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Summary

We introduce a numerically tractable formulation of Bayesian joint models for lon-
gitudinal and survival data. The longitudinal process is modelled using generalised
linear mixed models, while the survival process is modelled using a parametric
general hazard structure. The two processes are linked by sharing fixed and ran-
dom effects, separating the effects that play a role at the time scale from those that
affect the hazard scale. This strategy allows for the inclusion of non-linear and time-
dependent effects while avoiding the need for numerical integration, which facilitates
the implementation of the proposed joint model. We explore the use of flexible para-
metric distributions for modelling the baseline hazard function which can capture the
basic shapes of interest in practice. We discuss prior elicitation based on the interpre-
tation of the parameters. We present an extensive simulation study, where we analyse
the inferential properties of the proposed models, and illustrate the trade-off between
flexibility, sample size, and censoring. We also apply our proposal to two real data
applications in order to demonstrate the adaptability of our formulation both in uni-
variate time-to-event data and in a competing risks framework. The methodology is
implemented in rstan.
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1 INTRODUCTION

In medical statistics, it is common to come across scenarios where patients are followed-up for a period of time (typically, until
death or a censoring time point), and some biomarkers, patient characteristics, or treatment information are recorded at different
time points over this period. This produces a combination of longitudinal and survival information about each individual. His-
torically, both processes have been analysed separately. For example, modelling time-to-event data is typically done by using
hazard-based regression models. These include the Cox Proportional Hazard (PH) model,1 which assumes that the covariates
have an effect at the hazard scale; Accelerated Failure Time (AFT) models,2 which assume that the covariates have a direct
effect on the survival time; Accelerated Hazard (AH) models, which assume that the effect of the covariates is only on the time
scale of the hazard function; as well as other general hazard (GH) structures that generalise the PH, AFT, and AH assumptions.3
See Rubio et al4 for a general overview of such models. The longitudinal process is typically modelled using Generalised Lin-
ear Mixed Models (GLMMs), which allow for modelling repeated and correlated observations (see, e.g. McCulloch et al5 for
a general overview). It has been shown that combining both the longitudinal and survival processes represents a powerful tool
for incorporating the information in both processes. Joint modelling of longitudinal and survival processes has been extensively
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discussed in recent literature. We refer the reader to literature6,7,8,9 for reviews on this sort of models. A common strategy in joint
models consists of linking the survival and the longitudinal processes by means of including shared parameters on the models
for the covariates. This allows for incorporating a number of statistical modelling tools already available in the literature, such
as using flexible parametric models using splines for modelling the hazard or the cumulative hazard functions (see, Brilleman
et al10 for a recent review on these methods), while the longitudinal process can be modelled using any techniques developed
for GLMMs. Applications of joint models abound in a number of areas of medical statistics.11,12,13
In this paper, we propose a numerically tractable and interpretable alternative formulation of joint models, where we allow

the longitudinal process to be modelled using GLMMs, while the survival process is specified through a parametric general
hazard structure. This formulation allows for a direct interpretation of the parameters, as they are formulated at the hazard scale,
as well as a separation of the roles of the parameters that affect the time scale, from those that affect the hazard scale. Another
appealing aspect of the proposed formulation of joint models is numerical tractability, as the evaluation of the hazard and
cumulative hazard functions does not require numerical integration, allowing for a tractable implementation of the likelihood
and posterior distribution functions. We discuss several choices for the baseline hazard that are able to capture a variety of
shapes of the hazard function. We discuss prior elicitation, where the general idea is to use weakly information priors for shape
parameters while, for regression parameters, we consider g-priors14 in order to ameliorate potential overfit of those variables
modelled using splines. Thus, the proposed joint models can be coupled with a number of general-purpose MCMC samplers.
We provide an implementation of these models in rstan15 and show a good performance of this sampler in our simulation study
and applications. We provide an extensive simulation study that illustrates the performance of our joint specification as well as
the trade–off between using flexible assumptions for modelling the baseline hazard and non-linear effects, with sample size and
censoring. In addition, we use a data set on AIDS patients16 to illustrate our methodology in a standard joint model context.
We also present another real data example, using the SANAD study,17 where the survival process contains competing risks,
emphasising the flexibility of our formulation to be coupled with a variety of scenarios. The rest of the paper is organised as
follows. In Section 2, we present the formulation of the joint model and discuss the interpretation of the parameters. In Section
3, we present the likelihood function in a general framework, and discuss prior elicitation for the case where the longitudinal
process is modelled using a linear mixed model (LMM), which is the model used later in the real data applications. In Section
4, we discuss an extensive simulation study and indicate how to simulate from the proposed joint model. In Sections 5 and 6, we
illustrate the proposed methodology with two real data applications in the contexts of univariate time-to-event and competing
risks, respectively. Finally, in Section 7, we present a brief discussion of the proposal in this paper and conclude with some
practical advice and potential directions for further research. Additional results, including summaries from the simulation study,
alternative models in the application, as well as technical details are presented in the SupplementaryMaterial. R code is available
at: www.github.com/daniloalvares.

2 THE JOINT MODEL

2.1 Longitudinal model: generalised linear mixed model
The longitudinal component of the proposed joint model is specified through a GLMM.5 Let yij = yi(tj) be the response
variables associated to the ith individual, i = 1,… , n, measured at time tj , j = 1,… , ni. Let xi ∈ ℝp be a vector of individual
covariates corresponding to the ith individual. Define the conditional distribution of yij given 	1i (parameters and random
effects) as a member of the Exponential family:

yij ∣ 	1i
ind.∼ fL(yij ∣ 	1i),

fL(yij ∣ 	1i) = exp
{yij�ij − '(�ij)

�2
− c(yij , �)

}

,

E[yij ∣ 	1i] = �ij ,
g(�ij) = �̃0 + s⊤i � + x̃

⊤
i P1(tij) + b0i + (�̃1 + b1i)P2(tij), (1)

where ' is a known function, the conditional mean of yij given	1i is related to �ij via the identity �ij =
)'(�ij)
)�ij

, the conditional

variance of yij given 	1i is �2
)2'(�ij)

)�2ij
, and g is the link function. Regarding the model on the mean �ij , �̃0 is the intercept, �̃1
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is the time-dependent slope; si = (s⊤i1,… , s⊤ip)
⊤ ∈ ℝpq , where q =

