
1 

 

Genetic and non-genetic clonal diversity in cancer evolution 1 

 2 

 3 

 4 

Authors: James R.M. Black1,2 and Nicholas McGranahan1,2† 5 

1. Cancer Genome Evolution Research Group, University College London Cancer Institute, University College London, London, UK  6 
2. Cancer Research UK Lung Cancer Center of Excellence, University College London Cancer Institute, Paul O’Gorman Building, 7 

London, UK 8 
 9 

 10 

  11 

†email: nicholas.mcgranahan.10@ucl.ac.uk  12 

 13 

  14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 

mailto:nicholas.mcgranahan.10@ucl.ac.uk


2 

 

Abstract  44 

 45 

The observation and analysis of intra- tumour heterogeneity (ITH), particularly 46 

in genomic studies, has advanced our understanding of the evolutionary forces that shape 47 

cancer growth and development. However, only a subset of the variation observed in a single 48 

tumour will have an impact on cancer evolution, highlighting the need to distinguish between 49 

functional and non- functional ITH. Emerging studies highlight a role for the cancer 50 

epigenome, transcriptome and immune microenvironment in functional ITH. Here, we 51 

consider the importance of both genetic and non- genetic ITH and their role in tumour 52 

evolution and present the rationale for a broad research focus beyond the cancer genome. 53 

Systems- biology analytical approaches will be necessary to outline the scale and importance 54 

of functional ITH. By allowing a deeper understanding of tumour evolution this will, in time, 55 

encourage development of novel therapies and improve outcomes for patients. 56 
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Introduction  91 

 92 

In 1859, in his seminal text On the Origin of Species, Charles Darwin described a 93 

theory of branching evolution by natural selection, based on observations of incredible 94 

diversity of phenotypes amongst animals1. At the time, the mechanisms underpinning such 95 

diversity, including genetic recombination and mutation, were unknown, but such were the 96 

strength of his deductions about the function of these variations that this theory remains in the 97 

scientific mainstream today.  98 

Cancer is also an evolutionary process2,3, and it was the observation of phenotypic 99 

heterogeneity within tumours that led Nowell to hypothesise that Darwinian clonal evolution 100 

underpinned their development2. Since then, ‘intra-tumour’ heterogeneity (ITH), describing 101 

diversity within individual tumours, has been defined at multiple different levels, including 102 

single point mutations, somatic copy number alterations (SCNAs), epigenetic and 103 

transcriptomic changes influencing gene expression, the antitumour immune response and 104 

other features of the tumour microenvironment.  105 

 An important task that remains is to distinguish between ‘functional’ variation, 106 

conferring a fitness effect that brings about an important change in tumour phenotype, from 107 

‘non-functional’ variation4 (Figure 1). Indeed, the extent to which ITH is a result of the 108 

stochastic accumulation of mutations following the acquisition of founding ‘driver’ events, 109 

rather than the result of continual clonal evolution and selection through time and space 110 

remains an open scientific question and a topic of debate5. It is likely that the true extent of 111 

selection during cancer evolution varies both between cancer types, and within individual 112 

cancers of the same type (Box 1).  113 

This Review will explore what is known about functional and non-functional ITH in 114 

cancer, outlining unresolved areas of debate that warrant further study. It will address the 115 

diverse causes of ITH and how this might impact cancer treatment and prognosis. The advent 116 

of high throughput multi-omics has increased our understanding of the interplay between 117 

different cellular processes that contribute to ITH6. In order to appreciate in full the 118 

importance of ITH in cancer, we must interrogate more than just mutations, SCNAs, or gene 119 

expression in isolation; rather, we must seek to link all factors that may influence tumour 120 

phenotype. With a systems-biology lens such as this, we may gain the resolution required to 121 

better understand cancer evolution and comprehend its origins and vulnerabilities.  122 

 123 

ITH and evolution 124 

 125 

 Cancer develops through clonal evolution2,3. Genetic variation acts as a primary 126 

substrate for this evolution. This arises through different mechanisms of genomic instability, 127 

including endogenous and exogenous processes that generate point mutations, as well as 128 

chromosomal instability (CIN)7,8. 129 

Early studies of tumour heterogeneity developed the notion of cancer as an 130 

evolutionary, as well as a genetic, disease. Interphase fluorescence in-situ hybridisation and 131 

karyotyping of metaphase chromosomes in the 1990s demonstrated the presence of multiple 132 

clones within a tumour9,10. Comparative genomic hybridisation microarray analysis enabled 133 

accurate characterisation of the copy-number profiles of cancer clones and expanded on these 134 

findings. For example, Navin and colleagues classified breast tumours as either 135 

‘monogenomic’, containing a population of near-homogeneous tumour cells with analogous 136 

genomic profiles, or ‘polygenomic’, containing subpopulations or ‘clones’ with distinct 137 

genomic profiles, and demonstrated that clones in polygenomic tumours were descended 138 

from a common ancestor by branched evolution11. The advent of next-generation sequencing 139 

has enabled this to be characterised with finer granularity. In a seminal study in 2012, 140 
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Gerlinger and colleagues performed multi-region whole-exome sequencing on tumour 141 

samples from a cohort of patients with renal cell carcinoma to describe heterogeneity in 142 

putative driver mutations within the same tumour, and ongoing branched evolution over 143 

time12.  144 

Since these early observations, a central focus of research has been to distil functional 145 

from non-functional somatic variation and to characterise the strength of the evolutionary 146 

forces that shape tumour development over time. However, the extent to which cancer is 147 

under continuous selection during its development is a contentious topic in the field, echoing 148 

a long-standing debate in evolutionary biology13. Observed differences between parts of the 149 

same tumour do not themselves indicate the presence of competing subclones which are 150 

under selection. The accumulation of random somatic alterations over time means that 151 

genotypes will diverge even in the absence of selection pressures. As such, some studies have 152 

suggested that a subset of tumours may evolve neutrally following the acquisition of 153 

necessary driver events14–18.  154 

Low ITH of driver events, potentially indicative of selective ‘clonal sweeps’ of 155 

certain phenotypes early in tumour evolution, is well-described in multiple cancer types19–23. 156 

Conversely, other studies have highlighted the presence of subclonal driver mutations in 157 

cancer genes, whereby only a subset of cancer cells, or clones, harbour functional somatic 158 

events assumed to confer a fitness advantage24–29.   159 

 160 

Methods for evaluating ITH 161 

 162 

 Accurately recapitulating the evolutionary history of a tumour from a genomic 163 

snapshot, typically provided at a single time point, and frequently from a single part of a 164 

tumour, can be problematic. Despite consensus that one size may not fit all where tumour 165 

evolution is concerned, non-uniform terminology and methods of analysis continue to 166 

hamper efforts to classify tumours by their patterns of evolutionary development.  167 

