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A B S T R A C T

An effective anomaly detection system is critical for marine autonomous systems operating in complex
and dynamic marine environments to reduce operational costs and achieve concurrent large-scale fleet
deployments. However, developing an automated fault detection system remains challenging for several
reasons including limited data transmission via satellite services. Currently, most anomaly detection for marine
autonomous systems, such as underwater gliders, rely on intensive analysis by pilots. This study proposes an
unsupervised anomaly detection system using bidirectional generative adversarial networks guided by assistive
hints for marine autonomous systems with time series data collected by multiple sensors. In this study, the
anomaly detection system for a fleet of underwater gliders is trained on two healthy deployment datasets
and tested on other nine deployment datasets collected by a selection of vehicles operating in a range of
locations and environmental conditions. The system is successfully applied to detect anomalies in the nine
test deployments, which include several different types of anomalies as well as healthy behaviour. Also, a
sensitivity study of the data decimation settings suggests the proposed system is robust for Near Real-Time
anomaly detection for underwater gliders.
. Introduction

Whilst autonomous systems are predicted to become pervasive in
he maritime industry (Department for Transport, 2019), this growth is
urrently heavily constrained by the challenges of fully independent
emote operation in hazardous and dynamic marine environments.
arine Autonomous Systems (MAS), such as Underwater Gliders (UGs),

an be at sea for up to months at a time, during which they periodically
urface and communicate via satellite with remote expert operators
nown as pilots. The transmission of data to and from the MAS is
everely constrained by low-bandwidth satellite, making it challenging
or pilots to monitor MAS time series data and behaviour during oper-
tion manually. If the underlying cause of observed adverse behaviour
annot be correctly diagnosed and the situation remedied, e.g. via the
emote adjustment of piloting parameters or mission scope, the MAS
nd its data cargo can be lost or present a hazard to shipping (Thieme
nd Utne, 2017). As a result, to reduce operational costs, increase
eliability and scale-up the use of MAS within the maritime industry,
trategies must be developed for automated anomaly detection and
ault diagnosis.

The code of practice for maritime autonomous surface systems
eveloped by Maritime UK (Maritime UK, 2019) recognises the need
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E-mail addresses: peng.wu.14@ucl.ac.uk (P. Wu), e.anderlini@ucl.ac.uk (E. Anderlini).

1 https://github.com/pwu01/ALADDIN-BiGAN-anomaly-detection

for MAS to support on-board signal processing with remote condition
monitoring to interpret the impact of faults and adverse conditions
on the vehicle’s safety and performance. On-board systems are lim-
ited by power and computational constraints, whilst current manual
detection and diagnosis approaches are limited by the experience of the
individual pilot and are subject to human error, especially when MAS
require pilot attention around the clock. In the absence of general on-
board anomaly detection and diagnosis systems, the ability to transmit
sensor data in a timely manner to an off-board system and to receive
appropriate commands in response becomes of critical importance for
MAS safety and performance.

The operation of MAS platforms beyond the visual line of sight
requires a suitable command and control system. For example, the UK’s
National Oceanography Centre (NOC) Oceanids C2 system is a platform
to support the over-the-horizon operation of MAS within the National
Marine Equipment Pool for efficient fleet management (Farley et al.,
2019; Harris et al., 2020). Another example is the LSTS Neptus and
Dune over-the-horizon command-and-control environment (Dias et al.,
2005; Madureira et al., 2013; Pinto et al., 2013). This work aims to
develop a holistic automated anomaly detection system1, well-suited
to the limited availability of multivariate time series data during MAS
operations.
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The contributions of this study are twofold. First, this work proposes
n improved Bidirectional Generative Adversarial Networks (BiGAN)
nomaly detection system guided by periodic assistive hints to achieve
ffective and stable training of generative adversarial models. Second,
his work introduces a novel holistic anomaly detection system for MAS
o be integrated within remote control centres to monitor operations
ver the horizon. The system is based on BiGAN to detect faults by
racking the anomaly score. As compared with state-of-the-art anomaly
etection systems for MAS that exploit steady-state conditions, deep
eural networks are used to capture dynamic effects from the time
eries data. Two healthy deployment datasets in time series are used
o train the system via unsupervised learning. The developed system
s tested using actual datasets from nine deployments collected by a
election of vehicles operating in a range of locations and environmen-
al conditions with varying mission length. A sensitivity analysis on
he data decimation settings for satellite communication suggests the
roposed approach is insensitive to these settings, making it suitable
or Near Real-Time (NRT) anomaly detection for UGs that are known
o be under-observed systems. Such an unsupervised approach requires
inimum training data preparation efforts and successfully detects

nomalies for the nine test MAS deployments.

. Related work

Methods for condition monitoring can be subdivided into model-
ased and data-driven diagnostics (Fink, 2020; Fink et al., 2020). The
ormer rely on dynamic models of the physical systems, whereas the lat-
er on the analysis of actual sensor data. Whilst model-based solutions
re better for condition monitoring of new systems where available
ata is limited, data-driven methods show significant improvements in
ccuracy in the cases where significant prior data exists (Michau and
ink, 2021).

A review of nonlinear model-based methods for condition monitor-
ng can be found in Hong et al. (2008). These approaches are useful
or systems that present strong nonlinearities or coupling. A summary
f fault detection methods for aircraft based on signal-processing and
ynamic models can be found in Zolghadri et al. (2015). These tech-
iques are robust, simple and computationally relatively inexpensive.
ata-driven methods can be generalised to different fault detection and
iagnosis problems and scaled to a large number of sensors. These
pproaches would require the data to be appropriately collected and
rocessed.