∑p
i=1 qi, qm, m = 1,… , p, is the dimension of sim, and sim

is a spline expansion of xim (for continuous variables, or simply xim for categorical variables or variables with a linear effect);
� ∈ ℝpq are the corresponding regression coefficients; x̃i ⊆ xi ∈ ℝp̃, p̃ ≤ p, is a vector of individual time-dependent covariates,
and  ∈ ℝp̃ are the corresponding regression coefficients; b0i and b1i are the random effects, which represent a random intercept
and a random slope. This formulation thus allows for the inclusion of linear and non-linear effects by using a spline expansion
of the corresponding covariates. P1(tij) and P2(tij) represent polynomial expansions, which indicate the functional dependence
of time of the time-dependent covariates x̃i, the slope �̃1, and the random slopes b1i. These can be, for instance, a B−spline
basis polynomial expansion, or simply the identity function.6 In practice, it is often assumed a linear relationship, unless the
individual trajectories are suspected to be non-linear. We assume that the random effects, bi = (b0i, b1i)⊤, given Σ, follow a joint
bivariate normal distribution with zero mean and variance-covariance matrix Σ. This family of mixed models include linear
mixed models, Poisson mixed models, Negative Binomial mixed models, binary mixed models, among others.

2.2 Survival model: general hazard structure
In this section, we discuss the model for the survival process, in which we adopt a general hazard (GH) structure.3,4 Let ℎ0(⋅ ∣ �)
be a parametric baseline hazard function, with parameter � ∈ Θ ⊂ ℝd . Define the hazard function:

ℎ(t ∣ 	2i) = ℎ0
(

t exp
{

w⊤i � + �1
(

x̃⊤i  + b1i
)}

|

|

|

�
)

exp
{

w̃⊤i �̃ + s
⊤
i � + �0b0i

}

, (2)

where t > 0 represents the time;	⊤
2i = (�

⊤, ⊤,�⊤, �̃⊤,�⊤,b⊤i , �0, �1) denotes the full vector of model parameters;wi and w̃i are
r− and r̃−dimensional vectors of additional covariates, affecting the time-scale and the hazard-scale, respectively, which may
only be available for the survival process (i.e. this formulation allows for the inclusion of different variables in the longitudinal
and survival models); � and �̃ are the regression coefficients associated to wi and w̃i, respectively; � are regression coefficients
for the a expansion si; �0 ∈ ℝ and �1 ∈ ℝ are the parameters linking the longitudinal and the survival processes, often called
association parameters.
The hazard structure (2) separates the roles of the time-dependent effects (which appear in the argument of the baseline hazard

and, consequently, affect directly the time scale) from those effects on the hazard scale, which appear multiplying the baseline
hazard.4 This is, the hazard structure (2) can be used to account for time-dependent effects as well as effects that either increase
or decrease the hazard level while the link with the longitudinal process also explicitly separates these roles.4 We see this as
an advantage of this formulation as it helps to identify the need for connecting the two processes via time-dependent and/or
proportional hazard effects. This hazard model can be directly used in more complex scenarios such as competing risks models,
which we illustrate in our real data application. Another appealing feature of this hazard structure is that the corresponding
cumulative hazard can be written in closed-form, thus avoiding the need for numerical integration, as:

H(t ∣ 	2i) = H0

(

t exp
{

w⊤i � + �1
(

x̃⊤i  + b1i
)}

|

|

|

�
)

exp
{

w̃⊤i �̃ + s
⊤
i � + �0b0i −

[

w⊤i � + �1
(

x̃⊤i  + b1i
)]}

, (3)

where H0(⋅ ∣ �) is the cumulative baseline hazard of ℎ0(⋅ ∣ �). This allows for a tractable implementation of the likelihood
and posterior distributions, which in turns allows this joint model formulation to be coupled with any general-purpose MCMC
sampler.
This model specification is identifiable provided that the baseline hazard is not the hazard associated to a Weibull distribu-

tion,3,4 since in this case the AFT, PH, and AH models coincide and it becomes impossible to distinguish the effects in the
argument of the baseline hazard from those multiplying the baseline hazard. We do not consider this to be a big limitation as sim-
ilar hazard shapes can be obtained with other distributions, as discussed next, and model selection tools can be used to identify
simpler hazard structures.
A natural extension of the hazard structure (2) consists of using more than one link parameter �1, for instance, in cases where

the vector x̃i contains variables in very different scales. However, we argue that, in practice, this is not often required, and
estimating more than one scaling parameter would require larger samples. This logic is also in line with the classical formulation
of joint models,6 where only one link parameter is used. We also note that, under the formulation in (2), we are connecting the
survival and longitudinal processes through the random effects and the time-dependent effects. It is, of course, possible to link
them through the time-invariant effects s⊤i � as follows,

ℎ(t ∣ 	2i) = ℎ0
(

t exp
{

w⊤i � + �1
(

x̃⊤i  + b1i
)}

|

|

|

�
)

exp
{

w̃⊤i �̃ + �0(b0i + s
⊤
i �)

}

,
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which reduces the number of parameters by omitting �. However, one limitation of this approach is that it assumes that the
scaling factor is the same for all covariates, which may be in different scales or may contain a combination of categorical and
continuous variables. Nonetheless, it remains as an alternative formulation for modelling the survival process.

Baseline hazard function
The choice of the parametric baseline hazard function is crucial as this determines the hazard shapes the survival model (2)
can capture. For instance, the log-normal hazard function is unimodal (up-then-down), while the Gamma hazard function can
be increasing or decreasing. There exist other (three-parameter) distributions that can capture the basic shapes of the hazard
(increasing, decreasing, unimodal, and bathtub), such as the Exponentiated Weibull, Generalised Gamma, and Power Gen-
eralised Weibull distributions. However, it is important to consider that an efficient estimation of the parameters of these
distributions typically requires larger sample sizes, and that high censoring rates or early administrative censoring (short follow-
up) may also be detrimental in estimating shape parameters (specially those that control the tail behaviour) of flexible parametric
distributions.4,18 We consider four baseline hazard candidates: Log-normal, Gamma, Power Generalised Weibull (PGW), and
Generalised Gamma (GG), based on their numerical tractability and flexibility. The PGW and GG distributions contain three
parameters (a scale parameter, and two shape parameters). These distributions offer similar levels of tractability and flexibility19.
Expressions for the PGW and GG probability density functions (pdf), survival functions, and hazard functions are presented in
Sections A1-A2 in the Supplementary Material.

