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Abstract

Recent advances in deep learning have demonstrated ex-

cellent results for Facial Attribute Recognition (FAR), typ-

ically trained with large-scale labeled data. However, in

many real-world FAR applications, only limited labeled da-

ta are available, leading to remarkable deterioration in per-

formance for most existing deep learning-based FAR meth-

ods. To address this problem, here we propose a method

termed Spatial-Semantic Patch Learning (SSPL). The train-

ing of SSPL involves two stages. First, three auxiliary tasks,

consisting of a Patch Rotation Task (PRT), a Patch Seg-

mentation Task (PST), and a Patch Classification Task (PC-

T), are jointly developed to learn the spatial-semantic re-

lationship from large-scale unlabeled facial data. We thus

obtain a powerful pre-trained model. In particular, PRT

exploits the spatial information of facial images in a self-

supervised learning manner. PST and PCT respectively

capture the pixel-level and image-level semantic informa-

tion of facial images based on a facial parsing model. Sec-

ond, the spatial-semantic knowledge learned from auxiliary

tasks is transferred to the FAR task. By doing so, it enables

that only a limited number of labeled data are required to

fine-tune the pre-trained model. We achieve superior per-

formance compared with state-of-the-art methods, as sub-

stantiated by extensive experiments and studies.

1. Introduction

Facial attribute recognition (FAR), which aims to predict

multiple attributes (such as gender, age, and race) of a given

facial image, can greatly facilitate a variety of application-

s, including face verification and identification [19, 29, 32],

image generation [9, 36], and image retrieval [4, 33]. How-

ever, FAR is challenging due to significant facial appear-

ance variations caused by pose, illumination, occlusion, etc.

State-of-the-art deep learning-based FAR methods usu-
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Figure 1 – Illustration of our proposed SSPL method. First,

three auxiliary tasks (namely, PRT, PST, and PCT) are jointly

learned to model the spatial-semantic relationship of facial im-

ages from large-scale unlabeled data, and a pre-trained model is

obtained. Then, the pre-trained model is transferred to perform

FAR with limited labeled data.

ally rely heavily on a large number of labeled training da-

ta for achieving good classification accuracy. Unfortunate-

ly, in many real-world FAR applications, often only a s-

mall number of training data are labeled since labeling a

massive amount of multi-attribute images can be very time-

consuming and costly. As a result, the performance of these

deep learning-based FAR methods significantly decreases

in real-world applications. Here, we focus on the challeng-

ing problem of FAR with limited labeled data.

To alleviate the challenge of learning with limited la-

beled data, considerable efforts [6, 7, 8, 25, 34] have been

spent on extracting high-level feature representations from

unlabeled data in an unsupervised manner. Among these ef-

forts, self-supervised learning has emerged as a prominent

learning paradigm. The training of self-supervised learn-

ing involves two tasks: a pretext task and a downstream

task [16]. Apart from self-supervised learning methods,

some semi-supervised learning methods [1, 13, 18, 23, 26]

have also been proposed, where labeled and unlabeled data

are simultaneously used for training.



The tasks targeted by self-supervised learning and semi-

supervised learning methods are usually image classifi-

cation [15, 30], object detection [11, 12], and semantic

segmentation [5, 38]. Different from these tasks, FAR

is a multi-attribute classification task, where the spatial-

semantic relationship of facial images is critical to classi-

fy attributes. For example, to identify the “BigNose” and

“PointyNose” attributes, it is natural to locate the nose re-

gion and determine whether the nose is big and pointy at a

semantic level. Similarly, the “Smiling” and “MouthOpen”

attributes are predicted by exploiting the semantic informa-

tion in the mouth region. Therefore, for FAR, it is pivotal

to learn fine-grained feature representations, in particular

capturing the spatial-semantic relationship, from unlabeled

facial data.

In this work, we propose a novel Spatial-Semantic Patch

Learning method (SSPL) to address the problem of effec-

tively learning the spatial-semantic relationship for achiev-

ing state-of-the-art FAR with limited labeled data. To this

end, as shown in Figure 1, the training of SSPL involves t-

wo stages. First, three auxiliary tasks consisting of a Patch

Rotation Task (PRT), a Patch Segmentation Task (PST), and

a Patch Classification Task (PCT) are jointly proposed and

trained to obtain a powerful pre-trained model. Second, the

pre-trained model is transferred to perform FAR by fine-

tuning on limited labeled data.

