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ABSTRACT
Hyper-adaptability is an ability of humans and animals to adapt to large-scale changes in the nervous
systemor themusculoskeletal system, such as strokes and spinal cord injuries. Although this adapta-
tion may involve similar neural processes with normal adaptation to usual environmental and body
changes in daily lives, it can be fundamentally different because it requires ‘construction’ of the neu-
ral structure itself and ‘reconstitution’ of sensorimotor control rules to compensate for the changes in
thenervous system. In this surveypaper,weaimed toprovide anoverviewonhow thebrain structure
changes after brain injury and recovers through rehabilitation. Next, we demonstrated the recent
approaches used to apply computational and neural network modeling to recapitulate motor con-
trol andmotor learning processes. Finally, we discussed future directions to bridge the gap between
conventional physiological and modeling approaches to understand the neural and computational
mechanisms of hyper-adaptability and its applications to clinical rehabilitation.
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1. Introduction

Humans can adapt to different environments. Focus-
ing on motor ability, we could move our arms to reach
an external object and dexterously manipulate various
shapes.We can even learn newmotor tasks, such as sports
skills. For example, if a mismatch occurs between the
planned movement and realized movement (i.e. predic-
tion error), humans could learn and adjust their motor
command to adapt to the environment. This adaptive
motor ability stems from the sensory-motor systems,
redundancy of the human body, and brain function.
When the human brain or spinal cord is damaged,
motor function is severely impaired.However, the human
brain has a great potential to adapt to these changes
and overcome motor impairment. ‘Hyper-adaptability’
is defined as an animal’s ability to adapt to large-scale
and irreversible changes in the nervous or musculoskele-
tal system (e.g. brain/spinal cord injury). To introduce
the concept of ‘hyper-adaptability,’ we focused on how
humans regain their motor function after sustaining a
brain injury.

Hyper-adaptability differs from normal adaptation in
daily life (i.e. fatigue) in that this requires ‘reconstruc-
tion of the neural structure’ and ‘reconstitution of the
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sensorimotor control rules.’ After sustaining a spinal
cord injury, for example, primates could utilize vari-
ous indirect corticomotoneuronal pathways, the bilateral
motor-related cortical areas, and mesolimbic structures,
which are not otherwise used for the direct control of
motor movements under normal physiological condi-
tions [1]. By recruiting and exploring these latent neural
circuits that are not typically used under normal con-
ditions, the brain might use new control mechanisms
through a re-optimization process. To fully understand
hyper-adaptability (i.e. themechanismunderlying recon-
struction of the neural structure and reconstitution of
sensorimotor control rules), integration of multidisci-
plinary approaches, including conventional neurophysi-
ological methodologies and computational neuroscience
approaches is necessary. In other words, theoretical con-
trol modeling and neural network modeling are impor-
tant to describe the general principles of the adaptation
processes.

In this survey paper, we aimed to examine the phe-
nomenon occurring after brain damage caused by stroke
or traumatic injury to introduce the concept of hyper-
adaptability. First, we provide an overview on how the
brain function changes after a brain injury and how
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it recovers through rehabilitation. These physiologi-
cal studies were also reviewed previously [1]. Further-
more, to understand the mechanism of hyper-adaptation
and apply it for rehabilitation therapy, computational
approaches are needed. Next, we showed the compu-
tational modeling of motor control, which is a possi-
ble candidate to explain hyper-adaptability. Then, we
reviewed the recent advances in neural network mod-
eling approaches for motor control and introduced the
previous physiological experiments to validate the effi-
cacy of these approaches. Finally, we discussed future
directions to clarify the neural and computational mech-
anism of hyper-adaptability and its application to clinical
rehabilitation.

2. Reconstruction of neural networks and
reconstitution of control rules for
hyper-adaptability

When humans move their body to perform a task, many
parts of the human brain play important roles. Sensory
information integrated in the parietal association area of
the brain and the network between parietal area, premo-
tor cortex, and primary motor cortex (M1) are involved
in planning amotor command. This plannedmotor com-
mand is sent to the brainstem and the spinal cord through
the corticospinal tract. Subcortical systems involve low-
dimensional motor primitives (known as synergies) to
generate muscle activity. When humans learn a new
motor skill, these nervous systems are utilized for adap-
tation. In the normal adaptation, the cerebellum, basal
ganglia, and cerebral cortex are thought to play special-
ized roles in supervised learning, reinforcement learning,
and unsupervised learning, respectively [2].

When performing a motor task, humans plan and
execute motor commands under a constraint condition.
In this context, the goal of the task, surrounding envi-
ronments, and dynamics of the musculoskeletal system
determine the constraint conditions and cost function.
The human brain can learnmotor commands, which give
less value to the cost function and satisfy the constraint
condition. However, if the cerebral cortex, cerebellum,
and basal ganglia are damaged (i.e. stroke or traumatic
brain injuries), how can our nervous system adapt to this
large-scale and irreversible change in the nervous sys-
tem itself? Under this circumstance, it is mandatory to
utilize other latent neural circuits, which emerged dur-
ing development but less activated in a normal state, and
all existing elements such as synergy to adapt to dras-
tic change. In the next section, we reviewed the previous
studies on the neurophysiological changes after brain
injuries and what the type of rehabilitation intervention
performed. Furthermore, we introduced how the brain

networks change by rehabilitation to understand the role
of hyper-adaptability after a brain damage.

2.1. Change of neural networks after a brain injury

When the brain is damaged by stroke or traumatic brain
injury, neurons in the damaged area are lost, and if
it involves the corticospinal tracts, hemiplegia occurs.
These motor impairments are caused by physical dam-
ages and indirect behavioral changes following the phys-
ical damage. For example, the previous study investigated
how the affected brain area of adult squirrel monkeys
changes after a focal ischemic infarct in M1 [3]. They
reported that the movements formerly represented in the
infarcted zone did not reappear in the surrounding zone
when the monkey did not receive extensive behavioral
training. This is a direct effect of brain damage on motor
function.

In addition to the direct physical effects, brain damage
also causes secondary impairments. For example, many
motor-impaired patients show behavioral change called
‘learned non-use’ after experiencing a stroke [4]. They
pointed out that this behavioral suppression is caused by
the experience of effortful movement and unsuccessful
motor attempts. Further loss of function in the affected
brain area occurs in the case of disuse of the affected limb.