3 BAYESIAN INFERENCE

3.1 Likelihood function
The likelihood function of the full parameter vector and random effects of the joint model (1)–(2) is given by:

f (Data ∣ 	) =
n
∏

i=1

ni
∏

j=1
fL(yij ∣ 	1i)

n
∏

i=1
fS(ti ∣ 	2i), (4)

where 	 = (	⊤
1 ,	

⊤
2 )
⊤ = (�⊤, �̃⊤, ⊤, �,b⊤1 ,… ,b⊤n ,�

⊤,�⊤, �̃⊤,�⊤, �0, �1)⊤ denotes the full parameter vector and random
effects; fL(yij ∣ 	1i) denotes the conditional pdf of yij given 	1i described in (1); and fS(ti ∣ 	2i) is the contribution of
the ith time-to-event to the likelihood function. For example, for linear mixed models, which we describe in the next section,
fL(yij ∣ 	1i) can be the normal density with mean �ij and variance �2. The contribution of the survival time ti is described by:

fS(ti ∣ 	2) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ℎ(ti ∣ 	2i)S(ti ∣ 	2i), if exact lifetime,
S(ti ∣ 	2i), if right-censored observation,
1 − S(ti ∣ 	2i), if left-censored observation,
S(ti,L ∣ 	2i) − S(ti,R ∣ 	2i), if interval-censored observation,

where ℎ(ti ∣ 	2i) is the hazard function (2) and S(ti ∣ 	2i) = exp
{

−H(ti ∣ 	2i)
}

represents the survival function derived from
the cumulative hazard introduced in (3).
Although we will focus on Bayesian inference for the parameters, we point out that the marginal likelihood function of the

parameters 	∗ = 	−{b1,…,bn} can be written as follows:

f (Data ∣ 	∗,Σ) =
n
∏

i=1
∫

[ ni
∏

j=1
fL(yij ∣ 	1i)

]

fS(ti ∣ 	2i)�(bi ∣ Σ) dbi,

where �(bi ∣ Σ) is the bivariate normal density with zero mean and variance-covariance matrix Σ. Thus, the evaluation of
the marginal likelihood function, under our joint model formulation, only requires numerical integration with respect to the
distribution of the random effects.
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3.2 Prior distributions
In this section, we provide general guidelines about prior choice for the parameters of the proposed joint models. We identify
weakly informative priors for the parameters of this new class of joint models, but we acknowledge the possibility of using
alternative priors.
We define the prior distributions for the more particular case of linear mixed models (LMMs), which are the main interest in

our applications. However, these can be extended to GLMMs by adapting the priors on the variance of the response variable,
accordingly.20 Consider the LMM:

yi(t) = �̃0 + s⊤i � + x̃
⊤
i P1(tij) + b0i + (�̃1 + b1i)P2(tij) + �i(t).

The residual errors are assumed conditionally independent and identically distributed as (�i(t) ∣ �2) ∼ N(0, �2). In order
to avoid concerns about the propriety of the posterior distribution,21 we adopt a proper prior specification. For the parameters
(�̃0, �̃1, ,Σ), we adopt weakly informative priors:

�̃j ∼ N(0, �2�̃j ), j = 0, 1,

 ∼ Np̃(0,�̃),
�2 ∼ Inv-Gamma(0.01, 0.01),
�2j ∼ Inv-Gamma(0.01, 0.01), j = 1, 2,

� + 1
2

∼ Beta(a0, b0),

where � ∈ (−1, 1) is the correlation between b0i and b1i. The variance hyperparameters, �2
�̃j
and the diagonal of�̃ , are assumed

to be large in order to reflect vague prior information. Alternatively, one could choose a half-Cauchy prior for the variance
parameters.21 For the parameters � and �, which represent regression coefficients associated to covariates that may contain
spline expansions, we consider the following prior specification that penalises overfit:

�(� ∣ �2) =
∏

IO

N(�j ; 0, �2�j )
∏

IS

N(�j ; 0, g�Mj�
2),

�(� ∣ �2) =
∏

IO

N(�j ; 0, �2�j )
∏

IS

N(�j ; 0, g�Mj�
2),

where IO = {j ∶ xij = sij , for all i} and IS = {j ∶ xij ≠ sij , for all i} indicate the indexes of the variables expressed in
the original scale and in a spline basis expansion, respectively, Mj = (S̃⊤j S̃j)

−1, and S̃j are the design matrices associated
to spline basis expansions of the covariates xij . This is, if the vector si contains spline expansions of xi, we adopt g-priors;14
otherwise, we adopt weakly informative priors where the variance hyperparameters �2�j and �

2
�j

are assumed to be large. The
hyperparameters g� = n∕q and g� = n∕q,18 assuming that all spline basis expansions have the same degree q (which can be
easily relaxed, if necessary), induce a mild penalty that shrinks the parameters towards zero and help prevent overfitting (see18
for a discussion on this point and other choices of these hyperparameters). We keep a relatively simple prior choice in this paper,
but we acknowledge the possibility of including other shrinkage priors that carry heavier penalties on model complexity.22,18
We emphasise that those priors can also be included in our approach and numerical implementation.
For the parameter � in baseline hazards, we consider the following priors:

(i) Log-normal (LN). For the scale parameter, say � > 0, we adopt a weakly informative prior � ∼ half-Cauchy(0, s�), in the
sense that it is a heavy tailed prior.21 For the log-location parameter, we assume � ∼ N(0, �2�), where the hyperparameter
�2� is assumed to be large.

(ii) Gamma. For the scale and shape parameters, we adopt a weakly informative prior � ∼ half-Cauchy(0, s�) and � ∼
half-Cauchy(0, s�), respectively.

(iii) Power Generalised Weibull (PGW). For the scale, shape, and power parameters, (�, �, �), we adopt weakly informative
priors specified as � ∼ half-Cauchy(0, s�), � ∼ half-Cauchy(0, s�), and � ∼ Gamma(1.83, 0.65). The prior on the parameter
� represents an approximation to the weakly informative prior BTV (1, 1) obtained with the method proposed in Dette et
al23. A full description of this prior is presented in Section A2 in the Supplementary Material.