Specifically, given several facial patches (one of which is

rotated), PRT predicts the index of the rotated patch to ex-

ploit the spatial information of facial images. Meanwhile,

PST performs semantic segmentation to assign a seman-

tic label to each pixel in a randomly selected facial patch

and PCT predicts facial component labels of this patch,

such that PST and PCT can respectively encode the pixel-

level and image-level semantic information of facial im-

ages. These three tasks and their joint training effectively

capture the spatial-semantic relationship between facial re-

gions, which in turn leads to a significant improvement of

FAR when only limited labeled data are available.

Our main contributions are summarized as follows.

• We propose the SSPL method to address the problem

of FAR with limited labeled data. SSPL effectively ex-

ploits both the spatial and semantic information from

unlabeled facial data to obtain a powerful pre-trained

model, ensuring that an attribute recognition model

can be easily fine-tuned to accurately predict facial at-

tributes by using only limited labeled data.

• We elaborately design three auxiliary tasks (i.e., PRT,

PST, and PCT) targeted for FAR. These auxiliary tasks

are jointly trained to make use of the intrinsic relation-

ship between patch rotation prediction and patch seg-

mentation/classification. This enables the network to

effectively extract semantic-aware fine-grained feature

representations.

• Our experiments convincingly show that the pro-

posed method performs favorably against state-of-the-

art methods in the case of limited labeled data, demon-

strating the potentials of learning the spatial-semantic

relationship of facial images for FAR.

2. Related Work

Here we review the closely related deep learning-based

work in FAR and learning from unlabeled data.

Facial Attribute Recognition. With the increasing avail-

ability of large-scale data, deep learning-based methods

have become dominant in the field of FAR. Sharma and

Foroosh [27] leverage deep separable convolutions and

pointwise convolution to design a lightweight CNN for

FAR, which significantly reduces the model parameters and

improves the computational efficiency. Mao et al. [22] per-

form FAR based on a Deep Multi-task and Multi-label Con-

volutional Neural Network (DMM-CNN). He et al. [14]

propose to use synthesized abstraction images to improve

the FAR performance.

The above FAR methods are often trained on large-scale

labeled data. However, in many real-world FAR applica-

tions, sufficient labels can be difficult to collect. As a result,

the performance of these methods greatly degrades. In this

work, we address the challenging and less studied problem

of FAR with limited labeled data.

Learning from Unlabeled Data. A large number of meth-

ods have been proposed to learn features from unlabeled

data, which can significantly reduce the high cost of anno-

tating large-scale data.

Self-supervised learning Recently, self-supervised learning

methods with deep neural networks have received consider-

able attention. For example, Caron et al. [3] use an image

clustering algorithm to generate labels for image classifi-

cation. In [24], the images are divided into 9 patches and

shuffled, and then a pretext task is designed to solve the jig-

saw puzzle to identify the correct spatial locations of input

patches. Gidaris et al. [10] propose to learn to predict the

geometric transformation of images.

Semi-supervised learning Current semi-supervised learn-

ing methods with deep neural networks roughly contain t-

wo categories: 1) consistency regularization-based methods

[23, 35]; and 2) proxy label-based methods [28].

The consistency regularization-based methods introduce

a regularization term to the objective function to enable the

training of unlabeled data. Xie et al. [35] develop an Un-

supervised Domain Adaptation (UDA) method to make use

of realistic noise generated by data augmentation method-

s. The proxy label-based methods first assign proxy labels

to unlabeled data (pseudo-labels), and then train unlabeled

and labeled data based on proxy and ground-truth labels.

Sohn et al. [28] introduce a FixMatch method which com-
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Figure 2 – Overview of three auxiliary tasks in SSPL, including a Patch Rotation Task (PRT), a Patch Segmentation Task (PST), and

a Patch Classification Task (PCT). PRT exploits the spatial information of facial images in a self-supervised learning manner. PST and

PCT respectively capture the pixel-level and image-level semantic information of facial images by using a facial parsing model.

bines consistency regularization and proxy-labeling to per-

form semi-supervised learning.

