431 

simulated data reproduced the same behavioral pattern of results as the participants’ data. This 432 

was indeed the case (see Figure 6d, detailed explanation below).  433 

 434 

[insert Figure 6 here] 435 

 436 
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[insert Table 4 here] 437 

 438 

As DDM parameters are computed partially based on participants’ judgements we expected the 439 

model-based valence-dependent drift rate bias to correlate across individuals with a valence-440 

dependent bias in judgements. Indeed, across participants there was a strong positive 441 

correlation between valence-dependent drift rate bias and the proportion of correctly 442 

identified desirable factories minus the proportion of correctly identified undesirable factories 443 

(threat group: r = 0.802, p<0.001, Figure 6a, control: r = 0.918, p<0.001, Figure 6a), which we 444 

term ‘valence-dependent judgement bias’. Individuals with greater drift rate towards desirable 445 

than undesirable judgements were more likely to correctly identify desirable factories as 446 

desirable when they observed them than undesirable factories when they observed them. In 447 

contrast, starting point bias did not correlate with a valence-dependent bias in judgements in 448 

the threat group (r = 0.223, p = 0.191), but did in the control group (r = 0.517, p<0.001). In the 449 

latter, a larger starting point bias was related to the proportion of correctly identified desirable 450 

factories minus the proportion of correctly identified undesirable factories (Figure 6b). 451 

 452 

As we have already shown that participants in the control group had a greater drift rate bias 453 

than those under perceived threat, it follows that they will also show greater valence-454 

dependent judgement bias. This is exactly what we found. Entering whether a judgement was 455 

correct (coded as 1 for correct response and 0 for incorrect) on every trial into a mixed linear 456 

model with valence of factory, group and their interaction as fixed and random effects, as well 457 

as fixed and random intercepts revealed a group by valence interaction (F(1,77.46) = 4.67, p = 458 
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0.03, Figure 6c) as well as a main effect of factory valence (F(1,77.46) = 5.96, p = 0.02) and no 459 

main effect of group (F(1,80.77) = 0.02, p = 0.90). To tease apart the interaction we ran the 460 

same linear mixed models as above separately for each group. This revealed an effect of 461 

valence in the control group (F(1,77.87) = 11.06, p = 0.001), where participants were less likely 462 

to correctly categorize undesirable factories (proportion of correctly categorized factories 463 

undesirable factories M = 0.72%, 95% CI [0.68, 0.76]) than desirable factories (proportion of 464 

correctly categorized factories desirable factories: M = 0.80%, 95% CI [0.76, 0.84]. In contrast, 465 

under perceived threat the effect of valence dissappeared (F(1,80.77) = 0.02, p = 0.90); 466 

participants were as likely to correctly categorize undesirable factories (M = 0.77%, 95% CI 467 

[0.73,0.80]) as they were desirable factories (M = 0.76%, 95% CI [0.72, 0.80]). This suggest that 468 

under perceived threat the valence-dependent judgement bias is abolished. 469 

 470 

We conducted the same analysis on our simulated data and find that it nicely reproduced the 471 

behavioral pattern of results (Figure 6d).  472 

 473 

Discussion  474 

The findings show that perceived threat has a profound effect on the process by which 475 

evidence is accumulated. In particular, it leads to a reduction in the strength of the evidence 476 

needed to reach undesirable conclusions. Relative to controls, participants under perceived 477 

threat required a smaller proportion of negative stimuli to be observed before reaching an 478 

undesirable judgement. In contrast, there was no difference between the groups in the 479 

strength of evidence accumulated before reaching a desirable judgement. We found this to be 480 
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true despite the fact that the cause of the threat (anticipating a socially stressful event) was 481 

unrelated to the task performed (judging whether more phones or more TVs were observed). 482 