Crestani et al. (2015) integrated fault tolerance into the design of a
obot real-time control architecture showing the benefits of including
ondition monitoring considerations from the initial stages of design
f a new prototype. Specifically for Autonomous Underwater Vehicles
AUVs), many fault detection studies involve thrusters, inclusive of
odel-based solutions (Freddi et al., 2013), radial basis function net-
orks (Wang and Zhang, 2006), Gaussian particle filter (Sun et al.,
016) and artificial immune system (Yao et al., 2018). Clustering
olutions are also investigated by Ray Harris (2015) to determine
aults in an unsupervised way. Raanan et al. (2016, 2018) have devel-
ped an automatic fault detection system for long-range AUVs based
n Bayesian nonparametric topic modelling techniques. Although the
ataset focuses on the identification of bottoming events, the behaviour
f the analysed long-range AUV is similar to that of UGs. The nearest
eighbour classifier presents particularly high accuracy over two dif-
erent test sets. A system to develop safety indicators for the operation
f MAS is described in Thieme and Utne (2017), with a case study on
n AUV. Hamilton et al. (2007) propose an integrated fault detection
nd diagnosis architecture for AUVs, although the focus is on on-board
ystems. Anderlini et al. (2020a) have designed rule- and model-based
ethods for the detection of the loss of wings on UGs and the onset of
igh levels of marine growth on UGs (Anderlini et al., 2020b). Further
ork by Anderlini et al. (2021a) has developed and tested an anomaly
etection system that blends model- and data-based solutions to detect
oth simulated and naturally accumulated biofouling.
2

Pang et al. (2021) provide a comprehensive review of deep learning
for anomaly detection, and propose a taxonomy by classifying the state-
of-the-art deep anomaly detection techniques into three categories,
i.e. feature extraction, learning feature representations of normality
and end-to-end anomaly score learning. In the category of learning
feature representations of normality, models based on Auto-Encoder
(AE) are proposed to detect anomalies by learning low-dimensional
feature representations to reconstruct given data instances (Sakurada
and Yairi, 2014; Zhou and Paffenroth, 2017; Borghesi et al., 2019). For
the anomaly detection of UGs, Anderlini et al. (2021b) have developed
different data-driven solutions, including feedforward neural networks
and AEs that can detect anomalies such as wing loss and marine growth.
However, the features learned by AE-based models can be biased by
infrequent normalities in the training dataset. With data instances
encoded by a prior distribution over the latent space, Variational Auto-
Encoder (VAE) enables a better reconstruction of input data instances;
hence improved anomaly detection performance can be achieved. For
anomaly detections of multivariate sequence data, variants of VAE
have been developed (Su et al., 2019; Li et al., 2020). The Generative
Adversarial Networks (GAN) proposed by Goodfellow et al. (2014) can
capture the data distribution via generative and adversarial processes.
The improved capability of capturing data distribution is particularly
useful for anomaly detection applications (Di Mattia et al., 2019).
The superior feature representation learning capability makes GAN
particularly promising for remotely operated MAS (e.g. UGs) that can
be highly under-observed due to low data transmission bandwidth
and limited sensing ability to reduce the on-board space and power
requirements. However, GAN are constrained by issues such as training
instability (Pang et al., 2021).

Based on work of Goodfellow et al. (2014), Donahue et al. (2016)
and Dumoulin et al. (2016) have developed variants of the orig-
inal GAN, i.e. Adversarial Learned Inference GAN (ALI-GAN) and
Bidirectional-GAN (BiGAN), respectively, to additionally learn a latent
representation of the data, which have become the basis of several
GAN-based anomaly detection systems. Zenati et al. (2018) developed
a BiGAN-based anomaly detection system for high-dimensional real-
world data such as images. Schlegl et al. (2017, 2019) have developed
a series of BiGAN based anomaly detection models for medical image
anomaly detection. An earlier study by Li et al. (2018) applied GAN
to detect cyber attacks, using multivariate time series with the need
of the inference process to map the test data back to latent space. Al-
though these GAN-based anomaly detection systems appear successful
in the applied domains, the GAN-based anomaly detection system is
still relatively difficult to train for reasons including its unsupervised
nature and the generative and adversarial process between multiple
deep neural networks (Mutlu and Alpaydin, 2020). Despite GAN-based
anomaly detection systems’ success in other domains, they have not
been applied to MAS, which are subjected to limited accessibility to
system data and require a high level of generality to detect unpredicted
anomalies in highly dynamic ocean environments.

3. Underwater gliders and data description

3.1. Slocum underwater gliders

All data used in this study are from deployments of Slocum G2
UG (Teledyne Webb Research, 2012), manufactured by Teledyne Webb
Research (Webb et al., 2001; Schofield et al., 2007). As shown in Fig. 1,
a Slocum UG is actuated by a Variable Buoyancy Device (VBD), which
enables the vehicle’s displacement and thus its buoyancy to be varied.
Pitch is controlled by shifting the position of a movable battery pack,
and the yaw angle is controlled using a rudder. Using fixed wings
to provide lift, gliders can perform a sawtooth-like profile through
the water-column. A Slocum UG starts a ‘‘yo’’, or cycle, by reducing
its buoyancy and shifting the battery forward to initiate the descent,

then extends the VBD and shifts the battery afterwards to climb to a
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Fig. 1. Diagram showing the concept of operation of a Slocum UG. The drawing is not to scale: the analysed vehicles reach their apogee at a maximum depth of either 200 m
or 1000 m and have glide path angles with a magnitude in the range of 15◦ to 30◦.
Table 1
The data applied in this study is measured by a number of Slocum G2 gliders over eleven developments.

No. ID Date Project Organisation Location Duration [days] Status Purpose

1 unit 345 2014 AtlantOS, CaNDyFloSS NOC The Celtic Sea 123.9 Healthy Training
2 unit 397 2015 AtlantOS, CaNDyFloSS NOC The Celtic Sea 45.9 Healthy Training

3 unit 419 2015 AtlantOS, CaNDyFloSS NOC The Celtic Sea 11.0 Healthy Testing
4 unit 399 2015 AtlantOS, CaNDyFloSS NOC The Celtic Sea 84.6 Possible biofouling Testing
5 unit 423 2015 AtlantOS, CaNDyFloSS NOC The Celtic Sea 6.8 OMG Testing
6 unit 424 2015 AtlantOS, CaNDyFloSS NOC The Celtic Sea 20.8 OMG Testing
7 unit 194 2017 ALTERECO NOC The North Sea 83.9 Angle of list Testing
8 unit 304 2019 ALTERECO NOC The North Sea 76.9 Loss of right wing Testing
9 unit 345 2019 ALTERECO NOC The North Sea 76.8 Strong disturbances Testing
10 unit 436 2019 ALTERECO NOC The North Sea 89.8 Loss of left wing Testing
11 unit 492 2020 IDUG PLOCAN Gran Canaria 9.5 Simulated biofouling Testing
designated depth at the apogee, completing the glider’s ‘‘yo’’. A single
dive can comprise multiple yos as shown in Fig. 1.