The above methods usually learn holistic feature repre-

sentations. They may not be suitable for FAR, where var-

ious facial attributes correspond to different facial regions.

In this paper, we model the spatial-semantic relationship be-

tween facial regions by leveraging patch rotation prediction

and patch segmentation/classification. Thus, fine-grained

feature representations can be extracted, which are impor-

tant for FAR.

3. Our Method

In this section, we first give an overview of the proposed

method and then discuss the details of key components.

3.1. Overview

SSPL includes three auxiliary tasks and a target FAR

task. The training of SSPL involves two stages. First, three

auxiliary tasks (consisting of a Patch Rotation Task (PRT), a

Patch Segmentation Task (PST), and a Patch Classification

Task (PCT)) are jointly trained to learn semantic-aware fine-

grained feature representations based on large-scale unla-

beled facial data, and thus a powerful pre-trained model

(based on ResNet-50) is obtained. Second, the target FAR

task fine-tunes the pre-trained model with limited labeled

data and then predicts facial attributes.

An overview of the three auxiliary tasks in SSPL is

shown in Figure 2. More specifically, PRT encodes the spa-

tial information of facial images based on self-supervised

learning. In particular, the input facial image is divided

into m × m patches and one of them is randomly chosen

and rotated. PRT is trained to predict the index of the ro-

tated patch, where the index label corresponds to a num-

ber in {1, 2, ...,m2}. PST and PCT respectively exploit

the pixel-level and image-level semantic information of fa-

cial images based on a facial parsing model. On one hand,

PST performs semantic segmentation on a randomly select-

ed facial patch and assigns a semantic label to each pixel

in the patch. We leverage an externally-trained facial pars-

ing model (BiSeNet [37]) to generate proxy semantic labels.

On the other hand, PCT predicts facial component labels of

the same patch as that in PST, where the proxy componen-

t labels are obtained by aggregating semantic labels from

BiSeNet.

3.2. Patch Rotation Task (PRT)

In this subsection, we develop a pretext task PRT to fully

exploit the spatial relationship between different patches.

The network architecture of PRT consists of a ResNet-50

backbone, a Global Average Pooling (GAP) layer, and two

Fully-Connected (FC) layers.

Given an input facial image I, it is first divided into m×
m different patches {p1, · · · ,pm2}. Then, one patch pr is

randomly selected and rotated. PRT takes these patches as

the input and predicts the index of the rotated patch.



To be specific, each patch is sequentially fed into the

ResNet-50 backbone to extract the patch feature map Fi ∈
R

c×w×h, where c, w, and h represent the channel, width,

and height of the feature map, respectively. Then, all the

patch feature maps are fed into a GAP layer and concate-

nated to obtain a whole feature fp. Next, fp is flattened and

fed into two FC layers and a softmax layer to give the prob-

abilities of the index predictions t = [t1, · · · , tm2 ], where

ti ∈ [0, 1]. Note that we concatenate the patch features ex-

tracted from the backbone rather than stacking the original

patches, to avoid a network simply identifying correlations

between low-level texture statistics. Therefore, the network

is able to learn high-level primitives and structures to pre-

dict the correct index.

In order to prevent the network from taking shortcuts

(e.g., edge continuity, pixel intensity distribution, and chro-

matic aberration) when predicting the index of a rotation

patch, similarly to [24], we perform color jitter for each

patch and then normalize each patch independently. As a

result, the network can effectively capture the spatial infor-

mation between a patch and its surrounding patches.

The loss of PRT uses the cross-entropy:

LR =
m2

∑

i=1

−qi log(ti), (1)

where qi = 1 if i = r and qi = 0 otherwise.

It is worth noting that Gidaris et al. [10] propose a self-

supervised learning method, which predicts the rotated an-

gle of an input image. However, such a method cannot fully

exploit the geometric structure of facial images for FAR,

since different facial attributes are often associated with d-

ifferent facial regions. The proposed PRT divides the facial

image into several patches and learns the spatial relation-

ship between them. Therefore, the proposed pretext task

may work better for the FAR task.