 483 

Computationally, there are different mechanisms by which perceived threat can lower the 484 

strength of evidence needed to reach undesirable judgements. First, under threat participants 485 

may be a priori more likely to believe they are in an undesirable state relative to controls 486 

leading to weaker evidence needed to reach that conclusion. Another possibility is that 487 

perceived threat can selectively increase the rate of negative information accumulation (drift 488 

rate) relative to control. This again will lead to weaker evidence required to reach an 489 

undesirable judgement. To tease apart these possibilities we modelled the responses as a drift-490 

diffusion process (Ratcliff, 1978; Ratcliff & McKoon, 2008; Voss et al., 2013). We found support 491 

for the latter. Specifically, perceived threat altered only one feature of the accumulation 492 

process: the relative drift rate towards desirable and undesirable judgments (the ‘valence-493 

dependent drift rate bias’). For controls the bias in drift rate was significantly positive – the rate 494 

of information accumulation was greater towards desirable than undesirable conclusions (as 495 

observed before Gesiarz et al., 2019). Under threat, however, the bias disappeared due to the 496 

drift rate towards undesirable judgement increasing.  497 

 498 

The results fit with previous suggestions that perceived threat directs attention towards 499 

negative stimuli (Riaz et al., 2017) and leads to greater impact of such stimuli on belief updating 500 

(Garrett et al., 2018). Indeed, it is possible that the effect of perceived threat on the rate of 501 

negative information accumulation is partially due to increased attention towards negative 502 
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stimuli. The current findings go beyond these previous demonstrations to illuminate the effects 503 

of perceived threat on the process of sequential accumulation and show that weaker evidence 504 

is needed to reach undesirable conclusions under threat.  505 

Here, we show a causal link between perceived threat and evidence accumulation in healthy 506 

individuals. It is interesting, however, to consider how the findings may be related to evidence 507 

accumulation in individuals with affective disorders, as these are often triggered by stressful 508 

events and/or characterized by high anxiety. With regards to individuals with high trait anxiety, 509 

a processing advantage for threatening words has been previously reported (White et al., 510 

2010). While that study was correlational and thus could not determine whether anxiety caused 511 

the changes to drift rate and/or vice versa, our results support the notion that anxiety can in 512 

fact alter the drift rate towards undesirable conclusions, even if the anxiety is short lived rather 513 

than chronic. With regards to individuals with anxiety and mood disorders, one study (Aylward, 514 

et al., 2019) found a lower drift rate towards desirable conclusions compared to healthy 515 

individuals. Interestingly, the latter study did not detect any effects of induced threat, which 516 

may be due to the fact that the task used in that study (as well as in all the above-mentioned 517 

studies) unlike ours, was a non-sequential perceptual decision-making task. The process by 518 

which pieces of evidence are accumulated over time may be especially impacted by perceived 519 

threat. 520 

 521 

Our study suggests that evidence accumulation is a flexible process which quickly adjusts to the 522 

environment. In particular, the findings show that perceived threat leads to a valence-523 

dependent change to the accumulation process, even when information is not directly related 524 
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to the cause of the threat. An increased rate of negative information accumulation can then 525 

enhance the probability of taking precautionary action to avoid aversive consequences. As 526 

aversive outcomes can be more severe and frequent in threatening environments, such 527 

generalization can be, on average, adaptive. However, in individuals who are hypersensitive to 528 

threat and/or falsely perceive situations as threatening, such as those suffering from anxiety 529 

and depression, an increased rate of negative information accumulation could be maladaptive. 530 

This is because such increased rate can produce overly pessimistic predictions, which induce 531 

stress and anxiety further, elevating symptoms. 532 

  533 
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Figure Legends. 593 

 594 

Figure 1. The factory task. In each trial, participants see an animated sequence of televisions and telephones 595 

passing along a conveyor belt. Their task is to accurately determine whether they were in a) a telephone 596 

factory, i.e., a factory that produces telephones most of the time or b) a television factory, i.e., a factory that 597 

produces televisions most of the time. They are incentivized for accuracy and can enter their judgment 598 

whenever they like. Each participant is “invested” in one factory. On trials where they happen to be in that 599 

(desirable) factory they gain points, on trials in which they happen to be in the other (undesirable) factory 600 

they lose points. Notably, this bonus is beyond participants’ control and is not affected by the actual 601 

judgment made. Stimulus presentation time was jittered, so that participants were less likely to have a clear 602 

expectation of when the next stimulus would be observed. Stimulus presentation time on average was ~ 521 603 

ms. The lag between stimuli was on average ~150 ms. 604 

 605 

Figure 2. Threat manipulation was success. Participants in the threat group became significantly more 606 

anxious after the manipulation than in the control group. Data are plotted as box plots for each condition, in 607 

which horizontal lines indicate median values, boxes indicate 25/75% interquartile range and whiskers 608 

indicate 1.5 x interquartile range. Red diamond shape indicates the mean percentage change in STAI per 609 

experimental group. Individuals’ percentage STAI change are shown separately as grey circles. *** p<0.001 610 

