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Objectives: This systematic review focuses on the use of the in vitro hollow fibre infection model (HFIM) for mi-
crobial culture. We summarize the direction of the field to date and propose best-practice principles for reporting
of the applications.

Methods: Searches in six databases (MEDLINEVR , EMBASEVR , PubMedVR , BIOSISVR , SCOPUSVR and CochraneVR ) up to
January 2020 identified 129 studies meeting our inclusion criteria. Two reviewers independently assessed
and extracted data from each publication. The quality of reporting of microbiological and technical parameters
was analysed.

Results: Forty-seven out of 129 (36.4%) studies did not report the minimum pharmacokinetic parameters
required in order to replicate the pharmacokinetic profile of HFIM experiments. Fifty-three out of 129 (41.1%)
publications did not report the medium used in the HFIM. The overwhelming majority of publications did not
perform any technical repeats [107/129 (82.9%)] or biological repeats [97/129 (75.2%)].

Conclusions: This review demonstrates that most publications provide insufficient data to allow for results to
be evaluated, thus impairing the reproducibility of HFIM experiments. Therefore, there is a clear need for the
development of laboratory standardization and improved reporting of HFIM experiments.

Introduction

The hollow fibre infection model (HFIM) is an in vitro system that
offers a solution to culturing cells continuously at high density with
flexibility and reproducibility.1 Applications range from the propa-
gation of cell lines and the production of monoclonal antibodies
and recombinant proteins to mimicking long-term physiologically
relevant in vivo profiles.2–5 The HFIM is a preclinical closed system
that allows the culturing of microbial cultures in an enclosed

compartment. This compartment is usually a discrete cartridge
that in turn is threaded with semi-permeable fibres.6,7 These fibres
are attached to a circuit connecting to a central reservoir where
the contents are rapidly circulated via a pump and nutrients and
drugs equilibrate freely between the central reservoir circuit and
the inoculum-containing compartment of the cartridge (Figure 1).
Fresh medium is supplemented into the central compartment at a
fixed rate, with central compartment contents removed via a
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pump at an identical rate. Through this, the drug in the central
compartment is cleared at a rate determined by the supplementa-
tion rate. Adjustment of input/output rates allows simulation of
clearance of the drug(s) added to the central reservoir, mimicking
pharmacokinetic (PK) profiles seen in vivo. Samples can be taken
from the enclosed compartment of the hollow fibre cartridge for
quantification of the bacterial inoculum and determination of anti-
microbial resistance. Samples can be taken from the central com-
partment to quantify the concentration of drug via bioanalysis to
confirm recapitulation of the mimicked PK profile.

Over recent years, the HFIM has been increasingly used to char-
acterize in vitro pharmacodynamics (PD) of antimicrobial agents
and to determine PK-PD indices, such as AUC/MIC, T>MIC and Cmax/
MIC.8,9 The model allows physiological PK drug profiles to be simu-
lated with serial evaluation of the interplay between drug exposure
and microbial response. In contrast, conventional in vitro infection
models have generally relied on static time–kill experiments or dy-
namic one-compartment models with the microbial load in the
central compartment.10,11 These latter models mimic drug con-
centrations by supplementation and removal of medium, such as
in the HFIM, but cause continual dilution of the bacterial popula-
tion. Furthermore, drug concentrations may be inaccurate due to
difficulties of bioanalysis in infected medium and consumption of
the drug by the microbial load.12,13 In contrast, in an HFIM, the
microbial cell cultures remain contained in a separated compart-
ment, whilst mimicking physiological PK profiles, allowing for ac-
curate determination of drug concentration and no continual
dilution of bacteria.14,15

The HFIM also has advantages over in vivo animal models.
These in vivo models, particularly the thigh infection model, are
well established and frequently used as preclinical models for anti-
infective drug development.16–18 The advantages and

disadvantages of both methods are well documented in publica-
tions; here we highlight the main advantages of the HFIM.
Importantly, the life of an animal limits the duration of animal
experiments and multiple animals need to be offered in each arm
for each timepoint.19 Therefore, animal experiments are rarely
long enough to quantify the emergence of resistance; however,
the HFIM allows for higher sampling frequency over longer time
periods, which enables the understanding of the PD of the emer-
gence of resistance.20–23 In vivo animal models are also limited to
bacterial loads that the animals can maintain over a period of
time. In contrast the HFIM allows for high bacterial inocula to be
maintained without issue. Furthermore, in vivo animal models rely
on humanized doses, whilst needing to account for differences in
elimination and distribution characteristics, such as metabolism
and protein binding, whereas any PK parameter can be quite pre-
cisely mimicked in the HFIM.24 Animal models raise ethical con-
cerns and require ethical approval of the experimental protocol,
whereas culturing microbes in the HFIM does not. Ultimately, the
HFIM provides more flexibility in experimental design and
sampling.