3.3. Patch Segmentation Task (PST)

In this subsection, we propose PST to predict semantic

labels of pixels in a patch. Considering that PST and PRT

share the same backbone, instead of using the whole fa-

cial image, we employ a randomly cropped facial patch as

the input of PST. Such an approach can avoid shortcuts for

PRT, since shortcuts exploit the relevant information (such

as low-level statistics in facial images) helpful for solving

the pretext task (PRT), but not for the target task.

Specifically, a facial patch ps is randomly cropped from

the original facial image I and taken as the input of PST.

The patch is fed into the ResNet-50 backbone to extract d-

ifferent levels of features. To take full advantage of multi-

level information, the output feature map from the 4th resid-

ual block of ResNet-50 is fed into an upsampling layer and

then concatenated with the output feature map from the 3rd

residual block of ResNet-50. Then, the concatenated fea-

ture map is fed into a convolutional layer, followed by batch

normalization, ReLU, and an upsampling layer. Next, the

output feature map from the 2nd residual block of ResNet-

50 and that from the previous layer are concatenated, and

fed into another convolutional layer, followed by batch nor-

malization and ReLU. Finally, another three pairs of up-

sampling layers and convolutional layers with batch nor-

malization and ReLU are used to classify each pixel of the

final feature map into different semantic classes.

Given J semantic classes and the class prediction prob-

abilities for the k-th pixel as hs = [hk1, · · · , hkJ ], we can

formulate the loss of the k-th pixel in ps as

Lpixel =

J
∑

j=1

−qkj log(hkj), (2)

where qkj = 1 if j is the ground-truth label of the k-th pixel

and qkj = 0 otherwise.

Generally, the semantic labels of facial images are not

available in the face attribute datasets. In this paper, we

use an externally trained facial parsing model (i.e., BiSeNet

[37]) to directly predict the semantic labels of the input

patch ps as the proxy semantic labels for PST. Note that the

original predicted output of BiSeNet contains 19 categories,

and we merge them into 8 categories (i.e., background, skin,

eye, ear, nose, mouth, neck, and hair) according to their spa-

tial positions. To alleviate the overfitting of incorrect proxy

semantic labels, we further make use of the label smoothing

strategy [31], which is defined as

q′kj = (1− ǫ)qkj +
ǫ

J
, (3)

where q′kj is the smoothed ground-truth label and ǫ is a s-

moothing parameter empirically set to 0.1 as in [31].

With Eq. (2) and Eq. (3), the loss of PST is defined as

LS =
1

K

K
∑

k=1





J
∑

j=1

−q′kj log(hkj)



 , (4)

where K is the total number of pixels in ps.

3.4. Patch Classification Task (PCT)

PST exploits the pixel-level semantic information of fa-

cial images. Nevertheless, the target FAR task is an image-

level classification task. Therefore, we further develop PC-

T to predict the facial components of a given input patch,

which can explicitly capture the image-level semantic in-

formation of facial images.

In this paper, PCT adopts the same input as PST instead

of the whole facial image. Note that, if the whole facial

images are used as input, PCT will be trained with simi-

lar proxy component labels (i.e., most facial components
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Figure 3 – Examples of two input facial patches and the cor-

responding semantic masks from CelebA. The facial compo-

nents “ear” and “nose” exist in (a) and (b), respectively. But they

are not the dominant facial components.

exist), which may not be helpful to train PCT due to the

significantly imbalanced distribution of proxy component

labels.

The architecture of PCT is similar to that of PRT, ex-

cept that the output channels of the last two FC layers are

different due to the different numbers of predicted classes.

Specifically, the facial patch ps is first fed into the ResNet-

50 backbone to obtain a feature map Fs ∈ R
c′×w′

×h′

,

where c′, w′, and h′ represent the channel, width, and height

of the feature map, respectively. Then, Fs is used as the in-

put of a GAP layer to obtain a feature map fs. Finally, fs is

fed into two FC layers to predict facial component labels.

In this paper, the facial components are the same as the

semantic classes used in PST. However, PST is a pixel-

level classification task (i.e., predicting the semantic la-

bels of pixels), while PCT is an image-level classification

task (i.e., predicting the existence of facial components in

a patch). The proxy component labels of the input patch

are generated by aggregating the pixel-level semantic label-

s given by BiSeNet. In particular, the proxy componen-

t labels of the input patch are denoted as a vector, that is,

ys = [y0, · · · , yJ ]. Here, yi = 1 denotes the existence of a

facial component, and yi = 0 otherwise.