(iv) Generalised Gamma (GG). Similar to PGW specification, � ∼ half-Cauchy(0, s�), � ∼ half-Cauchy(0, s�), and � ∼
Gamma(1.83, 0.65).
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For the association parameters, we adopt the weakly informative priors �k ∼ N(0, �2�k), k = 0, 1, where the variance hyper-
parameters are assumed to be large. We point out that shrinkage priors24 could also be considered for these parameters, which
might be useful to enforce parsimony in the link between the longitudinal and survival processes.

4 SIMULATIONS

4.1 Simulating from the joint model
We now describe a method to simulate from the proposed joint model (1)–(2). This method basically requires simulating the
random effects first, followed by the simulation of the survival process using the GH structure (2), and finally simulating the
longitudinal process (1). The steps for the simulation procedure are described in Algorithm 1. We can see that simulating
from the survival model GH is relatively simple, in contrast to other joint models discussed in the literature, provided that one
can simulate times-to-event from the baseline model. Thus, the choice of tractable baseline hazards model also facilitates the
simulation of the joint model. Regarding the distribution of the distance between repeated observations (DDBRO), we have
several scenarios of practical importance. For instance, in medical scenarios with periodic consultations, the DDBRO would be
equidistant. In more complex scenarios, this distance might be random, for instance visits to the hospital due to some treatment
or illness complication, which are also recorded and monitored; or even a combination of periodic and random visits to the
hospital. Our formulation allows for the inclusion of all of these types of DDBRO. Censored survival times can be induced in
the standard way, by either inducing administrative censoring or simulating random censoring points.

Algorithm 1 Simulation from the proposed joint model
For each individual i = 1,… , n, and for given values of the parameters and the design matrix:
Random Effects. Simulate bi ∼ N2(0,Σ).
Survival Process. In order to simplify notation, let us denote:

A = exp
{

w⊤i � + �1
(

x̃⊤i  + b1i
)}

,
B = exp

{

w̃⊤i �̃ + s
⊤
i � + �0b0i −

[

w⊤i � + �1
(

x̃⊤i  + b1i
)]}

.

The individual survival function is S(t ∣ 	2i) = exp
[

−H(t ∣ 	2i)
]

, we can apply the probability integral transform directly
to obtain:

ti =
F −10

[

1 − exp
{

log(1 − ui)
B

}

|

|

|

�
]

A
,

where F0 is the cumulative distribution function associated to the baseline hazard ℎ0, and ui ∼ U (0, 1).
Longitudinal Process. Once a simulated time-to-event ti is obtained from the previous step, specify the distribution of the
distance between the repeated observations (e.g. equidistant or random). This produces the time points tij , j = 1,… , ni,
at which the repeated observations are recorded. The longitudinal process simulation is thus obtained by plugging-in the
corresponding values of the parameters and covariates in �ij , and simulating from the corresponding GLMM based on (1).

4.2 Simulation study
In this section, we conduct an extensive simulation study where we present the performance of the proposed joint model and
estimation methods. More specifically, we illustrate the parameter estimation, ability to recover the baseline hazard shapes, as
well as the effect of sample size and censoring rates on inference. For the survival process, we consider a scenario where the
available variables are age at diagnosis, sex, and the presence of comorbidities. This setting is common in population studies in
cancer epidemiology.25 We analyse the following simulation scenarios, in increasing order of complexity.

Scenario 1. The longitudinal model:

yi(t) = �̃0 + �̃1t + �1 sexi + �2 agei + b0i + b1it + �i(t).
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The survival process:

ℎ(t ∣ 	2i) = ℎ0
(

t exp
{

�1b1i
}

|

|

|

�
)

exp
{

�̃1comorbi + �1 sexi + �2 agei + �0b0i
}

.

In addition, we consider Scenario 0 where we simulate the model described in Scenario 1 but we fit the following joint
model. The longitudinal model:

yi(t) = �̃0 + �̃1t + �1 sexi + �2 agei + b0i + b1it + �i(t).

The survival process:
ℎ(t ∣ 	2i) = ℎ0 (t ∣ �) exp

{

�̃1 comorbi + �1 sexi + �2 agei + �0b0i
}

.

Scenario 2. The longitudinal model:

yi(t) = �̃0 + �̃1t + 1
{

t agei
}

+ �1 sexi + �2 agei + b0i + b1it + �i(t).

The survival process:

ℎ(t ∣ 	2i) = ℎ0
(

t exp
{

�1
(

1 agei + b1i
)}

|

|

|

�
)

exp
{

�̃1 comorbi + �1 sexi + �2 agei + �0b0i
}

.

Scenario 3. The longitudinal model:

yi(t) = �̃0 + �̃1t + 1
{

t agei
}

+ �1 sexi + g1(agei) + b0i + b1it + �i(t).

The survival process:

ℎ(t ∣ 	2i) = ℎ0
(

t exp
{

�1
(

1 agei + b1i
)}

|

|

|

�
)

exp
{

�̃1comorbi + �1 sexi + g2(agei) + �0b0i
}

,

where g1 and g2 are B-spline expansions of the variable agei of degree q = 3.

Thus, in Scenarios 2-3, the variable “age” represents a time-dependent effect both on the longitudinal and the survival process.
This can be seen as it appears multiplying t in the longitudinal process, while it affects the time-scale directly on the survival
process. In Scenario 3, the variable “age” also includes non-linear effects in both processes. The variable “age” is simulated
from a mixture of uniform variables with probabilities 0.25 for the age group (30, 65), 0.35 for the age group (65, 75), and 0.4 for
the age group (75, 85). This variable is then centered at 70 and scaled by a factor of 10. The variables “comorbidity” and “sex”
are simulated from a Binomial distribution with probability parameter 0.5. The parameter values in each of these scenarios are
presented in Section A3 in the Supplementary Material. These values are selected, together with the administrative censoring
points, in order to obtain 5% and 35% censoring rates, which will allow us to assess the effect of censoring. We also consider
two sample sizes in each scenario, n = 200 and n = 500, in order to evaluate the effect of sample size. The residual errors are
assumed conditionally independent and identically distributed as (�i(t) ∣ �2) ∼ N(0, �2).
For each simulation scenario, we simulate N = 100 data sets and obtain 2, 000 posterior samples of the parameters of the

corresponding joint models using rstan. We apply a burn-in period of 1, 000 iterations as well as a thinning period of 5 iterations
to these posterior samples, for a total of 200 posterior samples. Under this configuration, we have observed convergence of the
posterior samples. The number of Monte Carlo iterations is based on a trade-off between CPU time while trying to minimise
the Monte Carlo error. Simulations were performed on an iMac with 3.3 GHz Quad-Core Intel Core i7, 16 GB RAM, macOS
Catalina.
The results from this simulation study are presented in Sections A4 and A5 in the Supplementary Material. Tables A7–