Furthermore, the balance of transcallosal inhibitory
activity between the affected and unaffected motor cor-
tices changes after the onset of stroke [5,6]. A previ-
ous study [6] investigated the generation of a voluntary
movement by the paretic hand of the patients who had
ischemic subcortical infarction. They found an abnor-
mally high interhemispheric inhibition from M1 of the
unaffected hemisphere to the M1 of the affected side.
A functional magnetic resonance imaging study also
revealed that the interhemispheric functional connec-
tivity between the cortical motor areas is reduced and
correlates with the severity of motor impairment [7].
Damage to the brain causes impairment in the descend-
ing pathways from the brain to the spinal cord. Although
the spinal cord is undamaged, the excitation level of
motor neurons in the spinal cord cannot be properly con-
trolled. This results in increased stretch reflex (spasticity)
and muscle tonus, muscle weakness, or impaired mus-
cle coordination. These results clearly demonstrate that
brain damage causes functional impairment not only due
to the direct focal damage but also due to the plastic
changes in the entire nervous system.

These findings suggest that brain injury often causes
difficulty in limb movement, and it imposes a long-term
constraint when deciding the appropriate motor com-
mands to accomplish a motor task. Figure 1 shows a
schematic diagram of the comparison between moving
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Figure 1. Schematic diagram of motor control. (a) Humans can choose appropriate motor commands under the cost function provided
by the environmental and body dynamics. (b) When the brain is damaged, cost function is changed so that humans need to choose
different motor strategies. (c) Rehabilitation intervention aims to reshape the cost function and encourage the individual to hyper-adapt
to learn a newmotion strategy.

a hand to a target under normal and impaired states. In
the normal state, humans could learn and execute appro-
priate motor commands, which minimize the ‘cost func-
tion,’ generally indicating the effectiveness of a motor
command under the given environmental and body
dynamics (lower is preferable), as shown in Figure 1(a).
However, when irreversible changes occur in the brain
network (e.g. abnormal interhemispheric inhibition), it
is considered to be an additional motor constraint. In
particular, the previous motor commands, which used
to be sufficient under normal conditions, are no longer
appropriate solutions solution during the impaired state.
Thus, humans need to choose differentmotor commands
to accomplish the task although it requires a higher cost
(Figure 1(b)). In the next section, we introduce the type of
rehabilitation performed for motor impaired post-stroke
patients.

2.2. Neuro-rehabilitation formotor recovery

Constraint-induced movement (CI) therapy is widely
used in rehabilitation to overcome the learned non-use of
the effected limb [8]. As described in the former section,
behavioral suppression of movement in the affected limb
prolongs the non-use of the said limb, resulting in the
reduction in the volume of the brain region for body
representation. In CI therapy, patients are encouraged
to use their affected limb by inducing constraints on
the unaffected limb. This intensive and repetitive prac-
tice can induce use-dependent plasticity to reorganize
brain structure. The previous study [9] investigated how
the hand representation area changes after CI therapy
is applied to the chronic stroke patients with cortical

lesions or subcortical lesions that involved the internal
capsule. The internal capsule is the region where the cor-
ticospinal tract passes, and damage to this area impairs
limb movement. Authors used transient magnetic stim-
ulation (TMS) to investigate evoked movements to iden-
tify how the hand representation area changes in stroke
patients after CI therapy. They found that the cortical
representation area of the affected limb became signif-
icantly larger than that before CI therapy [9]. The CI
therapy limits the unaffected limb movement, and this
prevents the formulation and execution of motor com-
mands under the impaired state. In this situation, the
CI therapy is considered to increase the cost of the
motor commands, which are used in the impaired state to
encourage the patient to explore better motor commands
(Figure 1(c)).

Some facilitation techniques are also used in stroke
rehabilitation, such as repetitive facilitation exercise and
neuro-developmental training. In the repetitive facilita-
tion exercise, physical therapists provide physical stim-
ulation (flexion or extension of the targeted joint) as
the patient intends to move his or her affected hand
[10]. This technique aims to elevate the excitation level
of impaired descending motor tracts and encourage
patients to initiatemovement. Similarly, facilitation based
on the Bobath concept uses facilitation techniques [11].
They also emphasized that the afferent information from
the limb is important to improve body awareness. The
timing of muscle synergy activation from a sitting posi-
tion to a standing position improved and was similar
to that of healthy individuals when the physical thera-
pists provided facilitation based on the Bobath concept
[12]. Facilitation techniques are thought to change the
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shape of the cost function to enable the motor-impaired
patients to relearn newmotor commands. In this way, the
role of the facilitation provided by the physical therapists
is considered to encourage the patient to seek different
motor commands under the modified neural network
(Figure 1(c)).

Another possible methodology to improve motor
impairment is the use of transcranial direct current stim-
ulation (tDCS). tDCS involves the application of a weak
direct current through the scalp to change the excitabil-
ity of the cortex. Anodal and cathodal stimulation are
used, respectively, for excitation and inhibition of the tar-
get brain area [13]. There are two possible strategies for
stroke rehabilitation: one strategy is to provide anodal
stimulation to the affected sphere to increase excitability,
and the other strategy is to provide cathodal stimula-
tion in anunaffected hemisphere to decrease inhibition in
this area. This is expected to improve unbalanced inter-
hemispheric inhibition. Repetitive transcranial magnetic
stimulation (rTMS) involves the induction of motor unit
potentials in the cortex. A low-frequency rTMS (<1
Hz) inhibits the excitation of the targeted area, while a
high-frequency rTMS (>5 Hz) increase the excitation
[14]. These techniques modify the neural networks of
the inter- and intra-hemisphere to improve the inter-
hemispheric inhibition. As a result, the motor-impaired
patients are able to avoid local minimum motor com-
mands and explore the landscape of cost function to find
a global minimum solution (Figure 1(c)).

Bimanual training is also suggested to be effective for
motor restoration [15]. In contrast to CI therapy, patients
with stroke are asked to move both affected and unaf-
fected limbs. Previous study [16] investigated the effect
of bimanual arm training on the patients who had upper
extremity spastic hemiparesis following a single cortical
or subcortical ischemic stroke. In this way, activation of
the unaffected hemisphere increased, and it may unmask
the uncrossed corticospinal projections to the affected
limb. This uncrossed corticospinal projections are the
latent neural subsystems, which are not used in the nor-
mal state. Fady et al. also showed that themuscle activities
of the affected limb became similar to those of healthy
individuals when the patients with cortical and subcorti-
cal stroke used the unaffected limb to support the affected
limb [17]. The advantage of bimanual training to CI ther-
apy is that bimanual training is applicable to patients with
more severe movement disorders. The bimanual training
aims to improve the abnormal interhemispheric inhibi-
tion and to prompt the usage of latent neural sub sys-
tems to allow the motor-impaired patient to use different
motor strategies (Figure 1(c)).