It is worth mentioning that the proxy component label

is obtained by aggregating semantic labels, and thus it is

tolerant of small semantic label errors. Usually, a few facial

components exist in the input patch ps and some of them

only involve a relatively small number of pixels in the patch,

as illustrated in Figure 3. Therefore, we only choose the top

n dominant facial components in each input patch and label

them as 1. For the rest of facial components, we label them

as 0.

The loss of PCT adopts the binary cross-entropy:

LC =

J
∑

j=1

(yj log(xj) + (1− yj) log(1− xj)) , (5)

where xj is the output prediction probability of the j-th fa-

cial component.

3.5. Joint Loss Function

Finally, the joint loss function of SSPL can be formulat-

ed as

LSSPL = LR + λ1LS + λ2LC , (6)

where λ1 and λ2 are the regularization parameters to bal-

ance different losses.

Using Eq. (6), the three auxiliary tasks can be jointly

trained in an end-to-end manner. Note that all labels used

for training the three auxiliary tasks are automatically gen-

erated to alleviate the burden of labeling large-scale facial

data.

4. Experiments

In this section, we first briefly introduce two public fa-

cial attribute datasets. Then, we describe the implementa-

tion details. Next, we perform ablation studies to show the

importance of each auxiliary task in SSPL and the influ-

ence of key parameters on the final performance. Finally,

we compare SSPL with several state-of-the-art methods.

4.1. Datasets

CelebA [21] is a popular large-scale facial attribute dataset

used to evaluate the FAR performance. It consists of

202,599 facial images with 40 attribute annotations per im-

age. CelebA is divided into 3 parts, including 162,770 im-

ages for training, 19,867 images for validation, and 19,962

images for test.

LFWA [21] is another widely-used facial attribute dataset.

It contains 13,143 facial images with the same attribute an-

notations as the CelebA dataset. In LFWA, 6,263 images,

2,800 images, and 4,080 images are used for training, vali-

dation, and test, respectively.

Here, we use the default training set (without using la-

bels) provided by CelebA or LFWA to train three auxiliary

tasks. Moreover, we randomly choose a proportion of the

training set (with labels), and use the default validation and

test sets of CelebA or LFWA in the FAR task. All experi-

ments are performed 10 times and the average recognition

accuracy is reported.

4.2. Implementation Details

In PRT, the number of patches per side m is set to 3.

Thus, there are in total 3×3 = 9 patches. The input image I

is first resized to 255×255, and then 9 patches with the size

of 85×85 are cropped from the input image. Finally, a patch

with the size of 64 × 64 is randomly cropped from each

85×85 patch and resized to 224×224. Thus, we prevent the

model from using low-level texture statistics, which are not

beneficial for the downstream task [24]. Given a generated

index, the corresponding patch is rotated by 90 degrees. In

PST and PRT, a patch with the size of 75× 75 is randomly

cropped from the original image, and then resized to the



Table 1 – Ablation studies: The recognition accuracy (%) obtained by six variants of SSPL with the different proportions of labeled

training data on the CelebA and LFWA datasets.

CelebA LFWA

Proportion 0.2% 0.5% 1% 2% 100% 5% 10% 20% 50% 100%

# of training samples 325 843 1,627 3,255 162,770 313 6,26 1,252 3,131 6,263

Baseline 82.57 85.33 87.14 88.24 91.73 73.90 75.50 78.78 83.76 84.11

PRT 85.36 86.97 87.82 88.93 91.72 77.31 79.96 82.55 84.87 85.72

PST+PCT 85.39 86.07 87.30 88.27 91.72 76.82 78.88 82.04 84.01 85.65

PRT+PCT 85.55 86.97 88.06 89.01 91.75 77.93 80.52 82.64 84.92 86.10

PRT+PST 85.96 87.58 88.31 89.05 91.76 78.08 81.17 82.90 84.89 86.15

SSPL 86.67 88.05 88.84 89.58 91.77 78.68 81.65 83.45 85.43 86.53

size of 224 × 224. In PRT, the number of dominant facial

components n is set to 4. We use ResNet-50 (without pre-

training) as the backbone.