Whilst there are established CLSI guidelines for static time–kill
experiments, no comprehensive recommendations or standards
(CLSI or otherwise) for performance of hollow fibre microbial
experiments exist.25,26 Laboratory manuals are available, but
consensus guidelines are currently lacking.27,28 Furthermore,
the current literature lacks a systematic review detailing the
experimental details of HFIM applications reported in original
research papers. This, along with the high running costs and
infrastructure requirements, forms a barrier to entry for groups
new to the field, thus limiting the evaluation and reproducibility of
published results. The aim of this work was therefore to undertake
a systematic review of HFIM publications, describing the current

Figure 1. Schematic of the HFIM. This schematic shows the hollow fibre compartment model. The hollow fibres in the cartridge are attached to a cir-
cuit connecting to a central reservoir (shown in blue). Test organisms are retained in the hollow fibre cartridge. The contents of the central reservoir
can be topped up with fresh medium from the diluent compartment (shown on the left) and through the use of a waste removal tube the volume of
the central reservoir is kept constant. Drug is administered directly into the central reservoir through the diluent tubing. This figure appears in colour
in the online version of JAC and in black and white in the print version of JAC.
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state of the art with the objective of reviewing the reporting of
data.

Methods
We included publications that reported use of the HFIM, describing the ex-
perimental aims as well as the methodology and outcomes. This review
represents the direction of the field of HFIM research to date and focuses
on in vitro infection models for microbial cell culture with the following
objectives: (i) to describe the primary aims of the use of hollow fibre sys-
tems; (ii) to evaluate the experimental settings and parameter reporting;
and (iii) to evaluate the microbiological outcome measure reporting.

Search strategy
PRISMA 2020 guidelines29 were followed and the following databases were
searched for relevant records: MEDLINEVR , EMBASEVR , PubMedVR , BIOSISVR ,
SCOPUSVR and CochraneVR . The search strategy included three concepts:
microbes, antimicrobials and the hollow fibre system. A detailed break-
down of the PICO framework alongside search concepts can be found in

Table S1 (available as Supplementary data at JAC Online). All six databases
were searched with our predefined search terms and our search strategy
for each database is captured in Table S2. We included records published in
English from January 1980 to January 2020.

Inclusion and exclusion criteria
Search results were de-duplicated in the referencing software MendeleyVC

and all unique records were screened for the relevance of their title and ab-
stract. We defined the inclusion criteria as records that: (i) presented pri-
mary hollow fibre data; (ii) studied microorganisms; and (iii) studied
antimicrobials. Publications were excluded at the screening stage if their
title and abstract did not meet the inclusion criteria. This included studies
that did not use the HFIM, did not investigate microbial species and did not
investigate antimicrobials. Screened abstracts were then assessed for their
full-text eligibility by two independent reviewers in the data extraction
phase. At full-text screening further papers were excluded if they didn’t ful-
fil the inclusion/exclusion criteria. All records excluded from the review at
full-text screening are presented in the PRISMA flowchart diagram with
details of their exclusion (Figure 2).

Figure 2. PRISMA flowchart outlining the flow of information through the different phases of the systematic review, including the number of records
identified, included and excluded.

Systematic review JAC

3 of 8

D
ow

nloaded from
 https://academ

ic.oup.com
/jac/advance-article/doi/10.1093/jac/dkab160/6310347 by U

niversity C
ollege London user on 30 June 2021

https://academic.oup.com/jac/article-lookup/doi/10.1093/jac/dkab160#supplementary-data
https://academic.oup.com/jac/article-lookup/doi/10.1093/jac/dkab160#supplementary-data
https://academic.oup.com/jac/article-lookup/doi/10.1093/jac/dkab160#supplementary-data


Data extraction
Data extraction was performed on full-text articles in duplicate by two inde-
pendent authors, Z.S. extracted data from all publications and the duplicate
extractions were shared amongst all collaborating authors. A password-
protected Rshiny form was designed using shiny version 1.4.0 to enable
robust data extraction.30 The form was separated into three sections: (i)
descriptive analysis of the records; (ii) engineering parameters; and (iii) the
microbiological parameters. We defined the engineering parameters as
settings or equipment that are not directly related to the microbiological
measurements, but which impact the experimental dynamics. These
included settings that determine the PK profile to be mimicked (e.g.
pump settings and PK parameters), cartridge/fibre type and the tubing
length and bore size. The microbiological section included parameters
that influence the growth of the microorganisms or measures that arise
from the sampling of the microorganism to determine the PD response
to the antimicrobial. Technical repeats were defined as repeat testing of
endpoints, for example bacterial quantification or MIC. Biological
repeats were defined as repeat experiments of the organism investi-
gated. Details of the parameters extracted alongside the definitions
we used can be viewed in Table S3.