Once deployed, UGs operate fully autonomously, with pilots relying
on a limited snapshot of multivariate time series data sent via satellite
whilst the vehicle is on the surface, which includes system health
variables, current instructions, last GPS position and decimated data
from past dives. During normal operation, the remote pilots will first
manually check this dataset for subsystem errors, warning and oddities
reported by the glider itself (e.g. glider stalls, behaviour errors, and
communication interruptions Schofield et al., 2007) along with the
sawtooth dive profile to ensure each yo is symmetrical and the glider is
reaching the target depth. Progress towards the target waypoint is also
considered, along with a check of the battery health and consumption.
This check is usually performed once per day, with the pilot making
smaller observations more regularly after each dive. Therefore, pilots
are only likely to look into the flight parameters in detail if the glider:
is reporting errors in these subsystems, is failing to dive correctly or
is clearly not making expected progress. Hence, issues that gradually
emerge or that affect parameters outside those routinely monitored,
such as roll, can go unnoticed, resulting in significant impacts on
vehicle endurance and safety. Consequently, a smart anomaly detection
system is crucial.

3.2. Datasets

Table 1 lists the multivariate time series datasets used in this study.
The datasets are measured by Slocum G2 gliders over ten deployments
operated by the NOC (1–10) (BODC, 2019) and one deployment (11)
operated by the Oceanic Platform of the Canaries (PLOCAN) giving a
total of 11 deployments. The labels correspond to healthy or standard
baseline conditions, natural and simulated biofouling, angle of list,
loss of one wing, strong environmental disturbances, e.g. due to ocean
currents, and bulky sensory packs, e.g. the turbulence probes for the
Ocean Microstructure Gliders (OMG). Biofouling caused by marine
growth in shallow, warm and tropical waters can lead to an increase
3

Table 2
Sensor list.

No. Sensor No. Sensor No. Sensor

1 Battery position 6 Pressure 11 Heading
2 Battery voltage 7 Roll 12 Temperature
3 State of charge 8 Rudder angle 13 Vacuum
4 Leak detection voltage 9 Pitch 14 VBD
5 Vertical velocity 10 Conductivity 15 sci_pressurea

asci_pressure is the pressure as measured by the scientific payload pressure sensor.

of a UG’s weight, a significant drop in speed, even possible premature
retrieval at sea (Anderlini et al., 2020b). OMG would lead to a higher
drag coefficient and a higher negative buoyancy offset. The first two
deployments (healthy) are used to train the anomaly detection system
and the remaining nine datasets, which include several anomalies as
well as healthy behaviour, are used for testing purposes to assess the
generality of the approach.

The variables are detailed in Table 2. Mission specific geographical
positions, control signals (heading control, pitch control, rudder angle
control and VBD control) are not included in the datasets to ensure
generality. The vertical velocity is calculated from the depth signal,
which is in turn obtained from the pressure signal. The scientific
pressure sensor measures the sci_pressure signal.

4. Anomaly detection using BiGAN

The presented anomaly detection method is based upon BiGAN
(Donahue et al., 2016), with additional training hints guiding more
effective generator (𝐺) and discriminator (𝐷) training. In each training
iteration, the discriminator, generator and encoder (𝐸) are trained
concurrently. The assistive hint loss function is applied periodically to
guide the encoder and generator using the errors terms of data patch
reconstruction and discriminator feature. This approach is inspired
by Schlegl et al. (2019) and Mutlu and Alpaydin (2020) but has been
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Fig. 2. Structure of the BiGAN (Donahue et al., 2016).

improved. In Schlegl et al. (2019), the encoder 𝐸 is trained only after
𝐷 and 𝐺 have been trained, whereas in this study the discriminator,
generator and encoder are trained concurrently. In Mutlu and Alpaydin
(2020), the hint loss is added directly to the BiGAN loss function; our
approach instead applies a periodic update step to the parameters of
the generator and encoder.

4.1. Problem statement

Goodfellow et al. (2014) proposed Generative Adversarial Networks
for estimating generative models via an adversarial process training a
generative model 𝐺 to capture the data distribution, and a discrimina-
tive model 𝐷 that estimates the probability that a data sample comes
from the training data or is generated by 𝐺. This framework trains 𝐷
and 𝐺 concurrently such that 𝐷 maximises the probability of assigning
the correct label to both training samples from data 𝑥 and generated
samples from 𝐺. 𝐷 and 𝐺 play a minimax game with the value function
𝑉 (𝐺,𝐷):

min
𝐺

max
𝐷

𝑉 (𝐷,𝐺) = E𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)
[

log𝐷(𝑥)
]

+ E𝑧∼𝑝𝑧(𝑧)
[

log (1 −𝐷(𝐺(𝑧)))
]

(1)

where 𝑥 ∼ 𝑝𝑑𝑎𝑡𝑎(𝑥) is the data distribution, 𝑧 ∼ 𝑝𝑧(𝑧) is a prior on input
noise variables. Although the ability of the original GAN framework
to learn generative models mapping from simple latent distributions to
arbitrarily complex data distributions has been demonstrated, it cannot
project data back into the latent space. The BiGAN (Donahue et al.,
2016) and ALI-GAN (Dumoulin et al., 2016) adopt a similar approach
using an encoder with a generator to learn this inverse mapping.