As discussed in the previous section, humans have
difficulties to move their limb after a brain damage

(Figure 1(b)). Rehabilitation interventions help the
motor-impaired patients to seek better solutions under
the additional constraints imposed by the brain injury. CI
therapy and facilitation techniques contribute to reshap-
ing the cost function by limiting the limb movement or
guiding the patient to perform limb movements appro-
priately. Modifying the neural network by tDCS and
bimanual training encourages the patient to use the
latent neural network, which is not typically used in
the normal state, and to explore different motion com-
mands. Therefore, the rehabilitation intervention could
be interpreted as reshaping the cost function to prompt
the utilization of latent neural networks and encour-
age the patient to seek new motor commands. In the
next section, we showed how reorganization occurs
in neural networks and how motor control rules are
reconstituted.

2.3. Changes in neural network andmotor control
rules whilemotor recovery

Asmentioned in the previous section, rehabilitation ther-
apies help motor-impaired patients of motor impair-
ments to regain motor functions. In this section, we
reviewed the different changes occurring in the brain that
are induced by rehabilitation and how humans improve
motor performance. The human brain has the plasticity
to reorganize neural networks even after a brain injury.
Nudo et al. showed that reorganization of hand repre-
sentation in M1 occurs after rehabilitative training [3].
While recovering, the squirrel monkey showed improve-
ments in their ability to retrieve more food from the well
placed in front of them. This plastic change occurs not
only at the damaged brain area but also at the adjacent
and even remote areas. In patients with stroke at the M1,
the finger motor representation in M1 is evoked in the
adjacent dorsal area of the lesion [18]. The other previous
study usedNIRS to examine the brain activity during gait
rehabilitation of patients with stroke at the cerebral cor-
tex [19]. During the gait rehabilitation of patients with
stroke, the activation of premotor cortice is enhanced in
the affected hemisphere. These findings imply that dif-
ferent brain areas are activated largely in patients with
stroke than in healthy individuals due to the reorgani-
zation of neural structure to compensate for the motor
deficit.

Moreover, patients who recovered from stroke utilized
motor pathways different from those of those healthy
individuals to achieve movement [20]. A previous study
investigated the patients who recovered their motor abil-
ity after experiencing ischemic infarct of the internal
capsule. When the brain activity assessed using PET,
the blood flow in the motor-related areas, such as the
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premotor cortex and the primary sensorimotor cortex, of
the patients’ unaffected side of the brain was increased
compared with that of healthy individuals. This finding
implies that patients with stroke exhibit cerebral cortex
reorganization to utilize the uncrossed corticospinal tract
from the unaffected hemisphere to re-generate motor
commands.

As the patients with stroke receive rehabilitation, they
improve motor performance utilizing the residual motor
function. For example, although the cerebral cortex is
damaged, humans could still use the subcortical systems
to achieve the movement. The muscle activity involved
in an animal locomotion could be decomposed into
small sets of primitives called muscle synergy [21]. Mus-
cle synergies can be preserved in the cortical stroke
patients between the affected and unaffected limbs to per-
form a variety of tasks and movements [22,23]. Fewer
numbers of muscle synergies in locomotion are also
reported in post-stroke patients with hemiparesis sec-
ondary to a single unilateral stroke than in healthy indi-
viduals [24]. Changes in the activation timing of mus-
cle synergies observed during the sit-to-stand motion in
stroke patients occurs in the cerebral cortex [25]. These
studies imply that animals could utilize the existing low
dimensional subspace of motor commands such as mus-
cle synergies to accomplish motor tasks despite brain
damage.

When environmental and body dynamics are pro-
vided, the normal adaptation process enables humans to
learn and choose motor commands under the given cost
function (Figure 1(a)). However, when the brain is dam-
aged (e.g. large-scale and irreversible changes), themotor
commands that humans used in the normal condition
requires more cost due to the inhibition of brain activity
and changes in muscle property, such as muscle spastic-
ity. To regain the motor function after these irreversible
changes, normal adaptation may not enough because
humans may insist on using the high-cost motor com-
mands, which is the local minimum solution under the
impaired cost function (Figure 1(b)). In order to obtain
better motor commands, the hyper-adaptation process
reshapes the cost function by modifying the neural net-
work. In such a way, the patients can utilize the preserved
low-dimensional subspace of body dynamics and explore
different motion strategies (Figure 1(c)). In this context,
rehabilitation intervention is considered to reorganize
the brain network including employment of the latent
subsystem by guiding the patients to utilize preserved
low-dimensional subspace (e.g. muscle synergies). In the
next chapter, we will introduced the framework of the
motor control theories to possibly explain the process of
hyper-adaptability.

3. Motor control theories for hyper-adaptability

In this section, we provided an overview of the con-
trol schemes, and discussed the potential control frame-
work suitable to explain the hyper-adaptability.We intro-
duced the concept of weak and strong anticipation, and
explained how these control schemes based on these two
concepts can explain the process of motor control and
neurorehabilitation, and discussed the potential control
framework suitable to study hyper-adaptability as intro-
duced in the previous sections. In summary, to deter-
mine the suitable pathways to understand the control
mechanisms underlying the hyper-adaptability, we dis-
cussed two types of theoretical frameworks, strong and
weak anticipation; if a model of the target/environment
dynamics is provided for the prediction of the future,
it is said to be weak anticipation; if it is not given, but
the prediction arises from systematic lawfulness based on
the real-time coupling between environmental dynam-
ics, body dynamics and internal dynamics, it is said to be
strong anticipation [26].

3.1. Types ofmotor control theories: weak and
strong anticipation

A surprising aspect of neuroscience and neurorehabili-
tation is that motor control is one of the most complex
and difficult tasks that the human brain is responsi-
ble for. The sheer number of factors, for example, high
degrees of freedom of body parts, that must be man-
aged to execute even the simplest physical task stands
in sharp contrast to the unconscious ease with which we
perform complex tasks. The confusion has only grown as
engineering-based robotics techniques have been found
singularly lacking in the face of the unavoidable sensory
delays, persistent noise, and imprecise sensing ubiqui-
tous to biological systems. Therefore, discussing the topic
of motor control in organisms requires a relaxation of
constraints and biases imported from control theory and
engineering.

To overcome the inevitable time-delay in the sensory-
motor systems, which would otherwise make sim-
ple tasks impossible, we need to predict or anticipate
the next moment of environmental dynamics as well
as body dynamics. Anticipation allows an individual
to obtain information about the environment because
errors between the anticipated and actual feedback from
the body can be used to measure and improve the motor
controller, or can be a simple source of instability. Fur-
thermore, functions to induce anticipation are strongly
related to the ability to adapt to the new environmen-
tal dynamics or impaired dynamics of body parts. In
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Table 1. Summary of weak and strong anticipation.