For the FAR task, we simply replace the last two FC lay-

ers of ResNet-50 backbone (trained in three auxiliary tasks)

with one FC layer (with 40 output nodes) and fine-tune the

whole network. We use PyTorch to implement SSPL and

all the experiments are performed on a GTX 2080 GPU.

For the three auxiliary tasks, the batch size is set to 40 and

the model is trained for 80 epochs. The values of λ1 and

λ2 in Eq. (6) are empirically set to 0.05 and 0.50, respec-

tively. For the target task, the batch size is set to 64, and

the model is trained for 60 epochs. The Adam optimizer

[17] is adopted with the initial learning rate of 1 × 10−4,

β1 = 0.500, β2 = 0.999 and weight decay of 5 × 10−4.

The warm-up strategy is used to update the learning rate

during training, where the value of the learning rate is lin-

early increased from 1 × 10−3 to 3.5 × 10−3 in the first

15 epochs, and then remains at 1.5 × 10−5 until the end of

training. The Adam optimizer and the warm-up strategy are

used in both pre-training and fine-tuning.

4.3. Ablation studies

We conduct ablation studies to evaluate the influence of

different auxiliary tasks (i.e., PRT, PST, and PCT) and crit-

ical parameters (including the number of patches and the

number of dominant facial components) of the proposed

method on the final performance.

Influence of different auxiliary tasks. We evaluate six

variants of the proposed method, including: (1) the method

(denoted as “PRT”) that only adopts PRT as the auxiliary

task; (2) the method (denoted as “PST+PCT”) that uses PST

and PCT as the auxiliary tasks; (3) the method (denoted as

“PRT+PCT”) that uses PRT and PCT as the auxiliary tasks;

(4) the method (denoted as “PRT+PST”) that uses PRT and

PST as the auxiliary tasks; (5) the proposed SSPL method,

which effectively combines PRT, PST, and PCT in an inte-

grated network; and (6) the baseline method that is based on

the ResNet-50 backbone. All the variants are trained end-

to-end from scratch. The results obtained by six variants

with the different proportions of labeled training data are

given in Table 1.

From Table 1, SSPL achieves higher accuracy than the

baseline method on both CelebA and LFWA. When a small-

er proportion of labeled training data is used, the improve-

ments obtained by SSPL are more evident (e.g., SSPL out-

performs the baseline by 4.10% on CelebA and by 4.78%

on LFWA when 0.2% and 5% of labeled training data are

respectively used).

Note that when 100% of labeled training data is used,

SSPL and the baseline method achieve similar results in

CelebA. This is because sufficient training data are used

to obtain the optimized network parameters for the base-

line method. Compared with PST+PCT, SSPL also im-

proves the accuracy, since it additionally adopts PRT. This

shows the effectiveness of the pretext task PRT, which ex-

ploits the spatial information of facial images based on self-

supervised learning to improve the FAR performance in the

case of limited labeled data.

PST takes advantage of semantic segmentation to ex-

tract fine-grained semantic information from images. As

shown in Table 1, PRT+PST achieves higher accuracy (e.g.,

0.60% improvements on CelebA and 0.77% improvements

on LFWA when 0.2% and 5% of labeled training data are

respectively used) than PRT. Meanwhile, compared with

PRT+PCT, SSPL achieves higher accuracy (e.g., 1.12% im-

provements on 0.2% of CelebA and 0.75% improvements

on 5% of LFWA). This can be ascribed to the fact that joint

training of PRT and PST effectively exploits the relation-

ship between pixel-level semantic segmentation and patch

rotation prediction, which improves the performance.

PCT learns the semantic relationship between differen-

t patches by identifying the facial components of a ran-

domly chosen patch. Compared with PRT+PST, SSPL also

improves the performance on CelebA and LFWA. There-

fore, the image-level semantic information plays an impor-

tant role to improve the performance of FAR with limit-

ed labeled data. By combing PRT, PST, and PCT, SSPL

achieves the best performance among all the variants. Com-

pared with the baseline, SSPL improves the accuracy from
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Figure 4 – Ablation studies: Influence of (a) the number of

patches and (b) the number of dominant facial components on the

final performance on CelebA and LFWA when 0.5% and 10% of

the training labeled data of CelebA and LFWA are used, respec-

tively.