Fig. 2 shows the structure of the BiGAN, which includes an addi-
tional encoder 𝐸 that maps data 𝑥 to its latent representations 𝑧. A
trained BiGAN encoder can serve as a useful feature representation for
related semantic tasks, i.e. the latent representation 𝑧 can be regarded
as a representation of data 𝑥. Unlike the standard GAN (Goodfellow
et al., 2014), the discriminator 𝐷 of the BiGAN discriminates (𝑥,𝐸(𝑥))
nd (𝐺(𝑧), 𝑧). The training objective of the BiGAN is:

in
𝐺,𝐸

max
𝐷

𝑉 (𝐷,𝐸,𝐺) = E𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)
[

log𝐷 (𝑥,𝐸(𝑥))
]

+ E𝑧∼𝑝𝑧(𝑧)
[

log (1 −𝐷(𝐺(𝑧), 𝑧))
]

(2)

Algorithm 1 details the training process of the BiGAN-based
anomaly detection system. Donahue et al. (2016) have proven that
the encoder 𝐸 and generator 𝐺 must learn to invert one another in
order to fool the discriminator 𝐷. The encoder and generator of the
BiGAN structure behave similarly to the encoder and decoder of an
independent auto-encoder which learns a representation for a set of
input data and reconstructs the data samples as closely as possible
to their original inputs. Inspired by this feature of auto-encoders,
we use the reconstruction difference between the input sample and
reconstructed data to assist the BiGAN training, i.e. using the 𝐿2 norm
between the input data 𝑥 and its reconstruction 𝐺(𝐸(𝑥)) via 𝐸 and 𝐺:

𝑟𝑒 =
1
𝑛𝑥

‖𝑥 − 𝐺(𝐸(𝑥))‖2 (3)

here 𝑛 is the number of input data elements.
𝑥 h

4

Fig. 3. Anomaly detection using BiGAN for underwater gliders: (a) training using
normal data and (b) testing using unseen deployment data.

It is worth noting that Mutlu and Alpaydin (2020) have proposed
training generative adversarial models using several assistive hints.
However, such hints are added to the BiGAN loss function directly in
their approach. This work proposes applying such hints periodically
to achieve higher training efficiency. In addition, in the discriminator
network, the neural network layer right before the final output layer is
defined as a feature layer, which outputs a feature 𝑓 . With this feature
𝑓 provided by the discriminator, an additional hint loss is defined as:

𝑓𝑒 =
1
𝑛𝑓

‖𝑓 (𝑥,𝐸(𝑥)) − 𝑓 (𝐺(𝐸(𝑥)), 𝐸(𝑥))‖2 (4)

where 𝑛𝑓 is the feature layer’s number of neurons.
Combining 𝑟𝑒 and 𝑓𝑒, the assistive hint loss function is thus:

ℎ𝑖𝑛𝑡 =
𝜅
𝑛𝑥

‖𝑥 − 𝐺(𝐸(𝑥))‖2 +
1
𝑛𝑓

‖𝑓 (𝑥,𝐸(𝑥)) − 𝑓 (𝐺(𝐸(𝑥)), 𝐸(𝑥))‖2 (5)

where 𝜅 is a hyperparameter which can be adjusted. Note that in
he validation and test phases, the residual of ℎ𝑖𝑛𝑡 is defined as the
nomaly score that represents the degree of anomalies. Ideally, the
esidual should be near zero if the query data patch is normal. A high
nomaly score indicates the input data patch deviates severely from
ealthy deployment data pattern.
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Algorithm 1 The training procedure for underwater glider anomaly detection using GAN.
1: Prepare the training dataset
2: Initialise 𝐷, 𝐺 and 𝐸 parametrised by 𝜃𝐷, 𝜃𝐺 and 𝜃𝐸 , respectively
3: for 𝑖 = 1 to 𝑡 do ⊳ 𝑡 is the number of total training iterations
4: procedure Train 𝐷, 𝐺 and 𝐸
5: for 𝑗 = 1 to 𝑘 do ⊳ Assistive hint is applied every 𝑘 training steps
6: Sample a mini-batch with 𝑀 data samples 𝑥 from the training dataset
7: Sample 𝑧 with a size of 𝑀 from a prior Gaussian distribution 𝑧 ∼ 𝑝𝑧(𝑧)

8: 𝐵𝑖𝐺𝐴𝑁 ←
1
𝑀

𝑀
∑

𝑠=1
log

(

𝐷
(

𝑥(𝑠), 𝐸(𝑥(𝑠))
))

+ 1
𝑀

𝑀
∑

𝑠=1
log

(

1 −𝐷(𝐺(𝑧(𝑠)), 𝑧(𝑠))
)

9: 𝜃𝐷 ← 𝜃𝐷 + ∇𝜃𝐷𝐵𝑖𝐺𝐴𝑁 , 𝜃𝐺 ← 𝜃𝐺 + ∇𝜃𝐺𝐵𝑖𝐺𝐴𝑁 , 𝜃𝐸 ← 𝜃𝐸 + ∇𝜃𝐸𝐵𝑖𝐺𝐴𝑁
0: end for
1: end procedure
2: procedure Train the 𝐺 and 𝐸 with hint
3: Sample 𝑀 data patches 𝑥 from the training dataset
4: ℎ𝑖𝑛𝑡 ←

𝜅
𝑛𝑥

‖𝑥 − 𝐺(𝐸(𝑥))‖2 +
1
𝑛𝑓

‖𝑓 (𝑥,𝐸(𝑥)) − 𝑓 (𝐺(𝐸(𝑥)), 𝐸(𝑥))‖2 ⊳ Hint loss

15: 𝜃𝐸 ← 𝜃𝐸 + ∇𝜃𝐸ℎ𝑖𝑛𝑡, 𝜃𝐺 ← 𝜃𝐺 + ∇𝜃𝐺ℎ𝑖𝑛𝑡
16: end procedure
17: if 𝑖 mod 𝑛 = 0 then ⊳ Test anomaly detection performance using synthetic sensor faults every 𝑛 training iterations
18: Anomaly score ← ℎ𝑖𝑛𝑡
19: end if
20: end for
4.2. GAN for underwater glider anomaly detection

Fig. 3 shows the proposed anomaly detection framework using
BiGAN. In the training phase, the pre-processed healthy deployment
datasets are applied to train the generator 𝐺, encoder 𝐸 and dis-
riminator 𝐷 concurrently. Assistive hints are applied to guide the
enerator 𝐺 and encoder 𝐸 training periodically. In the test phase,
he reconstruction error and discriminator feature hint error jointly
epresent the degree of an anomaly.