Weak anticipation Strong anticipation

Basic mechanism Prediction of motor
outcomes with internal
models to estimate
the body state for
generation of motor
commands

Synchronization of
internal dynamics
with body and
environmental
dynamics to reinforce
motor commands

Normal adaptation Updating of internal
models to produce
appropriate motor
commands

No need to tune the
parameters

Hyper adaptation May not to be applicable Reshaping of RNNs
to find the global
minimum

Examples Optimal feedback control,
MOSAIC

Anticipating synchro-
nization, outfielder
problems

examining how organisms achieve this, Stepp and Tur-
vey made a distinction between control methods based
on ‘weak’ and ‘strong’ anticipation [26] (Table 1).

Weak anticipationmethods use amathematical model
of the system under control to explicitly calculate its
future state. This allows appropriate control signals to
be formulated in down streams based on this future
state, rather than waiting for delayed feedback from the
body. Weak anticipation methods include feedforward
and feedback models such as Smith predictors, MOSAIC
[27], and optimal feedback control (OFC) models [28].
From the control engineering point of view, the feedback
delay between brain and body is a source of instabil-
ity, and the feedforward (internal) model plays a role of
stabilizing the feedback loops.

All of theweak anticipation-based control frameworks
need to construct an explicit model of the body dynam-
ics as an internal model to simulate the outcomes of
motor commands. Characteristically, a weakly anticipat-
ing predictor’s performance is maximized where the sys-
tem under control and its environment are fully under-
stood, and drops when this characterization is uncertain
or incorrect.

As an example of weak anticipation, theMOSAIC [27]
model is an extended version of OFC and suggests that
the brain encodes many contextual models that repre-
sent different physical tasks. By observing sensory cues, a
MOSAIC-based system can select a forward and inverse
model suited to the current environmental context or
begin the process of learning a new one if none matches.
The functional hypothesis ofMOSAIC is that thesemod-
els can collectively approximate a prediction for any given
scenario, although the number and diversity of models
that would be required are still under debate. Nonethe-
less, all weak anticipationmethodsmust contendwith the
difficulty of constructing a forwardmodel not only for the
(highly complex) human body, but also for every possible
interaction between the body and the environment.

By contrast, strong anticipation does not posit the
existence of a predictive model, but that anticipation
arises out of the real-time coupling of the organism (or
artificial system) with its environment [26]. The con-
troller or internal dynamics does not act as a predictor
in isolation for changing environment or target dynam-
ics, but only in concert with the sensors and actuators
of the body. Thus, the brain-body system as a whole
anticipates the future states of environmental or target
dynamics. In contrast to the weak anticipation, there is
no single internal dynamics that represents the exter-
nal dynamics. For example, the controllers developed
by Alverez-Aguirre et al. [29] and Eberle et al. [30] do
not model the feedback delay of the controlled system,
but automatically adapt to the length of delay without
parameter changes via the phenomenon of anticipating
synchronization [31]. Anticipation for the future state of
the target dynamics wasmade possible, without using the
internal model of the target dynamics, by out of the reso-
nance between the internal dynamics of the body and the
actual body dynamics itself. This provides a new perspec-
tive for engineering-inspired models of human motor
control, which traditionally take the sensors and actua-
tors (muscles) as fixed priors that do not contribute to the
ability to anticipate, and would indicate a dynamical sys-
tem approach for neuroscience and neurorehabilitation.
In later sections, we showedhowa strong anticipation can
be implemented in the control scheme to interact with
the environmental dynamics, and how the strong antic-
ipation via anticipating synchronization (one particular
branch) allows us to have a simple oscillator model capa-
ble of predicting the environmental dynamics and body
dynamics.

3.1.1. Optimal feedback controller: an example of
weak anticipation
As an example of the weak anticipation framework, an
attempt to explain themotor control comes in the form of
optimal feedback control (OFC) (for example, see [28]).
In principle, one desired state of body kinematics (e.g.
desired velocity and position) is input to the controller
of the OFC, and the controller also receives the input
from the feedback loops, which encodes the discrepancy
between the sensory feedback from the musculoskeletal
systems (body) and the predicted state from the internal
model of the body. In practice, the state estimator com-
bines the incoming afferent sensory feedback and an out-
come prediction of outgoing motor commands through
an internal forward model to construct an optimal esti-
mate of the body’s current state by tuning the feedback
gain in the controller.

In the OFC, a motor variance is hypothesized to be
a result of a ‘minimum intervention’ principle, where
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the feedback controller only corrects the feedback gain
parameters for task-relevant deviations. Motor planning
of feedback gain should proceed, depending on task goals
[32,33]. Once movement is initiated, motor commands
are generated by an OFC with the estimated state and
planned feedback gain.

The motor planning itself is context dependent; Cluff
and Scott showed that the motor system can produce
a spectrum of corrective responses that depend on the
behavioral goal of themotor task [33]. This also indicates
that the internal model is needed to simulate the envi-
ronmental and body dynamics to determine the motor
planning prior to themotor execution.Once amotor plan
has been specified, motor commands are generated by
an OFC that uses a state estimator to combine sensory
feedback and forward sensory prediction (based on an
efference copy of themotor command) in order to correct
motor errors. In summary, in terms of a whole control
scheme, ‘weak anticipation’ model of the OFC includes
(a) perception (b) simulation (c) motor planning and (d)
optimal functions.

3.1.2. Anticipating synchronization-based control
scheme: an example of strong anticipation
The optimal feedback model can stabilize the control to
achieve a goal, overcoming the time delay in the sensory-
motor systemby the internalmodel of the body.However,
this stable control is achieved by the precise represen-
tation of body dynamics within the internal model to
simulate the body dynamics. Thus, if the body dynam-
ics is altered due to the brain damage, it goes beyond the
functions of the OFC to exhibit the adaptation for a new
body dynamics. In addition, when the target has a certain
dynamics, and humans are engaged to trace a target, the
future state of the target cannot be predicted, requiring
another internal model that represents and simulates the
target dynamics.

Thus, here still remains the questions; (1) howhumans
can smoothly follow the target dynamics, predicting the
future state of its dynamics, and (2) the robustness of
the internal model of the body when it is damaged. We
considered that the framework of strong anticipation,
i.e. dynamical real-time coupling of internal dynamics
with the target/body dynamics, can shed a light into the
questions above.

Although the potential implementations of strong
anticipation are very diverse one, in particular, the strong
anticipation is applicable to the problem of humanmotor
control: anticipating synchronization. Let us think of the
situation in which an agent (follower) is anticipating
the environmental dynamics (leader). In the original AS
framework, ‘leader’ system is showing the autonomous
dynamics as a function of time. The ‘follower’ system has

the identical autonomous dynamics and is the coupling
term that tries to minimize the difference to the state of
the leader system. This AS Framework can be considered
as a variation in the synchronization between dynami-
cal systemswhere the ‘follower’ system synchronizes with
the future of the ‘leader’ system instead of its present state
[31]. Synchronization of the follower with the future state
of the leader is not a violation of causality but relies on the
fact that a deterministic dynamical system’s current state
is strongly determined by its past. Intuitively, the leader
and follower systems have the same autonomous dynam-
ics, and are running autonomously as a function of time;
in the follower system, the coupling term tominimize the
difference to the state of the leader, the self-feedback delay
of the follower (‘memory’ of the follower’s past state)
plays a role in ‘pushing’ the autonomous dynamics of the
follower to synchronize with the future state of the leader.