A38 display summaries of the posterior samples. These tables present the averages of the posterior means, posterior medians,
2.5% posterior quantiles, and 97.5% posterior quantiles for each of the posterior samples in each scenario. We observe a good
performance of the Bayesian point estimators, as these means are close to the true values of the parameters. There is a clear
effect of the sample size and censoring rates on the accuracy of the estimates. Unsurprisingly, the larger the sample, the more
accurate the estimates. A similar conclusion is obtained for the censoring rates, as we can see that lower censoring rates produce
more accurate estimates. Model complexity is an important factor (for instance, log-normal vs. PGW baseline, or linear model
vs. splines model), as we can see that the more complex the model is, the wider the credible intervals are, which also interacts
with the effects of sample size and censoring rates. A more interesting conclusion is observed for the length of follow-up, as
reducing the length of follow-up has a marked effect on the accuracy of the estimates of the parameters of the survival model.
In particular, the estimation of the shape parameters in the PGW distribution suffers from early administrative censoring as
these parameters control the tail of the distribution, while early administrative censoring removes information about the tails
of the distribution. This phenomenon remains even after increasing the sample size, indicating that a longer follow-up might
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be as important as increasing the sample size if the aim is to improve the accuracy of the estimates. In addition, Figures A3–
A22 in the Supplementary Material show the baseline hazards associated to the plugging posterior median estimators as well as
the posterior predictive baseline hazards (which are defined as the ratio of the posterior predictive probability density function
and the posterior predictive survival function). We observe a similar situation about the effect of the censoring rate, sample
size, and model complexity on the ability to recover the shape of the baseline hazard. Another interesting result, obtained from
comparing Scenarios 0 and 1, is that not including �1b1i (i.e. not sharing the random slopes) induces a bias in the estimation of
�0. However, in order to be able to estimate the parameter �1 accurately, a longer follow-up or a larger sample size is necessary.
Finally, comparing Scenarios 1 and 2, we can see that it is easier to estimate the link parameters when fixed and random time-
dependent effects are combined (for 3-parameter baseline hazard), in contrast to the case when only random time-dependent
effects are considered. This applies to all sample sizes and censoring rates. In this case, the use of an appropriate simpler model
(in the sense that it can capture the true hazard shape) improves the estimation of the link parameters.
We conduct additional simulation studies (Section A6) where we assess the effect of higher censoring rates (60% censoring)

and for binary longitudinal outcomes (which is modelled using a logistic mixed effects model). Results are shown in Tables
A39–A58 in the Appendix. The conclusions are the same as those in the previous paragraph in terms of the interplay between
sample size, censoring, and the flexibility of the baseline hazard and the functional form of the regression model. This section
also illustrates the fact that results are the same for negative correlations and negative regression coefficients (as the role of the
parameters remains the same). Finally, Section A6 also presents a simulation study using a Generalised Gamma baseline hazard
instead of PGW. The results are comparable to those obtained in the PGW case, however, the need for using special functions
for evaluating the GG hazard and cumulative hazard functions has a large cost in terms of computing times as the posterior
sampling is slowed down by a factor of 7, compared to the PGW model, despite the efficient implementation of these functions
discussed in the appendix. Thus, although equally flexible, the GG model also carries a larger computational cost, which is
more apparent in the Bayesian framework where the evaluation of the posterior needs to be done thousands of times to obtain a
posterior MCMC sample.
Overall, this simulation study provides some guidelines (and a warning) about the use of flexible models withmany parameters

when there are high censoring rates or small samples. Thus, in practice, it is recommended to compare simple models against
more complex models using formal model selection tools. We will illustrate this idea in the following section.

5 THE AIDS STUDY: UNIVARIATE TIME-TO-EVENT JOINT MODEL

The aids data consists of 467 patients with advanced human immunodeficiency virus infection during antiretroviral treatment
who had failed or were intolerant to zidovudine therapy.16 This data set is publicly available in the R package JM26 and the main
objective is to identify associations between the time to death and the following covariates: CD4: CD4 cells count (longitudinal
biomarker); prevOI: a factor with levels AIDS denoting previous opportunistic infection (AIDS diagnosis) at study entry, and
noAIDS denoting no previous infection; drug: a factor with levels ddC denoting zalcitabine and ddI denoting didanosine;
gender: a factor with levels female and male; AZT: a factor with levels intolerance and failure denoting AZT intolerance
and AZT failure, respectively.
For simplicity, we used only the baseline variable prevOI, coded as 0 (noAIDS) and 1 (AIDS), to illustrate our methodological

approach. In addition, the longitudinal CD4 variable was transformed by applying the square root. This selection is also based
on a preliminary study on the importance of these variables on the longitudinal outcome of interest.

5.1 Model 1 (M1)
Our first proposal specifies the longitudinal model with fixed effects for the intercept (�̃0), slope (�̃1), and prevOI (�); random
effects for the intercept (b0) and slope (b1); and a time-dependent effect for the prevOI covariate (). Mathematically, we can
represent yi(t) as the

√

CD4 at time t for patient i = 1,… , n = 467 and therefore the longitudinal model is defined by:

yi(t) = �̃0 + �̃1t +  prevOIi t + � prevOIi + b0i + b1i t + �i(t), (5)

where �i(t)
ind.∼ N(0, �2) is the random error at time t and we assume that the random effects, bi = (b0i, b1i)⊤, given Σ, follow a

joint bivariate normal distribution with zero mean and variance-covariance matrix Σ.
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The hazard function at time t is defined as:

ℎ(t ∣ 	2i) = ℎ0
(

t exp
{

�1
(

 prevOIi + b1i
)}

|

|

|

�
)

exp
{

� prevOIi + �0b0i
}

, (6)

where ℎ0 is a baseline hazard function that will be specified here as Log-normal, Gamma, Generalised Weibull, and Generalised
Gamma (see Section 3.2 for more details of these specifications); �0 and �1 denote the association parameters; and � is the
regression coefficient for prevOI.