Fig. 4 shows the workflow of the proposed anomaly detection sys-
em underwater gliders. The model is trained using normal deployment
ata, i.e. no anomalies are included in the training dataset. It should be
oted that this framework is unsupervised, as no labelling is required
n the normal deployment data (Radford et al., 2015; Schlegl et al.,
017). During training, the model is tested periodically with synthetic
ensor faults by manually setting one or more sensor readings to their
ower bounds to check whether the model can detect synthetic faults.
nce the model has been checked, it will be applied to detect anomalies

or vehicles of the same type within a fleet. If the model has learned the
istribution 𝑥 ∼ 𝑝𝑑𝑎𝑡𝑎(𝑥) of the training data, it should be able to output
high anomaly score that represents the degree of an anomaly. The

nomaly score should be close to zero if the input data is normal. When
nomalies happen, the system is expected to output a high anomaly
cores that represent the degree of anomalies.

. Training and validation

.1. Data processing

Fig. 5 illustrates the data processing process preparing the training
nd validation datasets, using the two healthy deployments of glider
nits 345 and 397 in 2014 and 2015. The dive cycles of the multivariate
ime series datasets are filtered to remove cycles with insufficient data
oints (less than ten data points for each sensor) to maintain cycles
arrying sufficient features. Unified timelines with a time step of 5 s
re subsequently applied to the filtered cycles by linear interpolation of
ll the remaining sensor measurements. The interpolated data are then
ormalised to the range of [0, 1]. Random data patches with 64 time
teps are sampled evenly from the valid dive cycles in each dataset.
he data patches are augmented as 𝑎 × 𝑏 matrices, where 𝑎 is the
umber of sensors, 𝑏 is the number of time steps (64) for each data
 i

5

Fig. 4. Workflow of unsupervised anomaly detection using GAN for underwater gliders.

patch, so that the training dataset is ready for the training of the
anomaly detection system. To monitor and check the performance of
the anomaly detection system performance during training, synthetic
sensor anomalies are injected into the data patches by setting a number
of sensor measurements to their minimum values. Note that the sensors
with anomalies are randomly chosen for each validation data patch.
For the test datasets, a similar data processing flow has been followed.
However, it should be noted that ten random data patches are sampled
from each dive cycle in the test datasets.

5.2. Training

The proposed anomaly detection system is implemented in Python
3.8 and TensorFlow v2.4.1. The encoder network consists of: an in-
put layer that receives the flattened data patches; four sequentially
connected hidden dense layers that are followed by their own batch
normalisation, leaky ReLU activation and dropout (0.1 dropout rate)
layers; and an output layer with the size of 256 activated by sigmoid.
The encoder and generator network structures are inversely similar to
each other. The discriminator processes (𝑥, 𝑧) to output a feature 𝑓
from the feature layer and its prediction (a scalar) on whether (𝑥, 𝑧)
s from the training dataset. The hidden layers of the discriminator
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Fig. 5. Data processing procedure applied to prepare the training and validation
datasets using the two deployments of units 345 and 397.

are configured the same as that of the encoder. The Adam optimiser is
applied to update 𝐵𝑖𝐺𝐴𝑁 and ℎ𝑖𝑛𝑡 is with a learning rate of 1.0 × 10−5.
Note that ℎ𝑖𝑛𝑡 is updated every 𝑘 = 10 training iterations of 𝐵𝑖𝐺𝐴𝑁 .
The coefficient 𝜅 that adjusts the weights of the reconstruction and
feature losses is set as 𝜅 = 2. The mini-batch size is 𝑀 = 256. The
training dataset includes 1.0 × 105 data patches extracted from two
healthy deployments of UGs. The test dataset includes 4.3 × 104 data
patches extracted from the nine test deployments (see Table 1). The
training is terminated after 𝑡 = 30,000 training iterations of 𝐵𝑖𝐺𝐴𝑁
(51 min on a Nvidia V100 GPU).

5.3. Validation using synthetic anomalies

Fig. 6 shows the validation process using synthetic sensor faults
(every 𝑛 = 100 training iterations of 𝐷, 𝐺 and 𝐸). For the validation
without faults, the anomaly score stabilises to a value slightly less
than 0.002. For the validation data samples with 1, 2 and 3 abnormal
sensors, the anomaly scores stabilise to the values around 0.016, 0.022
and 0.028, respectively. The stabilised anomaly scores suggest that the
training of the anomaly detection system has converged. It should be
noted that the converged anomaly score (0.002) for normal data is
not exactly zero, which suggests the reconstruction and discriminator
feature residuals still exist in low magnitudes. Nevertheless, this value
is an order of magnitude lower compared to the ones with synthetic
sensor anomalies.

5.4. Ablation study

An ablation study has been conducted to confirm the effectiveness of
the assistive hints added to guide the BiGAN-based anomaly detection
system training. Removing the assistive hint ℎ𝑖𝑛𝑡 (Eq. (5)) leads to the
BiGAN unable to reconstruct normal enquiry data accurately. As shown
in Fig. 7, when ℎ𝑖𝑛𝑡 is removed, the model has converged to a state of
not being able to differentiate the four synthetic anomalies, suggesting
the added hint has effectively guided the training of the BiGAN model

(also see Fig. 6).

6

Fig. 6. Periodic algorithm validation in training using synthetic sensor faults with 0,
1, 2 and 3 abnormal sensors randomly chosen. The model is tested every 100 training
iterations of 𝐵𝑖𝐺𝐴𝑁 . The records of the randomly chosen sensors are manually set to
their minimum values.

Fig. 7. Periodic algorithm validation in training using synthetic sensor faults when no
hints are added to guide the training.

Table 3
Anomaly scores of the test deployments.