From here, we focused on the detailed formulation of
the AS-based strong anticipation. Mathematically speak-
ing, let us describe the leader system as x(t), and the
follower system as y(t). Both systems share the same
autonomous dynamics of f (x) as shown in Equations (1)
and (2). It was shown that anticipation could be induced
in the follower systems by adding a time-delayed cou-
pling K[x − y(t − τ)] (Equation 2) in which K is a cou-
pling parameter and τ denotes the degree of self-feedback
delay.

ẋ(t) = f (x(t)) (1)

ẏ(t) = f (y(t)) + K[x(t) − y(t − τ)] (2)

The coupling accelerates the time evolution of the fol-
lower until it ‘catches up’ with the leader; as shown by
Hayashi et al. [34], the coupling term with the time delay
is related to the renormalization of the follower’s time
step to be longer, leading to the faster evolution of the
follower dynamics. As a result, the follower system can
synchronize with the future state of the leader system,
y(t) = x(t + τ), steadily within a certain range of K and
τ . Anticipating synchronization was first demonstrated
in identical leader/follower autonomous dynamics, but it
was subsequently established that this is a sufficient, but
not necessary condition for stable anticipation [35,36].
Mathematically speaking, internal models of the body
or target are not necessary, as shown in Equation (2) in
which f (x) does not have to be the exact match of f (x) in
Equation (1), i.e. autonomous dynamics of the leader and
the follower does not have to be exactly the same. If the
autonomous dynamics of the follower is sufficiently sim-
ilar to that of the leader, the follower can anticipate the
future state of the leader. Thus, as long as the follower’s
behavior is sufficiently similar to that of the leader there
will be some region in which the anticipating manifold
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y(t) = x(t + τ) is stable and can be used to predict the
leader [35,37].

Oguchi and Nijmeijer used an AS follower system to
act as a nonlinear predictor in a delayed-feedback con-
trol problem, although this required an explicit internal
model of the feedback delay [29,38]. However, this still
falls short of the potential of anticipating synchroniza-
tion to deliver robust anticipation without reliance on
computational modeling of the external dynamics.

To develop a human model that can trance the
chaotic target, Eberle et al. developed a framework for
a novel ‘parallel’ controller (Figure 2), extending the AS
paradigm where the predictive capacity is linked directly
to feedback delay [30]. From the motor control perspec-
tive, as shown in Figure 2, the target signals, x(t), are
directed toward the parallel system, one signal goes to
the proportional control in which the delayed feedback
from the body (plant) is subtracted and multiplied by
the gain parameter, k. Therefore, the end-effector, y(t), is
designed to trace the target dynamics with the sensory-
motor delay.Meanwhile, the same target signal, x(t), goes
into the internal dynamics, and another feedback loop
is implemented to generate errors as input signals to
the internal dynamics. Having those two parallel con-
trol units with the feedback loops driven by the target
dynamics, original motor commands from theminimum
feedback model are reinforced by the motor commands
from the internal dynamics.

Here, the internal dynamics is not used to predict the
bodymotion, but to change the dynamical behavior of the
real body such that it can become the target’s follower and
predict the future state of the target. Crucially, the par-
allel system could predict a chaotically moving external
target despite the absence of a target model. Unlike previ-
ous implementationswithin the optimal feedback control
framework, the internal dynamics does not output a pre-
diction of the plant state, and there is no need to adjust the
gain parameters in the controller. The body’s response

Figure 3. Schematic illustration of the parallel model based
on anticipating synchronization. Environmental dynamics drives
both internal dynamics and body dynamics. Internal dynamics
with the feedback loops will reinforce the original motor com-
mands. Note that the internal dynamics is not internal models of
environmental or bodydynamics, just abandof oscillators.Wedis-
cussed thepossibility of using recurrent neural networks (RNNs) as
internal dynamics.

is a result of the resonance between the two parallel
feedback loops (Figure 3). This synchronization-based
adaptation occurs rapidly,meaning that the framework of
the AS based control scheme is highly adaptive by nature
to the changing environment and changes of the body
dynamics.

A further extension of the framework was demon-
strated [39], where the internal dynamicswas represented
by a bank of simple oscillators while maintaining the
predictive behavior for the environmental dynamics. Sur-
prisingly, as the nature of strong anticipation, neither an
exact model of the target nor the body is required for the
robotic hand to trace the chaotic motion of the target,
i.e. anticipation for the target dynamics. In other words,
the bank of oscillators as an internal dynamics could
represent the plant and target dynamics in the parallel
configuration and reinforce themotor commands to con-
trol the body coordination, compensating the time delay
in the sensory-motor system and predicting the future
state of target dynamics.

Figure 2. Block diagram of the ‘parallel’ system: internal dynamics g(·) condition the behavior of the body h(·) such that it can be
coupled with the target f (·) and predict its output such that x(t + τ) = y(t). Green elements represent intrinsic elements of the body
and target, while yellow elements are added to enable anticipation.
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To summarize the mathematical formulation of the
AS-based anticipating synchronization, let us give a com-
prehensive discussion below. In the control framework
based on the AS, for the target motion representing the
environmental dynamics, the harmonic oscillators could
induce the resonance of the body dynamics so that the
body coordination status can be used to predict the future
state of the target dynamics (Figure 3). Again, the bank
of harmonic oscillators in isolation is not the model of
the body or target dynamics. Thus, the ability to trace the
chaotic target in synchronization naturally emerged from
the systematic lawfulness of the configuration as shown
in Figure 3.

The ability to encode the internal dynamics in the
form of oscillatory dynamics is of interest given that such
systems are ubiquitous in biological organisms. Similar
properties are exhibited by certain recurrent neural net-
works (RNNs) that seek to represent the dynamical prop-
erties of the human brains. Thus, these networks might
represent an ideal platform for control based on strong
anticipation for more complex dynamics, because a bank
of non-linear oscillators can be a rich source of the non-
linear dynamics spanning a variety of landscape of cost
functions.

3.2. Control theories for normal adaptation

So far, control frameworks based on weak and strong
anticipation were introduced to mainly explain how they
work in terms of control. Here, we extend our approach
of two theoretical frameworks to discuss the adaptation
process inmotor learning where participants are asked to
learn a new environmental or body dynamics.