 Many studies, such as a seminal analysis of 21 breast cancer genomes by Campbell 168 

and colleagues30, perform bulk sequencing on a single sample and attempt to infer the 169 

evolutionary history of the tumour from the variant allelic frequencies (VAF) of somatic 170 

mutations. Such studies must attempt to account for variables such as the amount of non-171 

tumour tissue sampled, the SCNA profile of the tumour, as well as the accuracy and depth of 172 

sequencing, all of which can confound accurate interpretation of the data. Another problem 173 

among such studies is sampling bias; a variant may be present in all cancer cells sampled, but 174 

not all cancer cells in the tumour (Figure 2). In addition, it may not be possible to distinguish 175 

the VAF of mutations within subclones that are the product of selection from those within the 176 

VAF distribution ‘tail’ which is a feature of neutral evolution16,31,32. This tail-like distribution 177 

of read counts of passenger mutations that are not under selection reflects random 178 

mutagenesis at each cell division and the expected relationship between the number of 179 

mutational events and their clonal frequency over time. 180 

Multi-region sampling, while it does not mitigate against neutral tails, may help to 181 

identify and classify subclones more accurately and reduce sampling bias. Nevertheless, this 182 

does not represent a ‘silver bullet’; typically, only a tiny fraction of the total tumour is 183 

assessed33. Sequencing of every single tumour cell, which remains impossible, would be 184 

required to resolve this definitively. Another option is representative sequencing, whereby 185 

homogenised fixed tumour material that was not used for pathology is sequenced, thus 186 

reducing sampling bias and misclassification rates33.  187 

Even if clonal sweeps are accurately defined, distinguishing between such an event 188 

that may have occurred in the recent past, and one that was present at the inception of the 189 

tumour is not always possible. Furthermore, negative selection that has eliminated a clone 190 
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prior to sampling is not detectable using VAF-based approaches. Therefore, other methods 191 

are required to disentangle the temporal order of events and to distinguish functional events, 192 

subject to selection, from non-functional events, which are not.  193 

Copy-number gains and whole-genome duplication events may be used to time 194 

somatic alterations and separate early from late events occurring during tumour evolution29,34. 195 

In the Pan Cancer Analysis of Whole Genomes (PCAWG), this approach enabled inference 196 

of trends in clonal architecture across tumour types29. In colorectal adenocarcinoma, for 197 

instance, mutations in APC, KRAS and TP53 were shown to be predominantly early events, 198 

while certain copy-number alterations including 15q, 21q and 22q loss, were generally late29.  199 

 A method borrowed from evolutionary biology can provide orthogonal evidence of 200 

clonal selection. dN/dS, an assessment of the ratio of substitution rates at nonsynonymous vs. 201 

synonymous sites, revealed substantial selection pressures acting on apparently normal 202 

tissue35. In cancer, dN/dS has also been used to reveal positive selection globally, and within 203 

specific cancer genes, as well as a near-absence of negative, or purifying selection36 (Figure 204 

3). Whilst dN/dS provides information on global patterns of selection, particularly when large 205 

numbers of samples are analysed, it is nevertheless unable to infer selection within specific 206 

elements of interest in individual clones (Figure 3C). In addition, further research is needed 207 

to enable accurate measurement of selection in the context of other events such as non-coding 208 

mutations, indels or structural variants.  209 

Robustly describing tumour evolution with a single binary label, such as neutral or 210 

branched, punctuated or gradual37, remains problematic. Indeed, separate analyses of 211 

identical data can lead to disparate conclusions: a comparison of VAFs in 904 cancers from 212 

14 cancer types, including a minority subjected to multi-region sampling, by Williams and 213 

colleagues suggested that the subclonal VAF distributions in 36% (323/904) of these could be 214 

explained by neutral evolution16, but subsequent work using an orthogonal approach (dN/dS), 215 

found evidence of subclonal selection within cancer genes in these 323 tumours 16,38. 216 

 217 

Single-cell sequencing platforms may provide further insight into tumour evolution 218 

(reviewed elsewhere39). This approach presents the opportunity to analyse cellular 219 

epigenomes, as assessed through DNA methylation, histone configuration or chromatin 220 

accessibility, and cell states, inferred from transcriptomic or protein expression data. This 221 

enables explicit evolutionary context to be added to epigenetic or transcriptomic events. 222 

Lineage reconstruction at the single cell level has the potential to improve vastly our 223 

understanding of tumour phylogeny. An exemplar of this is Direct Library Preparation single-224 

cell whole-genome sequencing, which allows for identification of clonal populations of 225 

single cells, pinpointing unique aspects of their genomes40. This enables aggregation into 226 

‘pseudo-bulk’ samples from which clonal phylogeny may inferred. At present, however, the 227 

accuracy of methods to call mutations from typically shallow single-cell sequencing may be 228 

limited by PCR errors and allelic dropout. Efforts to resolve this issue will enhance the future 229 

success of this approach.  230 

 231 

[H1]Copy-number ITH  232 

 233 

So far, the main form of variation discussed in this review has been point mutations. 234 

However, CIN, and structural variation including SCNAs, whole genome duplication and 235 

chromothripsis events may engender large fitness effects. The extent to which CIN provides 236 

the substrate for ongoing selection and branched evolution in cancer is unclear. Although 237 

CIN has long been linked to poor prognosis7, research has only recently explored the question 238 

of whether this process continues throughout tumour evolution, or, conversely, whether 239 

SCNAs are predominantly relics of past genomic instability. A single-cell study of 12 triple-240 
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negative breast cancers identified aneuploidy as a punctuated, early event in tumour 241 

evolution, preceding clonal expansion of a population of cells with a stable karyotype20. This 242 

finding was supported by recent work on colorectal cancer reported in a preprint; Cross et al 243 

studied CIN within 755 samples, taken from multiple tumour regions or longitudinally in 167 244 

patients and found that certain dominant SCNAs were established early in tumour evolution 245 

and persisted through negative selection of karyotype diversity, in spite of ongoing CIN 246 

through therapy administration and progression to metastasis41.  247 

There are also examples of CIN generating functional events late in tumour evolution. 248 

For example, PCAWG demonstrated that chromosomal gains occur throughout ‘molecular 249 

time’, from early human development to the final stages of tumour growth (median molecular 250 

time 0.60; IQR 0.10-0.87). However, within certain cancer types such as lung cancer, 251 

papillary renal cancer and melanoma, they are predominantly late events29. Furthermore, in a 252 

cohort of clear cell renal cell carcinoma (ccRCC), loss of 9p21.3 was subject to subclonal 253 

selection and was associated with metastatic progression, as evidenced by the fact that it was 254 

a clonal event in just 26% of primary tumour samples versus 64% of metastases 42. Late arm-255 

level SCNAs have also been described in other cancer types43–45. 256 

Watkins et al. interrogated pan-cancer multi-region data to assess the degree to which 257 

CIN provides a substrate for subclonal phenotypic diversification46. This work found 258 

evidence of parallel evolutionary events, in which the same genes were affected by different 259 

subclonal SCNAs in 37% of tumours analysed; examples included gains at 1q21.3-q44 which 260 

encompasses BCL9, MCL1 and ARNT, at 5p15.33 which contains TERT, and at 8q24.1 which 261 

contains MYC. Independent analysis of metastases by multi-region sampling revealed 262 

subclonal events within certain tumour types, including gains to MYC in ccRCC and CCND1 263 

in HER2+ breast cancer, which were enriched in metastases relative to primary tumours. 264 