UG Mean Standard deviation

unit 419 0.00188 0.00026
unit 399 0.00235 0.00053
unit 492 0.00470 0.00113
unit 423 0.00353 0.00081
unit 424 0.00434 0.00024
unit 194 0.00303 0.00026
unit 304 0.00296 0.00067
unit 436 0.00319 0.00080
unit 345 0.00530 0.00097

6. Field test results and discussion

The anomaly detection system is tested using the deployment
datasets detailed in Table 1. Ten data patches are randomly sampled
from each dive cycle, which are then applied to get an averaged
anomaly score for a dive cycle. Hence, the anomaly detection system
applies to any dive cycles with a sufficient number of data points
and can output an anomaly score for NRT monitoring when the dive
cycle data is received. Table 3 details the mean and standard deviation
values of the test deployments (calculated using dive cycle values in the
deployments). The test deployments include one healthy deployment of
unit 419. The average anomaly score of unit 419 will be applied as the
baseline to assess the relative levels of the anomalies.
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Fig. 8. Test using a dataset of a healthy glider deployment dataset collected by unit
419 in 2015. The healthy reference is the average anomaly score of unit 419 over this
deployment and will be applied as the baseline to assess the anomaly levels of other
deployments.

Fig. 9. Reconstruction errors of a typical data patch of unit 419 in a healthy
eployment. Note that the maximum reconstruction error could be up to 1.0; the upper
imit of the colour bar is set as 0.5 to better visualise the errors.

The reconstructed sensor data is compared against the original input
uery data. The sensors with high anomaly score contributions are
nnotated by the system to alert the pilot. For the 𝑖th sensor’s reading at

time step 𝑗, its reconstruction error 𝛿𝑖,𝑗 is defined as the absolute value
of the difference between the enquiry data 𝑥𝑖,𝑗 and the reconstructed
data via BiGAN:

𝛿𝑖,𝑗 = |𝑥𝑖,𝑗 − 𝐺(𝐸(𝑥))𝑖,𝑗 | (6)

which will be highlighted by its magnitude to visualise anomalies on
sensor readings.

6.1. Healthy glider deployment

As shown in Fig. 8, for a healthy deployment of unit 419 in 2015,
the anomaly scores distribute evenly around their average value in
general (0.00188 ± 0.00026). The initial anomaly score starts from the
alue of 0.0030 and decreases to the average anomaly score after ten
ive cycles. The initial high anomaly score is likely caused by the
hallow trial dives with significant dynamic effects at the start of a
lider deployment. Note that the average anomaly score of 0.00188
ery close to the converged anomaly score in the validation test without
nomaly. The slight variance in the anomaly score throughout the
ycles for this healthy glider deployment suggests that the proposed
nomaly detection system can accurately reconstruct the data samples
imilar to those it encountered in the training phase without giving
alse indications of anomalies.

Fig. 9 shows the reconstruction errors of a typical data patch

rom unit 419 in a healthy deployment. Errors with small magnitudes

7

distribute among most sensors, suggesting that the anomaly detection
system has reconstructed the data patch with high accuracy. Ideally,
the anomaly detection system should learn the healthy deployment
datasets’ data distributions applied for training. The low magnitudes of
reconstruction errors for unit 419 suggest that the anomaly detection
system has learned the patterns of the training datasets.

6.2. Deployments with biofouling

Fig. 10 details the anomaly scores of two deployments with biofoul-
ing, i.e. deployments of unit 399 (0.000235 ± 0.00053) with naturally
accumulated biofouling in 2015 (Fig. 10a) and unit 492 (0.00470 ±
0.00113) with simulated biofouling in 2020 (Fig. 10b). For unit 399,
shallow trial dives with dynamic effects at the beginning of the deploy-
ment lead to high initial anomaly scores. The anomaly score increases
gradually from dive cycle 200, which is likely associated with marine
growth (Haldeman et al., 2016). The growing anomaly score is in line
with the increasing drag coefficient deduced through model-based and
other data-driven approaches in Anderlini et al. (2020b). The similar
growth of the anomaly score and the drag coefficient suggest that the
proposed BiGAN-based anomaly detection system can capture slowly
growing anomalies, even though it is trained with deployment datasets
collected by other gliders in different missions. As shown in Fig. 10b,
for the deployment of unit 492 with drag simulators added to the UG to
simulate extreme levels of marine growth (Anderlini et al., 2020b), the
anomaly scores of the dive cycles are distributed around their average
value of 0.00470 which is high above the baseline deduced from the
healthy deployment of unit 419. The average anomaly score of unit 492
is close to the anomaly values of the final dive cycles of unit 399.

As shown in Fig. 11a, the system has reconstructed a data patch
from the final stage of this deployment with high reconstruction errors
due to possible biofouling. The relatively high reconstruction errors
can be observed from the sensors including VBD, state_of_charge, depth
and pressure. Even stronger highlights of reconstruction errors can be
observed in Fig. 11b from a data patch of unit 492 with simulated
biofouling.

6.3. Deployments with OMG

Fig. 12 shows the anomaly scores of two deployments (unit 423 and
unit 424) with OMG. The two deployments’ anomaly scores are similar
to each other, i.e. 0.00353±0.00081 for unit 423 and 0.00434±0.00024 for
unit 424, respectively. The additional turbulence probes have affected
the gliders’ hydrodynamic characteristics, leading to increased drag
coefficients and high negative buoyancy offsets and, consequently, to
higher anomaly scores. It is worth noting that no dramatic change in the
anomaly score magnitudes can be observed from the two deployments
with OMG, suggesting that it is unlikely other anomalies occurred
during the two deployments. The proposed anomaly detection system
appears to be effective in detecting anomalies caused by increased drag
coefficient consistently throughout the deployments of the glider units.

Fig. 13 shows the reconstruction errors of a typical data patch of
unit 423 and unit 424. Obviously, the rudder_angle, battery_position,
battery state_of_charge and VBD sensors that are the most highlighted
ones, as the vehicle becomes less manoeuvrable due to the higher
drag. Although errors in lower magnitudes can also be observed for
other sensors, the most striking difference is the vacuum sensor which
indicates a different pressure inside the pressure hull was used for the
OMG as compared with the standard gliders.