For example, let us think of the reaching task as shown
in Figure 1 under the unknown force field, and how
humans can learn or adapt to this new environmental
dynamics of the force field. In the OFC, while reaching
the target, the force field induces the discrepancy between
the predicted state of body parts and the actual state of
these parts (sensory-prediction errors). Initially, the gain
parameters in the feedback controller will be tuned, an
internal model of the force field will be generated, and
the motor commands will be generated to compensate
for the sensory-prediction errors. On the other hand, the
AS-based strong anticipation was initially validated in
manual tracking of non-chaotic targets, with andwithout
programmed feedback delays in the visual-motor systems
[40]. Participants were asked to track a chaotically mov-
ing target presented on a computer monitor by means of
controlling a similar on-screen object. The task success of
adapting to the introduced time delay in the visual feed-
back required anticipation on the part of the participant.
Stepp showed that (a) participants are able to synchronize

with a chaotic target, even with some amount of applied
delay; (b) the degree of anticipation to the target dynam-
ics varies systematically with applied time delay, and (c)
this systematic dependence of anticipation is the primary
feature of systems exhibiting anticipating synchroniza-
tion. Validation of the AS-based strong anticipation in
various experimental paradigms should be explored fur-
ther to explain the motor adaptation of humans in the
future.

3.3. Control theories for hyper-adaptability

In this section, let us focus on the adaptation mechanism
when the neural networks in the brain are damaged. In
the case ofOFC, depending on the damaged area, percep-
tion, simulation of body dynamics, motor planning, and
optimal functions will be affected; therefore, the effer-
ence copy and predicted state of the body coordination
will also be affected [41]. However, the OFC itself does
not have the explicit functions to recover those damages
or may not be developed to have functions in order to
resolve the damage to the neural networks.

On the other hand, AS-based strong anticipation has
been shown to work even in cases where the body
dynamics is not modeled. Therefore, the function could
be restored after damage to the internal dynamics by
much simpler adaptations to the closed loops of feedback
between the body and the brain. Since a simple follower
system can anticipate a complex leader, the remaining
functional neurons representing the internal dynamics
could be repurposed to resume anticipating the body’s
dynamics, utilizing the ability of self-organization. The
AS coupling without invoking the need for a ‘diagnos-
tic function’ can selectively repair the original internal
dynamics.

This autonomous ability of the strong anticipation
may be compatible with the usage of recurrent neural
networks, RNNs (please see the following sections) as
more adaptive internal dynamics. Using the harmonic
oscillators, we showed that the internal dynamics can
be resonanced with the target and body dynamics to
anticipate the future state of the target dynamics. If the
simple harmonic oscillators are replaced with the RNNs,
the internal dynamics will be enriched as a reservoir of
the nonlinear dynamics and the ability to repair itself,
when damaged, will be more enhanced as the closed
loops within the networks will have a higher function to
induce resonanced states with the body and environmen-
tal dynamics (Figure 3).

From the perspective of the reshaping neural net-
works for hyper-adaptation, when the brain reorganizes
neural networks by disinhibiting the pre-existing neu-
ral network that is normally suppressed (Figure 1), an
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internal dynamics based on RNNs can rapidly change
its dynamical behavior to explore the landscape of cost
functions (please see the following sections for details).
When RNNs are embedded within an AS-based internal
model, the systematic lawfulness of the control config-
uration (Figure 3) would allow the RNNs to find the
global minimum of the cost functions. That is, physical
intervention to the body dynamics can stimulate the feed-
back loops between the brain and the body to induce
the reshaping of the RNNs for the global minimum of
the cost functions as shown in Figure 1. In this section
of motor control theories for hyper-adaptability, we pro-
vided an overview of the two main frameworks, namely,
weak and strong anticipation, discussing the basic mech-
anisms of how they function and consequence for motor
adaptation. Although the discussion on weather the par-
allel model should be used to implement the RNN as an
internal dynamics needs to be clarified, the RNN would
have a higher affinity with the idea of strong anticipation
since it states that organisms like human beings anticipate
events by continuously coupling their own (cognitive or
somatic) processes to the dynamics of the environment.
To induce the motor coordination for a given purpose,
quite a few control frameworks would be able to achieve a
goal; however, the mechanisms themselves can be differ-
ent. Thus, as in the following sections, the physiological
experiments conducted to measure the activity of neu-
rons will play an important role to validate the extracted
dynamics against the motor coordination and to dis-
cuss further the control framework used in the motor
coordination of humans.

4. Neural networkmodeling of hyper-adaption

In the previous sections, we reviewed the examples of
hyper-adaptability in humans after stroke or traumatic
brain injuries and discussed the applicability of control
theories (weak and strong anticipation) in understanding
the mechanisms of hyper-adaptability. These behavioral
and theoretical considerations highlighted the ‘recon-
struction’ of neural structures, which is essential for
hyper-adaptation and differentiate it from normal adap-
tation. To understand the circuit mechanism of hyper-
adaptability, it is necessary to establish neural network
models that can recapitulate the behavioral change dur-
ing hyper-adaptation. In addition, such neural network
modeling also provides useful insights into physiologi-
cal observations during hyper-adaptation. In the previ-
ous section, we attempted to apply the recurrent neu-
ral networks to replace a control process (i.e. internal
dynamics). Here, we more generally discuss how recent
advances of neural network modeling can be used to
understand the circuitmechanisms of hyper-adaptability.

4.1. Neural networkmodeling of sensory-motor
systems

Neural networkmodeling has emerged as a powerful tool
to emulate the neural functions and to infer their circuit
mechanisms, such as sensory processing [42], decision
making [43], and motor control [44–46]. One of the
biggest successes is the application of feedforward neural
networks (i.e. networks that only have feedforward con-
nections) to recapitulate a neural processing of ventral
stream in the visual system [42]. Such a feedforward net-
workwas successfully trained to identify objects in a large
dataset of images (ImageNet). An advantage of neural
network modeling is that once the network is sufficiently
trained, researchers can ‘look inside’ the network, includ-
ing synaptic connections and network structures, to get
insights for critical structure, which achieves the desired
functions. For example, the trained network of the ven-
tral stream demonstrated that the neural responses of
layers in the network were surprisingly similar to those
recorded from the visual system, indicating the hierar-
chical and serial processing in the ventral stream.

However, in contrast to a huge success of the feedfor-
ward networks in modeling of the sensory system, their
application to the motor system has not been successful.
One of the potential reasons is that the motor control
is fundamentally based on the interaction between top-
down motor commands and feedback information. The
ultimate goal of motor system is not to ‘represent’ some
behavioral parameters, but to ‘generate’ a temporal, i.e.
dynamic, pattern of motor outputs, such as muscle acti-
vation patterns [47]. Unlike a feedforward network, an
RNN contains recursive connections that allow the past
states of neurons to influence their current state, and it
can generate a temporal pattern of motor outputs. In the
RNN, the activity of the network (r) can be viewed as a
differential equation of the input (u) and the ownnetwork
activity:

ṙ(t) = Jr(t) + u(t) (3)

where J represents the system dynamics that defines how
the network activity develops over time.