Together, this suggests that late in tumour evolution, CIN engenders extensive subclonal 265 

diversity. It also expands on in vitro work within patient-derived tumour organoids, where 266 

ongoing CIN led to karyotypic heterogeneity over time in models of colorectal carcinoma47.  267 

 It is likely that, even when looking at the mutation and copy number landscapes in 268 

parallel, we still fail to capture events with a large influence on cellular fitness and may draw 269 

imperfect conclusions as a result. Extending our focus beyond the genome to the epigenome, 270 

transcriptome, and the immune microenvironment may allow us a greater understanding of 271 

the true extent of ITH. In this way, we can more accurately define the functional evolutionary 272 

processes that influence phenotype (Figure 5).  273 

 274 

 275 

[H1]Epigenetic and transcriptomic ITH  276 

 277 

 Epigenetic dysregulation influences gene expression and is widespread in cancer, 278 

occurring by varied mechanisms such as promoter hypermethylation, altered enhancer 279 

activity, and changes in chromatin configuration48.   280 

Alterations to the cancer epigenome can be binary, functioning as ‘on or off’ 281 

switches, or induce transient changes in gene expression, forming part of highly plastic gene 282 

expression networks. They but can also govern copy number changes. For example, the 283 

interplay between lysine demethylases and methyltransferases and their relative activity upon 284 

histone H3 lysine 4 (H3K4), H3K9 and H3K27 has been shown to affect copy-number 285 

amplification of the EGFR oncogene, which encodes the epidermal growth factor receptor49. 286 

Dysregulation of the cancer epigenome may be global in some cancers. In a pan-cancer 287 

analysis, increased global enhancer expression was seen across multiple cancer types, and 288 

enhancer activity correlated with the fraction of the genome affected by SCNAs50. This 289 

intriguing potential consequence of CIN was posited to relate to its impact on chromatin 290 
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state, although the evolutionary context of such epigenomic dysfunction within tumours 291 

requires further elucidation. Interestingly, mutations in genes encoding epigenetic modifiers 292 

alone are sufficient to drive some, and an analysis of 24 types of childhood cancer found this 293 

group of genes, including KMT2C, KMT2D and SMARCA4, to be the most commonly 294 

mutated (mutations in epigenetic modifiers affected 25% of tumours) across all molecular 295 

subtypes51.  296 

Like the epigenome, the cellular transcriptome is frequently aberrant in cancer. 297 

Various mechanisms, such as alternate splicing, alternate promoter usage, gene fusions and 298 

aberrant oncogenic signalling can underpin this phenomenon52–56. The impact of genetic 299 

alterations on transcription was explored extensively using bulk whole-genome sequencing 300 

with matched RNA-sequencing in the recent PCAWG analysis55. In this analysis, SCNAs 301 

emerged as the dominant genomic event influencing gene expression, contributing to 17% of 302 

gene expression variation, compared to somatic and germline genetic variation in cis, which 303 

contributed to 1.8% and 1.3% respectively. Cumulatively, non-coding mutations contributed 304 

more to variation in allelic expression than coding mutations55. This underscores the potential 305 

problems of restricting focus to exonic mutations, and is supported by our own analysis of 306 

lists of cancer genes (Figure 4). We compared cancer genes identified by Bailey et al57, who 307 

systematically catalogued mutations from 9,423 tumour exomes, with those identified in the 308 

COSMIC Cancer Gene Census58, which incorporates evidence of functional involvement 309 

alongside increased mutation frequency when curating cancer gene lists. As would be 310 

expected, a whole-exome sequencing approach only identifies a subset (330/657) of 311 

COSMIC cancer genes. Intriguingly, it fails to identify the majority of genes affected by 312 

translocations and amplifications (Figure 4A). Greater proportions of the COSMIC cancer 313 

genes affecting certain cancer types (BRCA, LGG) are identified by Bailey than others 314 

(PAAD, SARC) (Figure 4B). This highlights that many cancer genes are likely undiscovered, 315 

a substantial proportion of which may be driven by mechansisms beyond point mutations. 316 

For example, RNA variants, generated by editing enzymes, are an additional source of 317 

diversity within tumours that impact upon protein function in cancer and would be missed by 318 

whole-exome sequencing59,60  319 

The importance of transcriptomic variation in cancer is underlined by the ability of 320 

expression-based biomarkers to predict clinical outcome61. However, the evolutionary 321 

context of this variation is also important: considering ITH in gene expression through multi-322 

region bulk RNA-sequencing can significantly improve the predictive ability of such 323 

biomarkers. For example, in non-small cell lung cancer (NSCLC), a prognostic gene 324 

expression signature calculated from clonally expressed genes reduced the impact of 325 

sampling bias, a problem also highlighted by a transcriptomic analysis of multifocal prostate 326 

cancer62,63. Multi-region transcriptomics can also shed light on other tumour evolutionary 327 

processes. Biswas et al underlined the dominant role of SCNAs in influencing gene 328 

expression, as ITH of SCNAs was strongly correlated to ITH of gene expression62. A multi-329 

region transcriptomic analysis of four patients with advanced bladder cancer identified 330 

distinct molecular subtypes thought to arise from different urothelial progenitors in distinct 331 

regions of the same tumour, suggesting that tumour subtypes may be somewhat plastic rather 332 

than entirely pre-determined64.  333 

 An important caveat for bulk transcriptomic and epigenetic analysis is that such 334 

datasets comprise tumour and stromal gene expression which, currently, we can only partly 335 

deconvolve; tumour purity may therefore introduce bias into transcriptomic analysis of 336 

ITH65. Integrated analysis of the genome and transcriptome may help to deconvolve tumour-337 

specific gene expression within bulk sequencing samples66. 338 

 Single-cell sequencing can capture epigenomic and transcriptomic changes and has 339 

helped to shape the concept of cellular transcriptomic promiscuity and its influence on 340 
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phenotypic plasticity67. In lung adenocarcinoma, a highly plastic cellular state is associated 341 

with poor prognosis in humans and with treatment resistance in mice; this plastic state 342 

mediates transition to more diverse phenotypes and may explain ITH in some tumours68. 343 

Jacks and colleagues studied the epigenome of single lung adenocarcinoma cells en route to 344 

metastasis and revealed important changes in chromatin state which characterise gradual loss 345 

of cellular identity, and may be controlled by key transcription factors such as those of the 346 

RUNX family69. The identification of a gene expression signature of this subpopulation that 347 

associated with survival was particularly intriguing69; the ability to robustly obtain from bulk 348 

sequencing evidence of cancer cells with features of stemness, diverse transcriptional 349 

landscapes and the ability to influence the evolutionary trajectory of a tumour in the presence 350 

of selective pressures, would be of great value in both the research and clinical settings.  351 

 In studies of haematopoiesis, differences in stemness, cellular states, gene expression 352 

profiles and enhancer activity have been explicitly linked to mutations in DNA methylation 353 

genes, underscoring the importance of these genes in cancer70. However, in general, the 354 

heterogeneity of epigenetic events in human cancers, as well as their interplay with the cancer 355 

genome and transcriptome, remains poorly understood. This problem is illustrated by debates 356 

surrounding evolutionary trajectories in pancreatic cancer, where genetic driver mutations in 357 