5.2 Model 2 (M2)
The longitudinal model of our second proposal is slightly different from the specification of (5), as now we do not include the
time-dependent effect for the prevOI covariate. Then, the linear mixed model (LMM) is expressed by:

yi(t) = �̃0 + �̃1t + � prevOIi + b0i + b1i t + �i(t). (7)

In this joint approach specification, the survival model shares only the random effects:

ℎ(t ∣ 	2i) = ℎ0
(

t exp
{

�1b1i
}

|

|

|

�
)

exp
{

� prevOIi + �0b0i
}

. (8)

5.3 Model 3 (M3)
Our third proposal models the longitudinal process as in (7), but shares only the random intercept:

ℎ(t ∣ 	2i) = ℎ0
(

t ∣ �
)

exp
{

� prevOIi + �0b0i
}

. (9)

The prior distributions for the parameters and hyperparameters of modelsM1,M2 andM3 are specified as in Section 3.2.

5.4 Bayesian model comparison
Suppose we have m Bayesian models, sayM1,… ,Mm, to be compared. So, the relative plausibility of a particular modelMv
given its prior probability and the evidence from the data is quantified by the so-called posterior model probability (PMP),27
defined as follows:

PMPv = P (Mv ∣ Data) =
P (Data ∣Mv)P (Mv)

∑m
j=1 P (Data ∣Mj)P (Mj)

, v = 1,… , m, (10)

where again we assumed that the models are equally probable a priori.

5.5 Results
We start the analysis by comparing the joint models M1, M2 and M3 using the following baseline hazards: Log-normal,
Gamma, Power Generalised Weibull, and Generalised Gamma. Table 1 shows the approximate calculation of posterior model
probabilities, obtained with the post_prob function, available in the R package bridgesampling28.

TABLE 1 Baseline hazard model comparison based on posterior model probability (PMP).

Model Log-normal Gamma Power Generalised Weibull Generalised Gamma

1 0 0 0 0

2 0 0.9944 0 0.0001

3 0 0.0011 0.0044 0
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The results indicateM2 with the Gamma baseline hazard as the best model. Table 2 shows a posterior summary for this model.
The last column of this table contains the posterior probability that the corresponding parameter is positive. A probability equal
to 0.5 indicates that a positive value of the parameter is equally likely than a negative one.

TABLE 2 Posterior summary for modelM2 with the Gamma baseline hazard specification.

Interpretation Parameter Mean Median 2.5% 97.5% P (⋅ > 0 ∣ Data)

intercept �̃0 3.111 3.111 2.986 3.242 1.000
slope �̃1 −0.042 −0.042 −0.050 −0.034 0.000

prevOI (AIDS) � −0.910 −0.909 −1.067 −0.754 0.000
intercept RE variance �2b0 0.582 0.582 0.500 0.678 –
slope RE variance �2b1 0.002 0.002 0.001 0.002 –
RE correlation � 0.040 0.039 −0.143 0.231 0.655
error variance �2 0.134 0.134 0.120 0.150 –

prevOI (AIDS) � 1.622 1.613 1.181 2.108 1.000
intercept RE association �0 −0.935 −0.935 −1.207 −0.666 0.000

time association �1 −25.681 −25.587 −44.110 −8.053 0.002
Gamma scale � 33.081 32.007 20.172 52.348 –
Gamma shape � 1.760 1.740 1.440 2.195 –

prevOI: Previous Opportunistic Infection at study entry. RE: Random Effect.

The first seven parameters in Table 2 refer to the longitudinal model for the
√

CD4. In particular, it is important to note that the
posterior mean of the amount of CD4 (in square root scale) to patients with previous opportunistic infection (AIDS diagnosis)
at study entry was less than that of patients with no previous infection by E(� ∣ Data) = −0.91 units.
As expected, the group of patients with previous opportunistic infection at study entry has a higher risk of death, E(� ∣ Data) =

1.615. In addition, the association parameters (�0 and �1) indicate that by having a low CD4 amount at study entry (intercept)
or even decreasing this amount throughout the study (slope), the risk of death increases.
Considering the following parameterisation of the Gamma probability distribution function f0(t) = � �t�−1e−�t∕Γ(�), Figure 1

shows the plots of the predictive baseline hazard, ℎ0(t) = f0(t)∕S0(t), and survival, S0(t), and their respective 95% credible
interval using the posterior samples of � and � from modelM2.

6 THE SANAD STUDY: COMPETING RISKS JOINT MODEL

The SANAD (Standard and New Anti-epileptic Drugs) study, designed and analysed by Marson et al17, is an unblinded ran-
domised controlled trial in hospital-based outpatient clinics conducted between 1998 and 2006 in the UK. Partial data from this
study is publicly available in the R package joineR29, where themain objective is to investigate the time to treatment failure (here
defined as the withdrawal of a randomised drug or addition of another) based on a standard anti-epileptic drug (carbamazepine,
CBZ) and a new drug (lamotrigine, LTG). The time to treatment failure can occur due to two competing events: inadequate
seizure control (ISC) or unacceptable adverse effects (UAE). Table 3 shows a brief summary of the baseline covariates and time
to events for each competing event.

Additionally, at each clinical visit, the drug dose of each patient is adjusted if necessary. So, the dose at each visit is a
longitudinal marker potentially associated with the time until the events of interest. This time-dependent endogenous covariate,
typically modelled through a linear mixed-effects specification, is linked to the competing risks model by means of a joint
modelling.30 Williamson et al31,32 were the first to analyse this dataset using a competing risk model without longitudinal
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FIGURE 1 Gamma predictive (a) baseline hazard and (b) survival functions, and their respective 95% credible intervals for
modelM2.

TABLE 3 Competing event status, baseline covariates and time to events.