 611 

 612 
Figure 3. Under Threat weaker evidence is required to reach undesirable conclusions. Fitted psychometric 613 

function for data of the threat group (solid line) and control group (dotted line). Y axis shows the proportion 614 

of times participants indicated they were in a TV factory as a function of the proportion of TV items they 615 

observed in a trial prior to making a judgment (x axis). In blue is the data of participants for whom the TV 616 

factory was the desirable factory. In orange is the data of participants for whom the TV factory was the 617 

undesirable factory. (a) Compared to control, under perceived threat participants required a smaller 618 
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proportion of TVs to be observed before reaching the conclusion that they were in a TV factory, when the TV 619 

factory was undesirable. This can be seen as the solid line (threat group) is shifted left relative to the dotted 620 

line (control group). (b) No such difference is observed when the TV factory is desirable. (c) Participants in 621 

the control group required a smaller proportion of TVs to be observed before reaching the conclusion that 622 

they were in a TV factory, when the TV factory was desirable than undesirable. This is seen as the blue line 623 

(desirable) is shifted left relative to the orange line (undesirable). (d) This difference is abolished under 624 

perceived threat. Error bars show SEM at given level of proportion of TVs observed (error bars for threat 625 

group are indicated by ‘x’ at the center of the error bar). Grey dashed line indicates point of indifference – 626 

i.e., how much evidence is needed for participants to say ‘TV’ half the time. 627 

 628 

Figure 4. Difference in fit between winning valence-dependent model and valence-independent model as a 629 

function of perceived threat. The Y axis shows the difference in Deviance Information Criterion (DIC) scores 630 

between the valence-independent model and the winning valence-dependent models for the control group 631 

(dark grey) and threat group (light grey).  632 

 633 

Figure 5. Under threat valence-dependent drift rate bias is abolished. Displayed are the posterior 634 

distributions of parameter estimates for the threat group (light grey) and the control group (black). Light 635 

green line indicates 95% CI for the threat group. Dark green line indicates 95% CI for the control group. No 636 

significant difference is observed between groups for estimates of (a) decision threshold (b) non-decision 637 

time (c) starting point (d) drift-rate constant. (e) In contrast, a significant difference is observed for the 638 

valence-dependent drift rate bias. In the control group the bias indicates a significantly larger drift rate 639 

towards the desirable than undesirable conclusion. This bias is corrected for under perceived threat and is 640 

numerically inverse (that is the non-significant bias is negative under perceived threat but significantly 641 

positive for controls). * indicates significant difference between parameters in threat and control group (i.e., 642 

confidence intervals do not overlap). 643 
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 644 

Figure 6. Threat-induced change in valence-dependent drift rate bias is expressed as valence-dependent 645 

changes in proportion of correctly identified factories. (a) A positive relationship is observed between 646 

valence-dependent drift rate bias (Y axis) and valence-dependent bias in proportion of correctly identified 647 

factories (X axis). Individuals with greater drift rate towards desirable than undesirable conclusions are more 648 

likely to correctly categorize desirable than undesirable factories. This is true both for controls (dark grey) 649 

and participants under perceived threat (light grey). For controls the regression line is above that of the 650 

participants in the threat group, which is due to the fact that their drift rate bias is significantly greater. The 651 

regression line for controls is also shifted to the right which indicates significantly greater valence-dependent 652 

judgement bias. (b) By contrast we did not observe a relationship between starting point bias (Y axis) and 653 

valence-dependent bias in proportion of correctly identified factories (X axis) in the threat group (light grey). 654 

A positive correlation was observed in the control group (dark grey). In the control group individuals with a 655 

large starting point bias were more likely to correctly identify desirable than undesirable factories. While the 656 

line for the threat group is above that of the control this not a significant difference is. (c) Controls are less 657 

likely to correctly categorize undesirable factories (orange) than desirable factories (blue), while this is not 658 

the case for participants in the threat group. (d) Simulated Data based on model parameters reproduced 659 

these findings. Data are plotted as box plots for each condition, in which horizontal lines indicate median 660 

values, boxes indicate 25/75% interquartile range and whiskers indicate 1.5 x interquartile range. Diamond 661 

shape indicates the mean.  **p<0.01, ns = not significant. Clouds represent CIs. 662 