TP53, KRAS, CDKN2A or SMAD4, when present, are almost always clonal71. In isolation, 358 

this might indicate an absence of subclonal selection in this disease, but study of the 359 

epigenome in pancreatic cancer evolution suggests that widespread chromatin remodelling 360 

might provide the substrate for selection in metastasis72. In chronic lymphocytic leukaemia, 361 

the epigenetic landscape is significantly disrupted, driving variety in cellular phenotype, and 362 

different cancer cell populations may have highly disparate epigenomes73.  363 

 Hua et al. explicitly compared the ITH of point mutations, SCNAs and DNA 364 

methylation in a multi-region study of 84 lung adenocarcinomas74. They found that tumour 365 

evolutionary trees inferred from SCNAs and DNA methylation were highly similar, 366 

demonstrating that patterns of cancer evolution may be agnostic of variant mechanism. 367 

Congruency of genomic and epigenomic evolution was also recently described in papillary 368 

renal cell carcinoma75. Future work should seek to devise tools to define more clearly the 369 

relationship between mutations, CIN and epigenetic and transcriptomic states, in both space 370 

and time. Integrating whole-genome sequencing with multi-omics is likely to be important to 371 

this endeavour. 372 

 Ultimately, mutations, SCNAs, epigenetic alterations and transcriptional alterations 373 

all influence the abundance, structure and function of proteins, the true arbiters of cellular 374 

phenotype. Therefore, proteomic studies may be critical to integrating this information. 375 

Moreover, a proteogenomics approach facilitates deep analysis of the impact of functional 376 

mutations at the pathway level. Such studies have described novel consequences of mutations 377 

and SCNAs in breast cancer76, including the identification of alterations in enzymatic activity 378 

which were not visible at the transcriptomic level, as well as in gastric and ovarian 379 

cancer77,78. In addition, recent publications studying the lung adenocarcinoma proteome with 380 

mass spectrometry and phosphoproteomics are an important development in this space79–81. 381 

Proteogenomic analyses have also helped show that the relationship between SCNAs and 382 

mRNA and protein abundance may be inconsistent. Intruiguingly, in breast cancer, genes in 383 

which a correlation was observed between SCNAs and mRNA as well as between SCNAs 384 

and protein levels were more likely to be cancer genes than those without a correlation 385 

between SCNAs and protein levels76. This suggests that in some settings multi-omic 386 

approaches that consider the proteome may be more powerful to detect functional events that 387 

those that do not. It is hoped that future studies of proteomic ITH, as well as other systems-388 

based approaches, will provide insight into functional clonal diversity, and help to resolve 389 

long standing debates about cancer biology.  390 
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 391 

[H1]Microenvironmental ITH  392 

 393 

 A convincing argument to move forward from the reductionist, exclusively genomic, 394 

view of tumour evolution stems from the success of immunotherapies that disrupt signalling 395 

between cancer and immune cells. If our aim is to understand cancer evolution, we cannot 396 

ignore the environment in which a cancer cell evolves. Whether variation is functional or 397 

non-functional can be highly context dependent, depending on both the genomic background 398 

into which a mutation arises, but also the environment itself. This environmental context has 399 

an immune, and a non-immune arm.  400 

  401 

[H2] Evolutionary constraints imposed by the anti-tumour immune response 402 

 403 

 A critical component of the tumour microenvironment in a growing cancer is the 404 

immune infiltrate. Human cellular biology has evolved to combat the threat of cancer in its 405 

tissues through a high-fidelity anti-cancer immune response82. A prominent part of this 406 

response is the adaptive immune response. Here, a tumour, or its associated non-host peptides 407 

(neoantigens) are identified and eliminated through the clonal expansion of a highly specific 408 

T-cell population and degradation by cytotoxic CD8+ T-cells, or by a CD4+ T-cell-409 

dependent cytotoxic response83,8485.  410 

 The anti-tumour immune response equates to a clone-specific negative selection 411 

pressure and there are a number of mechanisms that cancers can co-opt in order to evade 412 

detection and elimination. Many of these are genomic. For example, mutations in beta-2-413 

microglobulin, B2M, a component of the Major Histocompatibility Complex, disrupt antigen 414 

presentation in response to immune predation86. Similarly, cancer cells undergo loss-of-415 

heterozygosity (LOH) of the Human Leucocyte Antigen (HLA) locus on chromosome 6p. In 416 

one study, HLA LOH was detected in 40% of NSCLC and was subclonal in 65% of cases87. 417 

This finding was supported by a recent pan-cancer analysis of multi-region sampled tumours, 418 

where 22% of all tumours demonstrated subclonal loss of two copies of the same HLA allele 419 

after whole genome doubling46. SCNAs outside of the HLA locus can also promote immune 420 

evasion, for example through copy-number loss of neoantigens capable of stimulating a 421 

functional T cell response88,89. In mouse models of ovarian cancer, immune-excluded tumour 422 

regions were characterised by copy-number amplification of MYC target genes and increased 423 

WNT signalling90. An abundance of non-specific SCNAs has also been proposed as a 424 

predictor of poor response to immunotherapy91; however, disentangling their well-described 425 

prognostic role from a predictive one is difficult, and requires further study. There is also 426 

evidence of transcriptional neoantigen depletion underpinning immune escape. In NSCLC, 427 

downregulation of neoantigenic transcripts was found to occur via promoter 428 

hypermethylation (seen in 23% of silenced neoantigen-containing genes versus 11% of the 429 

same non neoantigen-containing genes) and was enriched in immune-infiltrated tumours with 430 

an intact HLA allele, suggestive of diverse cellular responses to the negative selection 431 

pressure imposed by the anti-tumour immune response89. Indeed, the remaining repressed 432 

neoantigens not subject to promoter hypermethylation may be affected by mechanisms that 433 

are yet to be elucidated.  434 

 Not all neoantigens stimulate a uniform anti-tumour immune response, demonstrating 435 

the importance of distinguishing between functional and non-functional ITH. Clonal 436 

neoantigens stimulate anti-tumour immunity, and those tumours containing neoantigen-437 

reactive tumour-infiltrating lymphocytes (TILs) are associated with better outcome92. In a 438 

multi-region study of NSCLC, Chain and colleagues reported a correlation between the 439 

number of T-cell clones found in all tumour regions, and the number of clonal, but not 440 
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subclonal mutations, emphasising the importance of neoantigens in stimulating the immune 441 

response early in tumour evolution93. Furthermore, the clonality of T-cells within a tumour 442 

has also been associated with improved response to anti-programmed cell death 1 (PD1) 443 

therapy in melanoma94,95, although other facets of the T-cell repertoire, such as the diversity 444 

of circulating T-cell clones in peripheral blood, also impact response to immune checkpoint 445 

blockade96. Importantly, the clonal diversity of neoantigens can also influence the anti-446 

tumour immune response. Using an immune-competent mouse model of melanoma, Wolf 447 

and colleagues showed a correlation between increased clonal diversity and ineffective 448 

rejection of the developing tumour97. This builds on earlier findings in mice which suggested 449 

that the fraction of cells expressing a clonal, immunogenic peptide is key in determining 450 

whether a tumour is eliminated, with small subclones being more able to evade immune 451 

rejection98.  452 

As clonal diversity can influence the immune response to a developing tumour, so this 453 

response can provide a negative selection pressure on a growing tumour and in turn shape its 454 

clonal composition. This is illustrated by recent work in a glioma model, where the immune 455 

editing that occurred within immune-competent mice led to the formation of tumours with 456 

lower clonality99. In high-grade serous ovarian cancer, tumour regions with the highest levels 457 

of immune infiltrate were characterised by neoantigen depletion, subclonal HLA LOH, and 458 

low clone diversity, indicating predation of that region prior to sampling100. These findings 459 

are consistent with a study of metastatic colorectal cancer, where those metastases that persist 460 

were the least immunogenic, and harboured diverse mechanisms of immune escape101. 461 