Censored ISC UAE

n 391 120 94
gender: Female |Male 173 | 218 52 | 68 37 | 57
treat: CBZ | LTG 179 | 212 55 | 65 58 | 36
age: Mean (SD) [in years] 38.4 (19.1) 33.6 (16.7) 38.9 (19.0)
time: Median (SD) [in years] 2.2 (1.7) 1.3 (1.3) 0.5 (0.9)

information. Later, Williamson et al33 proposed a joint modelling approach and more recently Hickey et al12 compared different
specifications of competing risks joint models for these data.
To model this problem, we propose three flexible specifications for joint models for longitudinal and competing risks data. All

proposals model the longitudinal dose variable as a linear mixed model (LMM) and the competing risks data as a cause-specific
hazards model34 using the log-normal baseline specification. The details of each model are described below.

6.1 Model 1 (M1)
Our first proposal specifies the longitudinal model with fixed effects for the intercept (�̃0), slope (�̃1), gender (�1), treat
(�2), and age (�3); random effects for the intercept (b0) and slope (b1); and a time-dependent effect for the age covariate ().
Mathematically, we can represent yi(t) as the drug dose at time t for patient i = 1,… , n = 605 and therefore the longitudinal
model is defined by:

yi(t) = �̃0 + �̃1t +  agei t + �1 genderi + �2 treati + �3 agei + b0i + b1i t + �i(t), (11)

where �i(t)
ind.∼ N(0, �2) is the random error at time t and we assume that the random effects, bi = (b0i, b1i)⊤, given Σ, follow a

joint bivariate normal distribution with zero mean and variance-covariance matrix Σ.
The cause-specific hazard function of the kth treatment failure at time t is defined as:

ℎk(t ∣ 	2i) = ℎk0
(

t exp
{

�k1( agei + b1i)
}

∣ �k, �k
)

exp
{

�k1 genderi + �k2 treati + �k3 agei + �k0b0i
}

, (12)
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where ℎk0 is a log-normal baseline hazard function with log-location �k and scale �k parameters; �k0 and �k1 denote the asso-
ciation parameters; �k1, �k2 and �k3 are the regression coefficients for gender, treat and age; and k = I,U represent ISC and
UAE events, respectively.

6.2 Model 2 (M2)
The longitudinal model of our second proposal is slightly different from the specification of (11), as now we do not include the
time-dependent effect for the age covariate. Then, the LMM is expressed by:

yi(t) = �̃0 + �̃1t + �1 genderi + �2 treati + �3 agei + b0i + b1i t + �i(t). (13)

In this joint approach specification, the competing risks model shares only the random effects:

ℎk(t ∣ 	2i) = ℎk0
(

t exp
{

�k1b1i
}

∣ �k, �k
)

exp
{

�k1 genderi + �k2 treati + �k3 agei + �k0b0i
}

. (14)

6.3 Model 3 (M3)
Our third proposal models the longitudinal process as in (13), but shares only the random intercept:

ℎk(t ∣ 	2i) = ℎk0
(

t ∣ �k, �k
)

exp
{

�k1 genderi + �k2 treati + �k3 agei + �k0b0i
}

. (15)

The prior distributions for the parameters and hyperparameters of modelsM1,M2 andM3 are specified as in Section 3.2.
For these analyses, we coded gender as 0 (Female) and 1 (Male), treat as 0 (CBZ) and 1 (LTG), age was standardised, and

the longitudinal dose variable for both groups of drugs were rescaled to have the same range of values. From now on we will
refer to the dose as the calibrated dose due to this scale transformation.

6.4 Bayesian model comparison
In addition to the posterior model probability (see Section 5.4), we also used the Bayes factor. LetMv andMj be two Bayesian
models competing with each other, then the Bayes factor in favour ofMv againstMj is defined by:

BFvj =
P (Data ∣Mv)
P (Data ∣Mj)

=
P (Mv ∣ Data)
P (Mj ∣ Data)

P (Mv)
P (Mj)

, (16)

where we assumed that Mv and Mj are equally probable a priori, so that P (Mv) = P (Mj) and therefore BFvj = P (Mv ∣
Data)∕P (Mj ∣ Data). In order to show the comparative results on a more friendly scale, we used log10-Bayes factor (LBF) with
the interpretations proposed by Kass and Raftery35.

6.5 Results
We started the analysis by comparing the joint models M1, M2 and M3 introduced in previous sections. Table 4 shows the
approximate calculation of Bayes factors and posterior model probabilities, obtained with the bf and post_prob functions,
respectively, available in the R package bridgesampling28.

TABLE 4 Model comparison based on posterior model probability (PMP) and log10-Bayes factor (LBF).

Posterior model probability Log10-Bayes factor

PMP1 PMP2 PMP3 LBF12 LBF13 LBF23
0 1 0 −7.20 19.56 26.76
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The results are decisively favorable to modelM2 and indicates the modelM3 as the worst option. Table 5 shows a posterior
summary for modelM2 and the results for modelsM1 andM3 are presented in Section A5 in the Supplementary Material.

TABLE 5 Posterior summary for modelM2 with a log-normal baseline hazard specification.

Interpretation Parameter Mean Median 2.5% 97.5% P (⋅ > 0 ∣ Data)

intercept �̃0 1.812 1.812 1.674 1.950 1.000
slope �̃1 0.347 0.346 0.299 0.395 1.000

gender (Male) �1 0.089 0.089 −0.062 0.240 0.877
treat (LTG) �2 −0.030 −0.029 −0.180 0.120 0.350

age �3 0.005 0.005 −0.068 0.080 0.553
intercept RE variance �2b0 0.745 0.743 0.649 0.851 –
slope RE variance �2b1 0.162 0.161 0.127 0.204 –
RE correlation � 0.043 0.042 −0.075 0.163 0.754
error variance �2 0.199 0.198 0.186 0.212 –

ISC

gender (Male) �I1 0.039 0.038 −0.332 0.415 0.579
treat (LTG) �I2 −0.248 −0.248 −0.627 0.132 0.100

age �I3 −0.254 −0.253 −0.464 −0.046 0.009
intercept RE association �I0 0.181 0.182 −0.053 0.409 0.937

time association �I1 −7.139 −7.065 −9.795 −4.896 0.000
log-normal log-location �I 2.959 2.927 2.084 4.014 1.000

log-normal scale �I 2.716 2.708 2.301 3.167 –

UAE

gender (Male) �U1 0.196 0.195 −0.308 0.708 0.775
treat (LTG) �U2 −1.009 −1.005 −1.522 −0.508 0.000

age �U3 0.139 0.138 −0.102 0.384 0.869
intercept RE association �U0 −1.278 −1.275 −1.617 −0.957 0.000

time association �U1 −12.060 −11.427 −21.827 −5.635 0.000
log-normal log-location �U 3.339 3.295 2.003 4.935 1.000

log-normal scale �U 2.887 2.872 2.383 3.463 –

LTG: Lamotrigine. RE: Random Effect. ISC: Inadequate Seizure Control. UAE: Unacceptable Adverse Effects.