82.57% to 86.67% on CelebA and from 73.90% to 78.68%

on LFWA, when 0.2% and 5% of labeled training data are

respectively used. This shows the importance of model-

ing the spatial-semantic relationship between facial regions,

which can be beneficial for the FAR task.

Influence of the number of patches m × m. We evalu-

ate the performance of SSPL with the different numbers of

patches m ×m in PRT, including 1 × 1, 2 × 2, 3 × 3, and

4 × 4. The results are shown in Figure 4 (a). We can see

that when the number of patches m×m is set to 3× 3, our

method achieves the best performance. On one hand, when

the number of patches is larger, the semantically consistent

facial image is over-segmented into many small patches. On

the other hand, when the number of patches is smaller, the

large patch contains many facial components. Too large or

too small values of the number of patches adversely affect

the extraction of features encoding the spatial information.

Influence of the number of dominant facial components

n. We evaluate the influence of the number of dominan-

t facial components in PCT on the final performance. The

experimental results are given in Figure 4 (b). Our proposed

method obtains the best results when the value of n is set to

4. When the values of n are too large, some facial compo-

nents that involve only a few pixels are chosen as dominant

facial components and when n is too small, some dominant

facial components are ignored. Both cases will lead to per-

formance degradation.

(a) CelebA

w

w/o

(b) LFWA

Figure 5 – Semantic masks generated by SSPL with (denoted

as “w”) and without the label smoothing strategy (denoted as

“w/o”) on (a) CelebA and (b) LFWA.
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Figure 6 – The correlation maps of seven randomly selected

facial attributes obtained by (a) the baseline and (b) SSPL on

CelebA.

4.4. Visualization

In this section, we visualize several examples of seman-

tic masks generated by SSPL with and without the label s-

moothing strategy, as shown in Figure 5. Moreover, we plot

the correlation maps of several randomly selected facial at-

tributes obtained by the baseline and SSPL, as illustrated in

Figure 6. To be specific, we randomly select seven facial at-

tributes, and use the predicted outputs of the trained model

to calculate the correlation map. Here, we employ 0.2% of

labeled training data in CelebA.

From Figure 5, the semantic masks generated by SSPL

contain less noise than the SSPL without the label smooth-

ing strategy. This demonstrates the effectiveness of the la-

bel smoothing strategy. SSPL can generate accurate seman-

tic masks by jointly training three auxiliary tasks, which can

be beneficial to capture the pixel-level semantic information

of the input facial images. Note that there are some false-

detected masks. For example, in the last columns of CelebA

and LFWA in Figure 5, most pixels in the facial patch are

classified as the background, due to blurring. However, as

these blurry patches do not greatly contribute to the learning

of semantic information, the false-detected masks will have

no much influence on the final performance.

From Figure 6, compared with baseline, SSPL shows

better correlation responses between facial attributes. For

example, the “5 o clock shadow” attribute is negatively

correlated with the “bald” attribute (the correlation value is

0.34 obtained by SSPL and that is 0.91 by baseline), while

the “receding hairline” and “bald” attributes are strongly re-

lated to each other (the correlation value is 0.86 obtained by

SSPL and that is 0.64 by baseline).

4.5. Comparison with StateoftheArt Methods

In this section, we compare the proposed SSPL method

with ten state-of-the-art methods, including five supervised

FAR methods [22, 27, 20, 2, 14], three self-supervised

learning methods [3, 24, 10], and two semi-supervised

learning methods [28, 23], on the CelebA and LFWA



Table 2 – Recognition accuracy (%) obtained by our proposed SSPL method and ten state-of-the-art methods with the different propor-

tions of labeled training data on the CelebA and LFWA datasets.