Negative selection has also been reported prior to formation of an invasive cancer: 462 

histopathological and molecular analysis of pre-invasive lung lesions suggested that immune 463 

surveillance is more active in those that regress, relative to those that progress to invasive 464 

cancer102.  465 

The extent to which negative selection pressure is exerted on the developing tumour 466 

throughout its evolution is unclear: studies have suggested that neoantigen-encoding 467 

mutations may be depleted within primary tumours, indicating the impact of negative 468 

selection prior to sampling86,91,103. However, in a recent analysis which adjusted for single 469 

nucleotide substitution mutational signatures, no evidence of negative selection against 470 

neoantigens was found, with the exception of NSCLC104. A recent preprint reported an 471 

orthogonal approach, restricting dN/dS to the immunopeptidome, that detected immune 472 

selection in some tumours105. Intriguingly, pre-treatment immune selection was detected at 473 

increased levels within a subset of patients with metastatic disease who responded poorly to 474 

immune checkpoint inhibitor therapy105.  475 

Just as nonsynonymous mutations in a tumour may be immunologically functional or 476 

non-functional depending on their ability to elicit a T-cell response, so the functionality and 477 

differentiation state of T-cells may also vary between tumours. Work on NSCLC found that 478 

dysfunctional and terminally differentiated T-cells expressing PD1 and inducible T-cell 479 

costimulatory (ICOS) were more predominant in tumours with a high mutational burden, 480 

whilst progenitor-like T-cells in the early stages of differentiation expressing CD27 and 481 

CD28, and lacking signs of antigen engagement, were seen in tumours with a low mutational 482 

burden106. This is clinically significant as a gene signature of differentiation skewing was 483 

associated with a worse prognosis across multiple tumour types without immunotherapy106.  484 

A structured immune microenvironment, manifest as spatial differences between 485 

areas of the same tumour, can be important to both the trajectory of a tumour and patient 486 

outcome. In triple-negative breast cancer, highly multiplexed imaging enabled classification 487 

of tumours by their extent of tumour-immune mixing, as either ‘cold’, ‘mixed’ or 488 

‘compartmentalized’107. Intriguingly, this feature correlated with expression of the 489 

immunotherapy targets indoleamine 2,3-dioxygenase 1 (IDO1) and PD1 ligand 1 (PDL1) on 490 
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tumour or non-tumour cells: in the compartmentalized tumours, IDO-1 and PDL1 were 491 

expressed by non-tumour cells, such as monocytes, and these tumours were associated with 492 

improved prognosis107. Within lung adenocarcinoma, the presence of more than one 493 

‘immune-cold’ region in which immune evasion might have occurred, predicted poor patient 494 

outcome irrespective of the immune phenotypes observed in the rest of the tumour108. 495 

Immune-cold regions from the same tumour were more likely to share subclonal mutations 496 

than immune-hot regions, raising the possibility that ‘functional’ events, which mostly 497 

remain to be elucidated, underpin the ability of an evolving tumour to evade immune 498 

rejection.  499 

Taken together, these studies demonstrate that tumours, or parts of tumours, may have 500 

different relationships with the anti-tumour immune response and can behave differently, 501 

thereby highlighting the importance of heterogeneity in the microenvironment of a tumour 502 

towards shaping its evolution.  503 

 504 

The non-immune microenvironment and tumour evolution  505 

 506 

 Cancers exploit local signalling networks that can profoundly impact cellular identity, 507 

to co-opt stromal cells and foster a microenvironment that is favourable to tumour growth via 508 

the angiogenic switch, epithelial-to-mesenchymal transition and other processes (reviewed 509 

elsewhere109). This creates regional spatial differences between parts of tumours, which may 510 

be observed by analysis of pH gradients, hypoxia and growth factor concentration110. 511 

Moreover, ITH may be driven in part by microenvironmental factors: this is supported by 512 

modelling data111 and implied in a study of ccRCC, where regional variations observed on 513 

imaging could not be accounted for by genetic variation112. Interactions between cancer cells 514 

and their stromal counterparts can profoundly influence the trajectory of a tumour. p53-515 

dependent senescence in hepatic stellate cells may act in a non-cell-autonomous manner to 516 

promote macrophage differentiation and an anti-tumourigenic microenvironment113. In 517 

contrast, cancer cells may co-opt the systemic environment, outside the confines of the 518 

tumour, such as in the formation of the pre-metastatic niche through tumour-secreted factors 519 

and tumour-shed vesicles114. Incoming cancer cells can then interact with this environment. 520 

For example, a co-culture system demonstrated that, in the early stages of lung metastasis, 521 

interaction between alveolar epithelial cells and disseminated breast cancer cells has been 522 

shown to influence behaviour of metastatic cells, enabling them to remain indolent and 523 

survive for long periods of time115.  524 

 Distinct clones within a tumour may also interact; clonal cooperativity within a cancer 525 

has been described in mouse models of breast cancer116. Furthermore, in a study of human 526 

colorectal cancer tissue, Schurch and colleagues used co-detection by indexing (CODEX) 527 

imaging of formalin-fixed, paraffin-embedded tissues to profile the ‘cellular 528 

neighbourhoods’, and found that features of their relationships, such as coupling of the 529 

immune and tumour neighbourhoods and disruption of inter-neighbourhood communication, 530 

correlated with poor prognosis117.  531 

Understanding the extent of cooperation and ‘task sharing’ between cancer clones is 532 

an important area of further study. Highly multiplexed imaging modalities such as mass 533 

cytometry are increasingly facilitating the accurate phenotyping of diverse cell types obtained 534 

from tumour samples. This has given greater granularity to early observations of clonal 535 

cooperation, and relationships between cells can be described in detail118–120. Multi-omic 536 

studies that can be mapped spatially to the tumour will help to further define functional 537 

examples of tumour heterogeneity.  538 

   539 

Clinical impact of ITH  540 
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 541 

 ITH and assessments of tumour evolutionary trajectories, as well as the interplay 542 

between the cancer cell and the immune microenvironment are all important in the context of 543 

clinical questions. Will a tumour metastasise? Will it respond to therapy, and how durable 544 

will any response be? What is the prognosis of this cancer? In order to answer such questions, 545 

we must have as clear a picture as possible of the phenotype of the tumour: for this, we must 546 

comprehend the evolutionary forces that have fostered it.  547 

 548 

Metastasis 549 

 550 

 Understanding functional ITH may provide insights into the process of metastasis. 551 