6.4. Deployment with angle of list

Fig. 14 details the anomaly scores of the unit 194 deployment
(0.00303 ± 0.00026) in 2017 which experienced an angle of approx-
imately 9◦ list due to a pre-deployment error. Fluctuations of the
anomaly scores can be observed, which suggests that the operational
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Fig. 10. Test using datasets of two deployments with biofouling: (a) unit 399 in its final stage of deployment with a high anomaly score caused by naturally accumulated biofouling
and (b) unit 492 with simulated high levels of biofouling.
Fig. 11. Reconstruction errors of typical data patches with biofouling: (a) unit 399 in its final stage of deployment with a high anomaly score caused by naturally accumulated
iofouling and (b) unit 492 with simulated high levels of biofouling.
Fig. 12. Test using datasets of two deployments with OMG: (a) deployment of unit 423 in 2015 and (b) deployment of unit 424 in 2015.
tatus of this glider were relatively unstable compared to the deploy-
ents discussed in Section 6.1. In this deployment, the angle of list

aused asymmetric drag and lift forces. Consequently, the average
nomaly scores presented in Fig. 14 are 61.2% higher than that of the
nit 419 baseline deployment. In addition, an increasing trend of the
nomaly score can be observed in the final stage of the deployment
after 680 dive cycles), which is possibly due to the pilot’s control
ecisions. It appears that the anomaly detection system can detect the
ransient effects in the abnormal glider status.

Fig. 15 presents the reconstruction errors of a data patch extracted
rom the deployment of unit 194, which encountered a significant
ngle of list of approximately 9◦. The underwater glider attempted to
ompensate the list angle by applying control actions to the rudder.
owever, no apparent errors can be observed from the roll and pitch
8

signals, which could be due to the errors are low in magnitudes
compared to the maximum readings of these signals.

6.5. Deployments with loss of wing

Fig. 16 shows the anomaly scores of two deployments with the
loss of one wing, i.e. unit 304 (0.00296 ± 0.00067) with the loss of the
right wing (Fig. 16a) and unit 436 (0.00319 ± 0.00080) with the loss
of the left wing (Fig. 16b) in 2019. As shown in Fig. 16a, fluctuating
high anomaly scores are present for the early dive cycles (before 500
dive cycles) of unit 304, which is mainly due to the very shallow dive
depth, where dynamic effects of the vehicle and the variation in the
oceanic sensor data are more significant (Anderlini et al., 2020a). The
anomaly scores of unit 304 start to increase abruptly from dive cycles
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Fig. 13. Reconstruction errors of typical data patches with OMG: (a) unit 423 and (b) unit 424.
Fig. 14. Test using dataset of a deployment dataset collected by unit 194 with angle
of list in 2017.

Fig. 15. Reconstruction errors of typical data patch of unit 194 with angle of list.

510 to 560, suggesting that the anomaly detection system has detected
an unusual pattern. This anomaly has also been detected in Anderlini
et al. (2020a), which corresponds to unit 304’s loss of right wing in this
deployment. As shown in Fig. 16b, the anomaly score of unit 436 jumps
to 0.0060 within one dive cycle after 230 dives, suggesting something
very unusual happened within that dive cycle. In addition, the anomaly
scores of dive cycles from 120 to 220 suggest that unit 436 may have
encountered an unusual event, which subsequently caused a delayed
but instant loss of its left wing.
9

Fig. 17 highlights the reconstruction errors of data patches from
units 304 and 436, which lost the right wing and the left wing in
their deployments, respectively. The rudder_angle signal is the most
highlighted for both units 304 and 436, suggesting the gliders had fre-
quently attempted to use their rudders to compensate for the imbalance
caused by the wing loss. In addition, the battery state_of_charge unit
304 signal also shows a high level of reconstruction errors due to the
compensating control actions that consumed excessive energy from the
battery. Note that the reconstruction error shown in Fig. 17a is a late-
stage data patch of the deployment; the accumulated excessive energy
consumption from the battery becomes apparent in the case of unit 304.

6.6. Deployment with strong environmental disturbances

Fig. 18 details the anomaly scores of the dive cycles within the
deployment of unit 345 in 2019. This deployment was subject to
strong disturbances (e.g. transverse ocean currents). Consequently, the
average of anomaly scores (0.00530±0.00097) is 181.9% higher than the
baseline of unit 419. It should be noted that another dataset collected
by unit 345 in 2014 has been included in the training dataset. The
system has identified the anomalies of unit 345 in 2019.

Fig. 19 shows the reconstruction errors of a data patch of the
deployment of unit 345 that experienced strong ocean disturbances
such as transverse ocean currents. Apparent errors can be observed
from the sensors, including battery_voltage, rudder_angle, VBD and
state_of_charge. Unlike other scenarios that have been discussed, bat-
tery voltage signal deviates from the pattern the anomaly detection
system has learned, which is probably due to the glider had to make
frequent adjustments to its rudder to overcome the strong disturbances
causing excessive power consumption from the battery, which led to a
lower battery voltage.

6.7. Summary

The proposed anomaly detection system successfully identifies
anomalies for a fleet of gliders operating in different deployments over
different times. In addition, the highest observed anomaly score among
all tests is around 0.010, which is significantly lower compared to
the anomaly score obtained for simulated sensor faults. This indicates
that it is significantly more challenging for humans to detect actual
anomalies with abnormal patterns distributed over multiple sensor

readings in low magnitudes.
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Fig. 16. Test using datasets of two deployments with wing loss: (a) deployment of unit 304 with the loss of the right wing in 2019 and (b) deployment of unit 436 with the loss
of the left wing in 2019.
Fig. 17. Reconstruction errors of typical data patches of losses of wings: (a) unit 304—loss of the right wing and (b) unit 436—loss of the left wing.
. Sensitivity study of NRT data decimation settings

In this section, the influence of NRT data decimation settings over
nomaly detection accuracy is investigated. The sensitivity study is
mplemented by varying the data sampling intervals to simulate the
liders’ decimation process. The sampling intervals of 𝑑𝑡 include 5 s,
0 s, 30 s, 60 s, 120 s and 240 s. The gaps between two adjacent
imestamps are filled by linear interpolation to match the enquiry data
tructure with a fixed 𝑑𝑡 of 5 s. It should be noted that the results
cquired with the decimation interval of 5 s are deemed as ground truth
s they are completely based on the most detailed recovery mode data.
or each decimation setting, the anomaly detection result of a dive
ycle (either positive or negative with anomaly) is compared with its
orresponding ground truth. A result is deemed as accurate if it matches
ts ground truth, otherwise it is inaccurate. The anomaly detection
ccuracy is calculated by dividing the number of accurate detections
ith total detection times.