CelebA LFWA

Proportion 0.2% 0.5% 1% 2% 100% 5% 10% 20% 50% 100%

# of training samples 325 843 1,627 3,255 162,770 313 626 1,252 3,131 6,263

DMM [22] - - - - 91.70 - - - - 86.56

SlimCNN [27] 79.90 80.20 80.96 82.32 91.24 70.90 71.49 72.12 73.45 76.02

AFFAIR [20] - - - - 91.45 - - - - 86.13

PS-MCNN [2] - - - - 92.98 - - - - 87.36

He et al. [14] - - - - 91.81 - - - - 85.20

DeepCluster [3] 83.21 86.13 87.46 88.86 91.68 74.21 77.42 80.77 84.27 85.90

JigsawPuzzle [24] 82.88 84.71 86.25 87.77 91.57 73.90 77.01 79.56 83.29 84.86

Rot [10] 83.25 86.51 87.67 88.82 91.69 74.40 76.67 81.52 84.90 85.72

FixMatch [28] 80.22 84.19 85.77 86.14 89.78 71.42 72.78 75.10 80.87 83.84

VAT [23] 81.44 84.02 86.30 87.28 91.44 72.19 74.42 76.26 80.55 84.68

SSPL (Ours) 86.67 88.05 88.84 89.58 91.77 78.68 81.65 83.45 85.43 86.53

datasets, respectively. For five supervised FAR methods,

we only use labeled training data in the FAR task to train

the models. For self-supervised learning methods, we adopt

all the unlabeled training data in the pretext task to obtain

the initial network parameters, and then use the differen-

t proportions of training data in the downstream FAR task

for fine-tuning. For semi-supervised learning methods, we

train the models using both unlabeled and labeled training

data. The experimental results are given in Table 2.

We can see that our SSPL method achieves similar or

better performance than state-of-the-art FAR methods (such

as DMM, Slim-CNN, PS-MCNN, and AFFAIR) on both

datasets when 100% labeled data are used to train the mod-

els. These FAR methods can extract discriminative features

from large-scale data. Note that DMM adopts a dynam-

ic weighting scheme and an adaptive thresholding strate-

gy to train the model. PS-MCNN designs a complicated

network architecture consisting of four task specific net-

works (TSNets) and a shared network (SNet) to learn fea-

tures for each group of attributes and different groups of

attributes, respectively. In contrast, SSPL only uses the sim-

ple ResNet-50 model. This demonstrates the effectiveness

of the pre-trained model in the auxiliary tasks. Moreover,

the proposed method significantly outperforms Slim-CNN

by a large margin when only a small proportion of train-

ing data (such as 0.2%, 0.5%, 1%, or 2%) are used. This

is because we jointly train the auxiliary tasks to exploit the

spatial-semantic information of facial images, so that effec-

tive semantic-aware features are extracted in the FAR task.

The SSPL method obtains much better performance than

the competing self-supervised methods under the small pro-

portions of labeled training data. In particular, when less

training data are used, the performance improvements ob-

tained by our method are more evident. This indicates the

excellent capability of our method to extract effective fea-

tures with limited labeled data, due to the superiority of ex-

ploiting both spatial and semantic information from unla-

beled facial data based on three auxiliary tasks.

Compared with semi-supervised learning methods, our

SSPL method achieves substantially higher accuracy with

limited labeled data. VAT exploits unlabeled data by min-

imizing the distance between an image and a transformed

version of the image, while FixMatch simultaneously em-

ploys consistency regularization and proxy-labeling strate-

gies. However, these methods are based on holistic features.

Therefore, they cannot effectively model the spatial rela-

tionship between different facial patches, which is critical

for FAR. In contrast, SSPL learns the spatial-semantic cor-

relation of facial images and extracts fine-grained features,

leading to performance improvements.

5. Conclusion

In this paper, we have presented a new Spatial-Semantic

Patch Learning (SSPL) method to effectively perform FAR

in the case when only limited labeled data are available.

The SSPL method involves three auxiliary tasks and a target

FAR task. The auxiliary tasks, including PRT, PST, and PC-

T are developed to fully exploit the spatial-semantic infor-

mation of facial images from unlabeled facial data to build a

powerful pre-trained model. The target FAR task fine-tunes

the pre-trained model by using limited labeled data. Exten-

sive experiments on the CelebA and LFWA datasets show

the superiority of our proposed method against state-of-the-

art methods to address FAR with only limited labeled data.
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