The impact of cancer evolutionary dynamics on metastasis is an active area of research and 552 

our current understanding is reviewed elsewhere121.  553 

 Unpaired analysis of genomes from primary and metastatic tumours suggests that 554 

metastasis-specific genomically-encoded driver mutations are rare122. Nonetheless, the 555 

abundance of certain driver events in metastases may exceed that within the primary tumour, 556 

such as the enrichment for loss of 9p (containing the tumour suppressor CDKN2A), in 557 

metastatic ccRCC42, or mutations in MLK4 (also known as MAP3K21) pan-cancer122. An 558 

enrichment within metastatic cancers for mutations of epigenetic regulators has also been 559 

characterised, adding weight to the notion that transcriptional promiscuity and phenotypic 560 

diversity may be a prerequisite for spread in some settings45,72,123. Importantly, transcriptional 561 

promiscuity need not be genomically underpinned, emphasizing the need for analysis beyond 562 

the metastatic cancer genome.  563 

 As ITH of primary tumours provides insight into their evolutionary history, so 564 

analysis of intra-tumour, and inter-tumour heterogeneity in metastases can shape our 565 

understanding of their biology. For example, in using genomics to attempt to understand the 566 

timing of metastatic dissemination, an appreciation of genomic heterogeneity within both 567 

primary tumours and metastases is essential. Under-sampling of a primary tumour may 568 

exaggerate the degree of genetic divergence between primary and metastatic lesions and 569 

hence convey metastatic divergence occurring earlier in evolutionary time, potentially 570 

contributing to a lack of consensus in the field. In a cohort of 17 patients with disseminated 571 

breast cancer, metastatic divergence was estimated to occur relatively late, at 87% of 572 

molecular time123. Conversely, a recent analysis by Curtis and colleagues, using 573 

mathematical modelling,  estimated metastatic seeding to occur 2-4 years before diagnosis in 574 

colorectal, breast and lung cancers124. This study also highlighted a role for systemic anti-575 

cancer treatment in promoting clonal evolution and thus influencing ITH at relapse: 57% of 576 

treated metastases showed private driver events, compared to 20% of those that were 577 

untreated. This work also serves to highlight the fact that an as-yet-undefined degree of the 578 

genetic diversity demonstrated in other studies of post-therapy tumour metastases may reflect 579 

ongoing evolution in response to treatment.  580 

The problem with sampling also extends to questions regarding the mode of 581 

dissemination to the metastatic site. To robustly assess this, multi-region sampling of both 582 

primary and metastatic lesions is required, and there are few studies that have done this to 583 

date121. Nonetheless, many studies have attempted to quantify the relative contributions of 584 

monoclonal (a single subclone seeds every metastasis) and polyclonal (multiple subclones 585 

seed one or more metastases) dissemination in cancer. Of note, Reiter and colleagues 586 

performed an analysis of 317 regions from 20 patients across lymph node and distant 587 

metastatic sites, to investigate the relative preponderance of metastatic seeding patterns125. 588 

They identified a higher genetic diversity among lymph node metastases than distant 589 

metastases, suggestive of polyclonal seeding patterns and more relaxed selection pressures in 590 
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lymph node seeding clones relative to distant sites. The potential pitfalls of inferring seeding 591 

patterns from bulk sequencing is underlined by a study which presents a tool that combines 592 

inference of clonal lineage with migration histories126. By using this tool to re-analyse 593 

published sequencing data, Raphael and colleagues showed how seeding patterns might often 594 

be misclassified; for example, in a study that had originally suggested a polyclonal seeding 595 

pattern, it was posited that monoclonal seeding was in fact a more parsimonious explanation 596 

for the data126.  597 

 Whilst multi-region sampling of a resected solid primary tumour is relatively 598 

straightforward, ethical constraints prevent simultaneous sampling of multiple metastases 599 

from patients. Two strategies that may help to combat this problem and provide insights into 600 

the evolutionary history and diversity of cells within the same or different metastases are 601 

autopsy studies and circulating tumour DNA (ctDNA) analyses.  602 

Autopsy studies allow for sampling of multiple metastases from the same patient. One 603 

such study of 76 untreated metastases from 20 patients suggested that driver mutations in this 604 

setting are typically found within all metastases and have likely occurred before metastatic 605 

dissemination127. Another analysis underlined the potential limitations of inferring phylogeny 606 

from a single metastatic sample128; this revealed pervasive branched evolution in 6 out of 7 607 

melanoma patients and suggested that metastases in different sites may have entirely different 608 

clonal histories, as well as different active mutational processes, than the primary tumour. 609 

This is an active area of research and larger autopsy studies, such as the Posthumous 610 

Evaluation of Advanced Cancer Environment (PEACE; NCT03004755)129, may provide 611 

greater insights in the future. 612 

Studies measuring ctDNA can help to build a picture of functional tumour 613 

heterogeneity. In a cohort of 42 patients with gastrointestinal cancers, ctDNA was 614 

demonstrated to be superior to a single metastatic biopsy at capturing mechanisms of 615 

resistance to targeted therapy in the majority of patients130. In one patient where extensive 616 

sampling was undertaken following autopsy, parallel mechanisms of resistance had evolved 617 

across different metastatic sites. This diversity could be captured in ctDNA sampling but 618 

would have been missed in any single metastatic biopsy. ctDNA collection can also help to 619 

determine the pattern and timing of metastatic spread. In a study of oesophageal 620 

adenocarcinoma, extensive sampling, including of the primary tumour, blood plasma and 621 

metastatic sites at autopsy revealed ‘clonal diaspora’ as the predominant mode of spread, in 622 

which multiple subclones rapidly seeded multiple metastatic sites131. In studies seeking to 623 

track pre-defined genetic events over time, targeted panel sequencing of ctDNA represents a 624 

promising avenue of research.  625 

Immune editing is known to shape the evolution of metastasis in colorectal cancer101, 626 

and analysis of a mouse model of breast cancer metastasis by Lo and colleagues suggests the 627 

immune-microenvironment can influence the modality of dissemination132. In this study, 628 

dissemination within mice lacking natural killer (NK) cell immunity was more likely to be 629 

monoclonal, and cells that spread in clusters had lower expression of NK-activating genes, 630 

and increased expression of NK-inhibitory genes. Defining functional ITH in the context of 631 

metastasis will be a multi-faceted endeavour that will help to answer outstanding questions 632 

about its biology  633 

 634 

[H2]Informing prognosis 635 

 636 

The balance and degree of functional and non-functional ITH within a tumour may 637 

have important prognostic implications. ITH of driver mutations, which confer a significant 638 

fitness impact upon the cancer cell, could be considered a proxy for ‘functional’ subclonal 639 

diversity. Several studies have described a relationship between clonal diversity of driver 640 
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mutations in cancer and poor outcome133–138. In pre-invasive lesions such as Barrett’s 641 

esophagus, most measures of clonal genetic diversity have been found to correlate with early 642 