Results

The results are separated into four sections: (i) PRISMA flowchart;
(ii) a descriptive analysis of records included; (iii) engineering
parameters; and (iv) the microbiological parameters.

Section one: PRISMA flowchart

A PRISMA flowchart (Figure 2) outlines the number of publications
at each stage of the systematic review.

Following deduplication, a total of 231 independent publica-
tions for title and abstract screening remained. Of these 83 were
excluded and 148 were eligible for full-text screening. Upon full-
text screening, 19 records were excluded and a total of 129
records were included in the data extraction and analysis.

Section two: Description of records included

The three most common aims of the HFIM experiments were
investigating drug combinations [38.8% (50/129)], investigating
antimicrobial resistance [26.4% (34/129)] and determining
PK-PD indices [21.7% (28/129)] (Table 1). A few publications
modelled intravascular time course [3.9% (5/129)] and the
remaining 9.3% (12/129) ranged from investigating intracellu-
lar pathogens to investigating PK assay development. Further

information and breakdown of the microbial species and anti-
microbials investigated in the publications included is provided
in Table S4.

Section three: Technical specifications

Simulating a PK profile is achieved by adjusting the HFIM set-
tings, namely the pump settings. Technical settings play a vital
role for interpreting the results and enabling reproducibility.
Cmax, Tmax and t1=2 are required in order to replicate a PK profile
of an extravascularly administered drug or intravenously
administered drug by infusion (in which case Tmax is usually the
infusion duration). For intravenous bolus administration only
Cmax and t1=2 are required.

Twenty-seven out of 129 (20.9%) publications did not report
any PK parameters. Cmax and t1=2 were the most reported PK
parameters with 37.0% and 36.6% of total publications reporting
them, respectively. Antimicrobial dose mimicked was reported by
45.7% of publications. Eighty-two out of 129 (63.6%) reported
both Cmax and t1=2 - the minimum required to replicate the PK
profile of intravenous bolus administration. Only one publication
reported all of Cmax, Tmax and t1=2, the minimum required to repli-
cate the PK profile of drugs administered extravascularly, or intra-
vascularly via infusion. In summary, 47/129 (36.4%) publications
did not meet the minimum criteria for reproducibility of PK profiles
(Figure 3).

Seventy-two out of 129 (55.8%) publications reported the
manufacturer of the cartridge used in the hollow fibre experiments
and 37/129 (28.7%) publications reported the type of fibre used by
either reporting the cartridge catalogue number or explicitly men-
tioning the fibre (e.g. cellulosic, polysulfone or polypropylene). Only
6/129 (4.7%) publications reported monitoring of pH in the system.
Bore size of the tubing used was reported by 3/129 (2.3%) publica-
tions. No publications reported the length of the tubing used in any
part of the HFIM system (Table 2).

Section four: Microbiology

One hundred and eighteen out of 129 (91.5%) publications
reported the results for a control experiment—often an antimicro-
bial-free growth control. Seventy-five out of 129 (58.2%) publica-
tions reported the medium used in the HFIM. None of the 129
publications reported sampling and monitoring for contamination.
One hundred and eight out of 129 publications (83.7%) quantified
the bacterial population by cfu to determine the antimicrobial
killing effect. Only 6/129 (4.7%) measured markers of cell viability
beyond growth (e.g. using flow cytometry). Antimicrobial resist-
ance was measured and reported by 95/129 (73.6%) publications;
however, only 27/129 (20.9%) publications reported genotypic
analysis of samples taken from the hollow fibre cartridge (Table 3).

The overwhelming majority of publications did not perform any
technical repeats [107/129 (82.9%)] or biological repeats [97/129
(75.2%)] (Table 4). Duplicate testing (i.e. one original test and one
repeat test) were performed by 18/129 (14.0%) publications for
technical repeats and by 23/129 (17.8%) publications for biological
repeats. Four publications (3.1%) reported technical repeats in
triplicate and nine publications (7.0%) reported biological repeats
in triplicate.

Table 1. HFIM publication aims frequency

Primary publication aims Number Percentage

Drug combinations 50 38.8

Antimicrobial resistance 34 26.4

Determining PK-PD indices (drug development) 28 21.7

Modelling intravascular time course 5 3.9

Intracellular pathogens 4 3.1

Determine conditions for drug production 2 1.6

Dose finding 2 1.6

Other 4 3.1

Total 127 100
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Discussion

To the best of our knowledge, this is the first systematic review
focusing on the reproducibility of the microbial applications of the

HFIM. In this systematic review of in vitro hollow fibre PK-PD studies
of antimicrobials, we found wide variability in reporting. Most stud-
ies did not provide enough information for their results to allow
comparison, reproduction or modification of HFIM studies. This

(a)

(b)

Figure 3. Summary of PK parameter reporting in HFIM studies, presented in table format (a) and as a Euler proportional diagram (b).