The first nine parameters in Table 5 refer to the longitudinal model for the calibrated drug dose. E(�̃0 ∣ Data) = 1.812
represents the posterior mean of the average value of dose at baseline with its respective underlying posterior variance (intercept
random effect) of 0.745 among patients. The posterior mean dose increment each year was 0.347 and its posterior mean inter-
individual variation (slope random effect) was 0.162. The mean posterior correlation between the random effects was positive
but small (0.043). The posterior mean of the amount of dose delivered to men was marginally higher than that of women by
E(�1 ∣ Data) = 0.089 units. The posterior mean of the amount of dose administered to the LTG-treated patient group was
insignificantly less than in those CBZ-treated (E(�2 ∣ Data) = −0.030). The age of patients was irrelevant in terms of the amount
of dose delivered to them. The posterior mean of the error variance was 0.199.
Regarding the risk of ISC, the patient’s gender had virtually no influence, whereas treatment LTG and age produced a decrease

in risk of ISC. As the posterior mean of the association parameter for the random intercept was positive, also confirmed by
P (�I0 > 0 ∣ Data) = 0.937, and so a high baseline dose leads to a higher risk of ISC. On the other hand, the posterior mean of
the association parameter for the random slope was negative, it implies that an increase in dose is associated with a decrease in
risk of ISC.
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Regarding the risk of UAE, male and/or older patients had a higher risk of UAE, whereas LTG-treated patient group had
a reduced risk of UAE compared to those CBZ-treated. For this competing event, a high baseline dose and its increase over
time reduced the risk of the patient experiencing UAE, since the posterior mean of the association parameters for the random
intercept and slope were distinctly negative.
In order to visually compare the competing risks, we have used the predictive baseline hazards and the cumulative incidence

functions based on the posterior sample of the log-normal log-location (�) and scale (�) parameters for ISC and UAE treatment
failures. The predictive baseline hazard function for the kth risk is described as:

ℎk0(t ∣ Data) =
fk0(t ∣ Data)
S0(t ∣ Data)

, k = I,U, (17)

where

fk0(t ∣ Data) = ∫
ℝ+

∫
ℝ

ℎk0(t ∣ �k, �k)S0(t ∣ �k, �k)�(�k, �k ∣ Data) d�kd�k,

S0(t ∣ Data) =
∏

k=I,U
∫
ℝ+

∫
ℝ

exp

⎧

⎪

⎨

⎪

⎩

−

t

∫
0

ℎk0(u ∣ �k, �k) du

⎫

⎪

⎬

⎪

⎭

�(�k, �k ∣ Data) d�kd�k,

are the baseline posterior predictive sub-density function for the kth risk and the overall posterior predictive survival function,
respectively. The (baseline) posterior predictive cumulative incidence function represents the probability of failure from cause
k before time t in the presence of all other possible causes,36 and is defined as:

Fk0(t ∣ Data) =
t

∫
0

fk0(u ∣ Data) du, k = I,U. (18)

These quantities can be approximated using Monte Carlo integration based on the posterior samples. Figure 2 shows the plots
of (17) and (18) according to ISC and UAE risks, and their respective 95% credible interval for modelM2.
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FIGURE 2 Log-normal predictive (a) baseline hazard and (b) cumulative incidence function of ISC (dashed line) and UAE
(solid line), and their respective 95% credible intervals (dark and light grey) for modelM2.

The interpretations presented here are consistent with previous work that analysed this data.31,32,33,12
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7 DISCUSSION

We have proposed a formulation of Bayesian joint models for longitudinal and survival data which allows for a relatively simple
interpretation of the parameters and a tractable implementation. The idea is to model the survival process using a general hazard
structure that separates the roles of the variables acting on the time scale from those that affect the hazard scale. This formulation
can be coupled with the use of flexible parametric baseline hazards (e.g. PGW or GG), which can capture a variety of hazard
shapes, avoiding the need for numerical integration. We connect the survival process with the longitudinal process by sharing
parameters with a similar interpretation. The longitudinal process can be modelled using GLMMs, allowing for the inclusion of a
variety of response variables including continuous and categorical, within the Exponential family. This formulation facilitates the
implementation of the proposed joint models in a Bayesian framework using MCMCmethods. In this paper, we have focused on
the use of rstan, but other methods that allow for efficiently sampling frommodels with random effects can be used as well. We
have presented a honest characterisation of the limitations of the proposed joint specification, which include guidelines on cases
with high censoring rates, or with early administrative censoring. In such cases, the use of flexible parametric baseline hazards
has to be taken with some care as, intuitively and as shown in our simulation study, there is not enough information to estimate
the parameters controlling the tails. This is reflected on the resulting wide posterior distributions, compared to those associated
to simpler choices of the baseline hazard (e.g. log-normal). Model selection tools, such as Bayes factors or posterior model
probabilities, are thus useful to identify the best model. In fact, the study of the performance of Bayesian model selection tools in
the context of joint modelling represents a potential future research direction. The real data applications presented here illustrate
the flexibility of our formulation to be adapted to settings with competing or semi-competing risks in the survival process, adding
another option to the toolbox for modelling these challenging scenarios37,38. There are several natural extensions of the proposed
joint models. For instance, other flexible parametric baseline hazards and flexible distributions on the longitudinal models can
be employed instead of the ones presented here.21 Although we have presented a careful prior elicitation step, combining g-
priors and weakly informative priors, we do not claim to have the last word on this point. Thus, other priors can be used as well
(see Rossell and Rubio18 for a discussion on different priors for survival models), and our R codes can be easily adapted for that
purpose.
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