4.2. RNNmodeling ofmotor control, preparation
and learning

Recent development of neural recording techniques from
a large-scale neural structure allows us to find a neu-
ral state which represents patterns of population neural
activity rather than the individual neurons. For exam-
ple, when monkeys make a reaching to spatial target,
each neuron in the motor areas shows a wide variety
of patterns of activity, which does not seem to consis-
tently represent any specific motor parameters, such as



ADVANCED ROBOTICS 11

muscle activity or hand position [48]. However, when a
dimensional reduction technique (e.g. PCA and jPCA)
is applied to high-dimensional neural activity, the pop-
ulation activity can be successfully expressed as a com-
bination of smaller sets of population activity that can
be expressed as a low-dimensional subspace of neural
activity [49]. This finding indicates that a population
of motor cortex neurons are not independently acti-
vated but regulated to reflect the body and behavioral
constraints. Interestingly, when an RNN was trained
to reproduce muscle activity that was experimentally
recorded from monkeys during reaching, similar low-
dimensional subspaces of neural activity spontaneously
appeared in the RNN although it was not explicitly
required [46]. This result suggested that in a normal state,
the network connections in themotor cortex can be opti-
mized to performmotor tasks, and the network dynamics
of the motor cortex is confined to a low-dimensional
subspace (Figure 4(a), a yellow plane). Similar results
were found when the RNN was trained to reproduce
the arm velocity during reaching rather than the muscle
activity [50].

What is the functional implication of the low-
dimensional subspace of the network dynamics of motor
cortex? Recent studies have suggested that there are at
least two advantages of the low-dimensional dynamics
in the motor system: separation of multiple processes
and facilitation of motor learning. Firstly, it can separate
the neural processes for motor execution from those that
should not affect motor outputs directly, such as motor
preparation. For example, motor preparation facilitates
the performance (speed and accuracy) of the forthcom-
ing motor behaviors, but the neural activity involved in
the motor preparation should not evoke motor outputs
before the start signal arrives. Therefore, the process for
motor execution and preparation should be separated
although both are processed in the same motor cortical
neurons. Kaufman et al. (2014) demonstrated that the
preparatory activity in the motor cortex spanned a neu-
ral subspace that is orthogonal to a subspace for motor
output [51]. This finding suggests that motor prepara-
tion can be made without affecting the motor outputs.
This separation of output null (motor preparation) and
output-potent (motor execution) dimensions allows the
network to perform multiple processes simultaneously
and independently. The RNN modeling of motor prepa-
ration and execution activity replicates these subspaces
that are located orthogonally.More interestingly, the neu-
ral states in the preparatory and execution subspaceswere
not randomly related, but they were tightly related to
each other [44]. This modeling results suggested that the
low-dimensional dynamics of the motor cortex can cre-
ate several subspaces separately for the multiple neural

functions and ‘gate’ them fromone space to the other (e.g.
from motor preparation to motor execution).

Another advantage of the existence of low-
dimensional dynamics in the motor system is that it
can facilitate motor learning and adaptation. Accumulat-
ing evidence showed that the low-dimensional subspace
of motor cortex dynamics was consistent across multi-
ple behaviors [52], over a long period of time [53,54],
and during motor learning [54]. Using a brain-computer
interface (BCI) technique in monkeys, Sadtler et al.
examined how quickly monkeys can adapt to novel BCI
mappings (i.e. mappings between neural activity and cur-
sor movements), which are designed to be within or out-
side of the original subspace of the motor cortex dynam-
ics [55]. Their results showed that monkeys could readily
learn to control the cursor when the change was within
the original subspace, whereas they were less able to learn
the new mapping if it was outside of the original sub-
space. To understand the circuit mechanisms that cause
the difference in the motor learning ability, Feulner and
Clopath (2020) trained RNNs and compared their adapt-
ability to change of the BCI mapping within and outside
of the original subspace [45]. Their results showed that
RNN can predict error feedback signal more correctly
when the change was within the original subspace than
when it was outside of the original subspace and resulted
in the better learning performance, suggesting that the
low-dimensional subspace provided a constraint to cor-
rectly estimate the error feedback for motor learning.
These results give functional implications for the exis-
tence of the low-dimensional subspaces of the motor
cortex.

4.3. Perspectives for RNNmodeling of
hyper-adaptability

In the previous section, we reviewed the recent advances
regarding the neural dynamics of the motor system and
applications of RNNmodeling to determine the underly-
ing network mechanisms. Here, we further discuss how
to employ these approaches to investigate the neural
mechanisms of hyper-adaptability.

Figure 4 shows a schematic illustration to explain
possible scenarios about how the network changes dur-
ing hyper-adaptability. First, in a normal situation, the
network dynamics is optimized to body and behavioral
constraints and confined to a low-dimensional subspace
(Figure 4(a)). During normal adaptation (e.g. force field
adaptation), network weights are changed but the low-
dimensional subspace is preserved [54]. Then, if the net-
work is damaged by stroke or traumatic brain injuries,
a part of the network can be lost, and this prevents the
neural state from fully exploring the original subspace
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Figure 4. Schematic illustration of the network modeling of normal state and hyper-adaptability.

and causes motor impairments (Figure 4(b)). To recover
from the impairments, the network needs to explore a
large range of networks, including latent networks, which
were less active in a normal state (r4 in Figure 4(c)). After
that, the network also needs to re-optimize its dynam-
ics to obtain the new control subspace to recover motor
function. Note that, in the recovered state, the optimized
subspace is not necessarily the same as that of the orig-
inal activity pattern (e.g. the activity of neurons r2 and
r3 are different from the normal state), but their activ-
ity could be re-optimized for the new network structure
including recruited the latent networks (e.g. r4). In this
scenario, in order to identify the mechanism that causes
the hyper-adaptability, it is important to determine the
factor that regulates or facilitates the re-optimization of
neural dynamics from the normal state to the recovered
state.

Previous studies have demonstrated some common
principles that explain the changes in the neural dynam-
ics in the recovered state (Figure 4(d)). First, func-
tional recovery can be constrained by subspaces of lower
motor systems, such as the brainstem and spinal cord
(Figure 4(d) top). For example, muscle synergies, which
are believed to be predominantly implemented in the
subcortical systems [56–59], can be preserved after a
cortical stroke [22,23]. This result suggests that the net-
work dynamics of a lower system might constrain a
control space where the higher system needs to explore
to re-optimize the network dynamics during hyper-
adaptation. This constraint might help the motor system
to achieve faster and robust learning similar to the BCI
motor learning within the original subspace [45,55].