.1. Individual sensors

In Group A, for each of the 15 sensors under investigation, at one
ime, one of the sensor readings are re-sampled with different deci-
ation settings whilst other sensor data remain as originally recorded.
s a result, the influences of individual sensors can be explored. The
nomaly detection accuracy is calculated using all the nine test de-
loyments, i.e. it is an overall accuracy over all the test deployments.
s shown in Table 4, only 3 of the sensors, i.e. battery_position,
udder_angle and VBD have minor impacts on the anomaly detection
ccuracy, whist the decimation of all the other sensors do not present
bservable impacts on the anomaly detection accuracy. It should be
oted that battery_position, rudder_angle and VBD signals correspond
 T
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Table 4
Sensitivity study results on individual sensor decimations.

Sensor dt [s]

5 10 30 60 120 240

battery_position 1.000 0.998 0.992 0.986 0.981 0.972
battery_voltage 1.000 1.000 1.000 1.000 1.000 1.000
conductivity 1.000 1.000 1.000 1.000 1.000 1.000
heading 1.000 1.000 1.000 1.000 1.000 1.000
leak_detection_voltage 1.000 1.000 1.000 1.000 1.000 0.998
pitch 1.000 1.000 0.999 0.999 0.999 0.998
pressure 1.000 1.000 1.000 1.000 0.999 0.998
roll 1.000 1.000 1.000 1.000 1.000 1.000
rudder_angle 1.000 0.996 0.987 0.975 0.968 0.968
sci_pressure 1.000 1.000 1.000 1.000 1.000 1.000
state_of_charge 1.000 1.000 1.000 1.000 1.000 1.000
temperature 1.000 1.000 1.000 1.000 1.000 1.000
vacuum 1.000 1.000 1.000 0.999 0.996 0.991
VBD 1.000 0.999 0.992 0.984 0.976 0.972
vertical_velocity 1.000 0.998 0.997 0.995 0.993 0.993

to the actuators directly controlling the UG. Hence, this suggests that
the anomalies included in the test datasets are highly likely to have
caused the actuators to operate differently than in normal scenarios.

7.2. All sensors

Table 5 presents the sensitivity study results on decimations of all
sensors. Data from all the 15 sensors are decimated simultaneously
for the sampling intervals of 5 s, 10 s, 30 s, 60 s, 120 s and 240 s,
respectively. Note that 𝑑𝑡 = 5 s is still deemed as ground truth.

he minimum anomaly detection accuracy achieved is 90.2% for the
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Fig. 18. Test using the dataset of a deployment collected by unit 345 with strong
nvironmental disturbances in 2019.

Fig. 19. Reconstruction errors of a typical data patch of unit 345 encountered strong
environmental disturbances.

Table 5
Sensitivity study results on decimations of all sensors.

dt [s] 5 10 30 60 120 240

Accuracy 1.000 0.995 0.976 0.951 0.916 0.902

sampling interval of 240 s, which suggests that the proposed anomaly
detection system is insensitive to the data decimation settings.

8. Conclusions

This work presents an unsupervised anomaly detection system with
an improved training procedure of existing BiGAN. Data reconstruction
and discriminator feature losses are adopted as assistive hints to peri-
odically guide effective training of the BiGAN-based anomaly detection
system. A novel data augmentation strategy of multi-sensor time series
data is proposed to capture the transient features within data. The
anomaly detection system can provide a thorough evaluation of a dive
profile using multiple data patches extracted from the profile and is
flexible with dive lengths. Compared to the authors’ previous work,
this study has endeavoured to apply more signals with improved signal
reconstruction capability provided by the enhanced BiGAN structure.
Although the method is proposed for the anomaly detection of UGs,
the workflow developed does not require application-specific features.
Therefore, it can be adapted for other application scenarios with mul-
tivariate time series data, e.g., high-performance computing system
anomaly detection and aircraft turbulence detection.

The proposed anomaly detection system is trained using two healthy
Slocum G2 glider deployments. Synthetic sensor faults are injected to
the training dataset to check the anomaly detection system perfor-

mance. Real-world collected datasets are applied to test the proposed
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anomaly detection system. The test results suggest that the BiGAN-
based anomaly detection has successfully detected anomalies caused
by biofouling, bulky sensors, angle of list, losses of wings and strong
disturbances, whilst without giving false detections for healthy de-
ployment. The unsupervised anomaly detection system has achieved
satisfactory anomaly detection performance over a fleet of underwater
gliders with minimal training data preparation. A sensitivity analysis of
the decimation settings has shown that the anomaly detection system
is insensitive to the data decimation settings. The outcome of the work
will support the over-the-horizon operation of marine autonomous
systems within the National Marine Equipment Pool at the National
Oceanography Centre.

Although the system can highlight the anomalies on sensor readings,
it can still be challenging for humans to accurately determine the
types of anomalies, including known and unknown ones. An intelligent
anomaly classification system will be developed to classify anomalies
automatically using deep learning in further work. The unsupervised
learning anomaly detection method proposed in this study requires only
healthy deployment datasets, making it generic to different types of
anomalies, even unknown ones. Such a unique feature also makes it
ideal for annotating dive cycles with only deployment-level anomaly
information. The annotated dive cycles can be further applied to train
supervised or semi-supervised fault diagnostics models.
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