progression to invasive disease139. However, the relationship between ITH and outcome is 643 

nuanced. Early acquisition and clonal sweeps of driver events, resulting in a relatively 644 

homogeneous tumour, are also associated with progression to metastasis and poor outcome23, 645 

as seen in ccRCC42. 646 

 CIN is also a source of functional and non-functional diversity in some tumours, and 647 

gene expression correlates of CIN have long been associated with poor outcome across 648 

multiple cancer types61. In NSCLC, subclonal diversity of SCNAs was prospectively 649 

correlated with poor prognosis, whilst copy number aberrations also conferred poor survival 650 

in ccRCC45,136. Conversely, in some settings extreme diversity may be associated with 651 

improved prognosis. For example, in some malignancies, a high mutational burden may be 652 

associated with improved patient outcomes, likely owing to increased immune 653 

surveillance137,140. Similarly, patients whose tumours have extreme levels of CIN tend to have 654 

better outcomes134,141,142. The fundamental role of CIN in tumourigenesis is underlined by the 655 

relative scarcity of SCNAs, when compared to somatic mutations, within normal human 656 

tissue143,144. Clonal expansion of mutant cells seems seldom to lead to cancer in the absence 657 

of SCNAs. A recent study of SCNAs within pre-invasive lesions also highlights their 658 

importance: shallow whole-genome sequencing in a longitudinal study of 88 patients with 659 

Barrett’s esophagus demonstrated that copy-number profiles of lesions were able to predict 660 

patients’ risk of progression145.  661 

A possible consensus may emerge: ITH of driver events, in the context of tolerable 662 

amounts of CIN, is associated with poor outcomes in patients (Figure 6). This may result 663 

from ongoing subclonal selection of functional variation. However, in the presence of 664 

extreme CIN, ITH does not predict poor outcome. This paradox may relate to an inability of 665 

cells in such tumours to maintain a high-level fitness, or potentially to such tumours being 666 

exceptionally susceptible to anti-cancer therapy that may make retaining fitness impossible. 667 

A recent evolutionary model of the prognostic impact of ITH supports the view that clonal 668 

diversity, in the presence of genomic instability, is associated with faster tumour growth and 669 

reduced survival for patients146.  670 

 671 

[H2]Therapy response and resistance 672 

 673 

Understanding the clonal architecture of a cancer can be crucial for effective 674 

treatment. For example, clonal, rather than subclonal, neoantigens, appear to stimulate an 675 

effective immune response, and their abundance has been associated with survival in multiple 676 

cohorts treated with immune checkpoint inhibitors92,147. Also, in gastric cancers treated with 677 

an experimental fibroblast growth factor receptor (FGFR) inhibitor, response was conditional 678 

on a clonal FGFR2 amplification, and patients with a subclonal amplification failed to 679 

respond148. 680 

Treatment resistance, either de-novo149 or pre-existing, is unfortunately a near-681 

ubiquitous feature of cancer treatment. This may arise through varied mechanisms: for 682 

example, in NSCLC, patients may develop resistance to first-generation EGFR inhibitors via 683 

the EGFRT790M point mutation150; in glioma, resistance to temozolamide can arise through a 684 

fusion structural variant in MGMT151; and in acute myeloid leukaemia (AML), transcriptional 685 

plasticity may drive resistance to bromodomain and extraterminal (BET) inhibitor therapy152. 686 

An understanding of resistance mechanisms may reveal opportunities for further treatment; 687 

examples include osimertinib, which binds irreversibly to mutated EGFR-T790M, for 688 

treatment of NSCLC, or targeting of enhancer switching with lysine demethylase 1A 689 

(KDM1A) inhibition for AML treatment150,152.  690 
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Resistance is rarely attributable to a single event; indeed, extensive CIN, promiscuous 691 

transcriptional signalling and epigenetic plasticity, all conferring unstable cellular 692 

phenotypes, may each fuel non-genetic resistance and confound multiple lines of 693 

treatment153–157. In such circumstances, targeted therapies may have limited value. 694 

Treatments that co-opt the anti-cancer immune response such as immune checkpoint 695 

blockade, adoptive T-cell therapy or vaccine therapy, however, might be less vulnerable to 696 

such resistance. Nevertheless, treatment resistance remains a significant problem158,159 and 697 

approaches to delay, or even prevent this are urgently required.  698 

 Adaptive, evolutionary-aware strategies may hold promise in improving outcomes for 699 

patients. Resistant cells can have a relative fitness disadvantage compared to their sensitive 700 

neighbours in the absence of treatment160–162, and in such a scenario, temporarily withholding 701 

treatment could cause a net growth in the sensitive population and a decline in the resistant 702 

population. Non-destructive modelling, as demonstrated in NSCLC whereby dead cells are 703 

collected from culture without disrupting the live population, suggests this approach is 704 

effective in controlling the clonal composition of tumours over time163. However, preliminary 705 

results from certain clinical trials of adaptive treatments have been disappointing164, 706 

highlighting the need for further work and a deeper understanding of the fitness costs of 707 

resistance and how this can be measured over time. 708 

  709 

[H1] Conclusions and Perspectives  710 

 711 

Our understanding of cancer evolution has increased exponentially in the last decade. 712 

The advent of next-generation sequencing has shed light on extensive genomic heterogeneity 713 

within cancers and given insight into the evolutionary pressures governing tumour growth.  714 

 715 

However, it is necessary to acknowledge that further advances in this field will 716 

require not only more extensive sampling of the cancer genome across space and time, but 717 

also a more in-depth exploration of the cancer cell and its environment, moving beyond the 718 

cancer genome. Recent work, analysing the impact of structural variation, epigenomic and 719 

transcriptomic dysregulation and the immune microenvironment on cancer evolution have 720 

highlighted extensive functional variation within tumours, with profound impacts on 721 

phenotype.  722 

 723 

Genetic and non-genetic divergence is a feature of every tumour, in part simply 724 

reflecting the random acquisition of mutations during cell division. Thus, rather than simply 725 

cataloguing diversity, future work must distinguish between functional and non-functional 726 

ITH, identifying events that might be subject to negative or positive selection during tumour 727 

evolution. Indeed, this is a fundamental issue for cancer research: notwithstanding the 728 

possibility of cure by complete surgical resection of all cancer cells present in a patient, the 729 

genetic and non-genetic trajectories of the cells within a tumour have a profound impact on 730 

disease prognosis. A thorough understanding of the relative weights exerted by various 731 

biological pulleys and levers during this process might enable us to fine-tune anti-cancer 732 

treatments and more effectively control the evolutionary fate of cancer cells.  733 

 734 

ToC blurb  735 

This review discusses the role of functional (impacting tumour phenotype) and non-736 

functional intra-tumour heterogeneity (ITH) in cancer evolution. It highlights the importance 737 

of considering genetic and non-genetic factors and their impact on patient outcomes. 738 

  739 

 740 
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Glossary: 758 

Chromosomal instability (CIN): A defect in which cells can gain, lose or rearrange parts 759 

of or whole chromosomes during cell division; this is a source of variation in cancer. 760 