 663 

 664 

  665 
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Tables and Legends.  666 

 667 

Number Model Starting Point (z) Drift Rate (v) 

1. 
Valence independent 

 
z = 0.5 v 

2. 
Valence-dependent 

starting point 
0<z<1 v 

3. 
Valence-dependent drift 

rate 
z = 0.5 v = β0+β1factorydesirability 

4. 
Valence-dependent drift 

rate and starting point 
0<z<1 v = β0+β1factorydesirability 

 668 

Table 1. Drift Diffusion Model Specification. For each group we ran four models which differed in whether 669 

we allowed the starting point to vary (model 2, 4), whether we included a valence-dependent drift rate bias 670 

(model 3, 4), or neither (model 1).  671 

 672 

Number Model 
Starting 

Point (z) 
Drift Rate (v) 

DIC 

(Control) 

DIC 

(Threat) 

1. 

Valence 

independent 

 

z = 0.5 v 11373.43 7761.38 

2. Valence- 0<z<1 v 11343.42 7757.88 
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dependent 

starting point 

3. 

Valence-

dependent drift 

rate 

z = 0.5 
v = 

β0+β1factorydesirability 
11322.83 7758.58 

4. 

Valence-

dependent drift 

rate and starting 

point 

0<z<1 
v = 

β0+β1factorydesirability 
11306.45 7744.82 

 673 

 674 

Table 2. Drift Diffusion Model Specification. For each group we ran four models which differed in whether 675 

we allowed the starting point to vary (model 2,4), whether we included a valence-dependent drift rate bias 676 

(model 3,4), or neither (model 1). DIC scores show goodness of fit, with lower numbers indicating better fit. 677 

 678 

Estimate (from data) Control  Threat 

Decision Threshold (α) 2.67 [2.49,2.85] 2.47 [2.33, 2.62] 

Non-Decision Time (t0) 7.55 [7.37, 7.71] 7.49 [7.33, 7.64] 

Starting Point (z)  0.48 [0.47, 0.51] 0.51 [0.50, 0.53] 

inter-trial starting point parameter (sz) 0.18 [0.07, 0.27] 0.19 [0.06, 0.28] 

Drift Rate (β0) 0.46 [0.37, 0.55] 0.63 [0.54, 0.72] 

Drift Rate Bias (β1) 0.17 [0.08, 0.27] -0.08 [-0.20, 0.04] 

 679 
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Table 3. Parameter estimates of the evidence accumulation process. Displayed are the model estimates 680 

from the winning model for the control and threat groups. These include decision threshold (α), non-decision 681 

time (t0), starting point (0<z<1), inter-trial starting point parameter (sz), constant drift rate (β0) and drift rate 682 

bias (β1). The latter is the term reflecting the additional weight added to the drift rate as a function of factory 683 

desirability. Positive values indicate a bias towards desirable judgements, and negative values indicate a bias 684 

towards undesirable judgements. [Confidence Intervals]. 685 

 686 

Estimate (recovered from simulation) Control  Threat 

Decision Threshold (α) 2.67 [2.63, 2.72] 2.48 [2.43, 2.53] 

Non-Decision Time (t0) 7.55 [7.51, 7.59] 7.42 [7.39, 7.46] 

Starting Point (z)  0.51 [0.48, 0.53] 0.51 [0.48, 0.54] 

inter-trial starting point parameter (sz) 0.33 [0.20, 0.43]  0.15 [0.01, 0.31] 

Drift Rate (β0) 0.44 [0.38, 0.51] 0.68 [0.6, 0.77] 

Drift Rate Bias (β1) 0.15 [0.08, 0.22] -0.14 [-0.22, -0.049] 

 687 

Table 4. Recovered Parameter estimates of the evidence accumulation process based on simulated data. 688 

Displayed are the winning model estimates recovered from simulated data for the control and threat groups. 689 

These include decision threshold (α), non-decision time (t0), starting point (0<z<1), inter-trial starting point 690 

parameter (sz), constant drift rate (β0) and drift rate bias (β1). The latter is the term reflecting the additional 691 

weight added to the drift rate as a function of factory desirability. Positive values indicate a bias towards 692 

desirable judgements, and negative values indicate a bias towards undesirable judgements. [Confidence 693 

Intervals]. 694 
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