Second, hyper-adaptation sometimes caused disinhi-
bition to employ latent networks that are less active in
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a normal state (Figure 4(d) bottom). After stroke or
spinal cord injuries, indirect corticomotoneuronal path-
ways such as propriospinal and cortico-rubral pathways
are recruited to achieve functional recovery [60–62]. In
addition, ipsilateral motor areas, which are usually less
activated during unilateral limb movements, are acti-
vated to increase the interhemispheric interaction after
spinal cord injuries [63,64]. Interestingly, these latent
neural circuits are mostly phylogenetically and develop-
mentally older systems, but they are preserved in devel-
oped nervous systems. These observations are consis-
tent with basic principles proposed by Gerald Edelman
that development and plasticity of the central neural sys-
tem occurs in a bottom-up manner through a natural
selection of neuronal groups rather than in a top-down
manner [65]. From a neural network perspective, the
hyper-adaptation can be viewed as a bottom-up process
to reproduce a neural development with (1) the exten-
sive exploration of the nervous system and (2) selec-
tion or reoptimization of the neural dynamics to achieve
behavioral goals.

It is of interest how the latent, normally suppressed,
circuits are recruited and the entire dynamics is reop-
timized. The neural interactions can be investigated by
combining a large-scale neural recordings and statisti-
cal techniques to infer the causal interactions, such as
Granger causality, or dynamical causal modeling. How-
ever, all of these methods are based on the correlational
estimates of neural interactions, and they cannot accu-
rately deal with the problemof confounders like common
input or recurrent connectivity [66]. Perich and Rajan
recently proposed a novel approach to describe the inter-
actions of neural networks using data-driven RNNmod-
eling [67]. This technique trains RNN models to match
not only the final outputs with target outputs, but also the
network activity with ‘teacher’ activity, which is experi-
mentally recorded. Using this approach, they successfully
recapitulate the changes in the neural dynamics of the
whole brain recordings from larval zebrafish and identify
a putative interaction between habenula and the raphe
nucleus during adaptation to inescapable stress [68].
Critically, these neural network modeling approaches
provide useful insights into the mechanistic change dur-
ing the hyper-adaptation because these data-driven RNN
can explicitly model the latent network, which is sup-
pressed during normal states and is difficult to model
with conventional RNN training algorithms.

5. Future direction to understand the neural
mechanisms for hyper-adaptability

Hyper-adaptability is the ability of the human to bridge
the gap that occurs in the brain-body system by

reconstruction of their neural structure and reconstitu-
tion of motor principle. Although humans have the capa-
bility to learn new motor skills under the given environ-
ments and musculoskeletal systems utilizing the existing
neural networks, hyper-adaptability becomes important
to relearnmotor functions after the brain is severely dam-
aged. In this survey paper, we reviewed how the human
brain changes after injury and how the rehabilitation
methodology induces motor recovery. When the neu-
ral networks are injured due to brain damage, humans
are unable to utilize conventional neural networks. In
the context of hyper-adaptability, rehabilitation interven-
tion is considered to modify the neural networks and to
encourage the use of latent neural circuits, which humans
do not use in the normal state.

To prompt hyper-adaptation, the motor-impaired
patients could explore different motor strategies in the
latent neural networks by utilizing the low-dimensional
subspace of the musculoskeletal systems (e.g. muscle
synergy). As previous studies suggested, motor-impaired
patients after brain injury could utilize muscle syner-
gies preserved in the spinal cord [23–25], and the acti-
vation of muscle synergies improve by rehabilitation
[12]. Identifying the existing muscle synergy structure
and utilizing them in rehabilitation would be benefi-
cial for restoring the motor function of the patients
with motor impairment. Furthermore, it is worthwhile
to examine the effects of a combination of different
intervention methods, such as CI therapy, disinhibi-
tion, and facilitation. To fully utilize these rehabilitation
methods, it is necessary to understand how neural net-
work models change through rehabilitation after a brain
injury.

One promising approach is the application of neural
network models to recapitulate the process of functional
recovery after motor dysfunctions. This approach can
be divided into two steps: (1) building network models
to reproduce intact behavior (forward engineering) and
(2) ‘breaking’ the model to analyze the internal struc-
ture and emulate the motor impairments and recovery
processes (reverse engineering). Michaels et al. (2020)
showed that the inhibition of a part of hierarchical RNNs
showed unique patterns of motor deficits similar to those
observed in animal experiments [69]. Other studies also
demonstrated that deactivation of brain areas could be
emulated by the deactivation of motor control models,
such as the optimal feedback control model [70,71]. The
network model approaches (such as hierarchical RNNs
and other variants) will be more critical to bridge the
gap between the theoretical predictions and physiological
observations.

Another feasible application of neural network mod-
els is to understand the development and evolution of
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the central nervous system. To understand the reorga-
nization of neural systems for a large-scale change in
the nervous system (i.e. hyper-adaptability), it is impor-
tant to consider how the latent neural structures are
recruited and reoptimized to adapt to the change of the
nervous system and body. How these latent neural struc-
tures are selected and preserved during development and
across species is a fundamental question in neuroscience
[65,72]. Training and testing network models could pro-
vide a mechanistic explanation of the development and
preservation of latent structures and recruitment while
recovering from the nervous system impairment.

One limitation of network modeling is that training
algorithms are not biologically plausible. Trained RNNs
can recapitulate the animal behaviors and neural dynam-
ics, but most of the previous studies used biologically
less feasible algorithms, such as backpropagation through
time [73], transfer learning [74], and data-driven RNN
modeling [67]. This prevented us from considering the
time-course of the learning process with regard to the
adaptation of animals. Recently, biologically more plau-
sible algorithms have been proposed, such as Hebbian
learning [75]. These algorithms might provide useful
insights into the time-course of development and adapta-
tion, including hyper-adaptability. Further development
and investigation are warranted.

In terms of neurorehabilitation, the process of regain-
ing motor control in impaired parts of the body can be
considered as reshaping the neural networks and recon-
stituting the control scheme in the brain. Although some
parts of the neural networks are damaged, using the
framework of the strong anticipation, we suggest that the
nature of the nonlinear reservoir of RNN as an internal
dynamics and low dimensional space based on synergy
from the muscle allow the reshaping of the RNN for a
rapid adaptation of the new body. The former is gener-
ated by the resonance of the RNN with the body dynam-
ics based on the AS control framework, and the latter by
the constraint of body kinematics and dynamics through
sensory-motor feedback loops. It could be more impor-
tant to identify the robustness or adaptability of each
latent neural systems to unravel the neural mechanism of
hyper-adaptation and leverage them for rehabilitation.
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