Chromothripsis: A mutational process in which large numbers of clustered structural 761 

rearrangements occur in single or multiple chromosomes. 762 

Molecular time: An estimate of the timing of an event, from the first cell division 763 

following fertilisation to a cell division that occurred only recently before sampling. 764 

Enhancer: A short genomic region that influences the expression of another gene in cis. 765 
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Figure 1: Functional and non-functional intra-tumour heterogeneity in tumour evolution

Non-functional passenger event not 
under selection

Functional driver event under positive selection

Subclone outcompetes neighbours
and begins clonal sweep

Non-functional event 
evolves neutrally

Fig. 1 | Functional and non-functional intra-tumour heterogeneity in tumour evolution. The increased rate of
phenotypic variation in cancers compared with normal tissues means that new subclones arise and compete. A minority
contain a driver event, such as a genetic mutation or copy number alteration, that grants a selective advantage.
These subclones may grow at a faster rate than their neighbours and outcompete them in a ‘selective sweep’.
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Figure 2: Methods of assessing tumour evolution: clonal frequency inference
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Fig. 2 | Methods of assessing tumour evolution and clonal frequency
inference. Three examples of tumour evolution (left panels), with inferred
clonal variant allele frequencies (VAFs) (middle panels) and tumour
evolution (right panels). Clusters of mutations are ordered according to
VAFs; the clonal cluster contains many high-VAF mutations, whereas the
‘neutral tail’ (coloured grey) contains mutations with lower VAFs.
Interpretation can be confounded by sampling. a | Ongoing subclonal
selection leads to formation of subclones (blue/grey, orange and blue).
All blue/grey, orange and blue mutations appear clonal within the sample,
and so have indistinguishable VAFs. Previous selective sweeps are not
distinguishable, and so subclonal selection may not be identified.
b | Mutations (orange, green and purple) have different VAFs, so subclones
are identifiable. Previous negative selection in this tumour is not identified.
c | Tumour evolution is reconstructed relatively accurately, with a previous
clonal sweep and neutral ongoing evolution, although previous clonal
sweeps that occurred very early are not distinguishable.



Fig. 3 | Methods of assessing tumour 
evolution: dN/dS. a | This method uses the ratio 
of non- synonymous mutations
at non- synonymous sites to synonymous 
mutations at synonymous sites to infer selection. 
Ratio of substitution rates at
non- synonymous sites versus synonymous sites 
(dN/dS) > 1 indicates that the rate of non-
synonymous mutations is above
the expected background, and signifies positive 
selection within a given gene or locus. dN/dS = 1 
suggests mutations
in that gene are neutral. dN/dS < 1 suggests 
negative or purifying selection. This technique 
works on a cohort level rather
than in individual tumours, and ignores selection 
due to copy number alterations. b | An example 
cohort comprising
tumours with varying evolutionary histories. c | 
dN/dS identifies clonal and subclonal selection of 
driver events within
cancer genes. However, this approach is unable 
to infer selection within individual clones, and so 
the group of tumours
with no subclonal selection is not identified. 
Previous negative selection is identified, as 
would be expected within genes
essential for cellular function. Passenger 
mutations are not under positive or negative 
selection.



Fig. 4 | Tumour evolution may be incorrectly classified using an exclusively genomic approach. The evolving tumour
acquires traits conveying selective advantages. In this example, subclones arise that contain genetic, epigenetic or
transcriptomic alterations that give a selective advantage. The subclone containing an advantageous epigenetic
alteration begins a selective sweep of the tumour. The subclone containing a neoantigen that stimulates the anticancer
immune response is eliminated by neoantigen- reactive T cells. Here, an exclusively genomic approach would fail to
identify all of the functional events shaping the evolution of this tumour.



Fig. 5 | Comparison of cancer genes defined by the COSMIC Cancer Gene
Census and by a systematic pan-cancer whole-exome sequencing
mutation-based approach. The COSMIC Cancer Gene Census60 curates lists
of ‘Tier 1’ cancer driver genes that have a cancer- related functional role as well
as documented evidence of recurrent cancer- causing mutations, and the types
of alteration that affect these genes. a | Chart displaying the alteration
types affecting COSMIC (release v90) cancer genes that overlap with cancer
genes identified in a systematic mutation- based approach by Bailey et al.59
based on pan- cancer whole- exome sequencing. In this analysis, genes that
were rescued following manual curation by Bailey et al.59 were excluded, and
only genes listed in COSMIC as affecting cancer types studied by Bailey et al.59
were considered. In some cases, COSMIC cancer genes are included more
than once if they are affected by multiple alteration types. n is the number of
cancer genes that were identified by the approach of Bailey et al.59, while N is
the total number of COSMIC cancer genes. With the whole- exome sequencing
mutation- based approach, many COSMIC cancer genes were not identified,
in particular, those affected by translocation and amplification. This underlines
the importance of the role of cancer genes that are not frequently affected by
exonic mutations as functional driver events in cancer. The systemic approach
of Bailey et al. identified the majority of genes affected by large deletions;
in such genes, there may be functional overlap of deletions and loss- of- function
mutations, and so they may be more easily identified as drivers. Clearly,
COSMIC lists are not exhaustive, and it is probable that many important driver
events have not yet been identified. b | For four selected cancer types included
in the analysis by Bailey et al.59, the proportion of COSMIC cancer type- specific
driver genes that were identified by a cancer type- specific whole- exome
sequencing mutation- based analysis is shown. In the example, breast invasive
carcinoma (BRCA) and brain lower grade glioma (LGG) have a relatively large
proportion (52% and 50%, respectively) of known cancer type- specific cancer
genes identified by the systematic mutation- based approach, whereas in
ovarian serous cystadenocarcinoma (OV) and sarcoma (SARC) many known
cancer genes are missed (13% and 12% identified, respectively). Cancer genes
with translocations and amplifications are frequently missed; in sarcoma, for
example, only 1 of 41 COSMIC cancer genes affected by a translocation is
identified by Bailey et al.59. Data for each cancer type included in the analysis
by Bailey et al. are shown in Supplementary Fig. 1.
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Fig. 6 | Prognostic impact of intra-tumour 
heterogeneity. The relationship between intra-
tumour heterogeneity (ITH)
and clinical outcome is complex, and is influenced 
by the degree of clonal diversity among driver 
events within the tumour
as well as the extent of genomic instability. 
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Supplementary Figure 1: Extended comparison of mutation types within cancer genes defined by the COSMIC Cancer Gene Census and pan-cancer whole-exome sequencing. For 
all cancer types included in the analysis of Bailey et al that overlap with those in the COSMIC Cancer Gene Census, the proportion of cancer type-specific cancer genes, affected by 
certain mutation types, that are identified by a cancer-type specific analysis in Bailey et al is shown. In some cases, genes are included more than once if they can be mutated by 
multiple mechanisms. The number of samples of each tumour type analysed in Bailey et al is specified. 
*Lung NOS & Renal NOS (not otherwise specified) - COSMIC Cancer Gene Census v90 does not specify relevant cancer subtypes studied in Bailey et al (LUAD, LUSC and KIRC, KIRP, 
KICH respectively); COAD and READ were analysed separately but consensus genes merged.