Table 2. Percentage and raw number of publications reporting hollow fibre settings

Hollow fibre setting % Reported (n) % Not reported (n) % Not applicable (n)

Cartridge source 55.8 (72) 44.2 (57) 0.0 (0)

Fibre type 28.7 (37) 71.3 (92) 0.0 (0)

Pump dynamics 6.2 (8) 93.0 (120) 0.8 (1)

pH 4.7 (6) 94.6 (122) 0.8 (1)

Tubing bore size 2.3 (3) 96.9 (125) 0.8 (1)

Tubing length 0 (0) 99.2 (128) 0.8 (1)

Dose administration 74.4 (96) 24.8 (32) 0.8 (1)

Dose mimicked 45.7 (59) 54.3 (70) 0 (0)
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review demonstrates that the reproducibility of published HFIM
work remains impaired by the practice of inadequate reporting of
the hollow fibre settings. We found many publications outsourced
their methodology to previously published papers.31–34 This prac-
tice leaves too much interpretation and creates a further barrier
for the sourcing of important information, as the specifics are often
under several layers of prior publications with the referenced publi-
cations often in a different context. We would recommend that
study design and methodology is restated in each individual paper
to provide clarity. A systematic review of clinical PK-PD methodolo-
gies reported similar findings in lack of conduct and reporting, fur-
ther highlighting the need for the field to standardize reporting.35

Future HFIM studies should be designed and reported carefully
so that confidence can be given to the relationships (or lack of)
demonstrated by these studies. This would improve clarity in the
field and eliminate ambiguity in interpretation of results. This sys-
tematic review further highlights the need for laboratory method-
ology standards to be developed for the use of the HFIM and has
identified the key areas of inconsistency and we believe there is a
need for a consensus standard checklist for minimum reporting.
We have identified criteria we consider necessary for other
researchers to be able to evaluate and reproduce an experiment,
which we offer as a recommendation for reporting HFIM experi-
ments (Table 5). We hope these recommendations will spark inter-
est in setting a common standard to all HFIM studies investigating
antimicrobial activity, similar to antimicrobial susceptibility guide-
lines (e.g. CLSI and EUCAST). These standards of reporting will also
help reduce the barrier to entry for new laboratories setting up
HFIM experiments. These recommendations can also pave the
way for further conversations that the field could delve into. For in-
stance, exploring thresholds for varying degrees of observed
antimicrobial activity.

We appreciate reporting of some parameters may be challeng-
ing and therefore propose some solutions.

For example, suitability of cartridge types (cellulosic, polysul-
fone etc.) for specific antimicrobials may not be available. For these
situations, we suggest it is more important to check equilibration
and binding for the chosen cartridge fibre type in these novel
studies. We appreciate, with a wide variety of pump brands, that
reporting the specific pump model and settings could get complex.
We propose a standardized method of reporting flow rates (e.g.
mL/min) that were used in the experiment that can be replicated
by others. Factors that affect the time taken for equilibrium to be
reached between the central reservoir and hollow fibre compart-
ment should be reported, as often there can be a significant delay
between input of the antimicrobial to the central reservoir and dis-
tribution to the cartridge. For example, the volume of the dose
administered relative to the volume of the central compartment,
or the flow rate of the dose infused relative to the volume of the
central compartment, is also a critical parameter that affects
the attainment of Cmax at Tmax. Although tubing length from the
drug medium and waste compartment is not important, the
length and bore size of tubing between the central compartment
and the cartridge has an impact on the distribution and equilibra-
tion rate of the drug.

As the HFIM can be used to understand the dynamic microbial
response to antimicrobials, wherever possible we should take the
opportunity to undertake further analyses of the microbial popula-
tion sampled, for example genetic sequencing, transcriptomics or
flow cytometry. We understand the cost of performing biological
replicates for HFIM experiments is high, with several cartridges
required per experiment. In instances where repurposed cartridges
(e.g. dialysis fibres) are used instead of proprietary cartridges on
cost grounds we strongly advise reporting this. In addition,
cartridge pore size should also be reported; this can be captured by
manufacturer and catalogue number. Further to this, we appreci-
ate that for slow-growing organisms, such as mycobacteria,
performing biological repeats under time constraints may be chal-
lenging. In these instances, we suggest performing static time–kill
experiments in triplicate, to build a model hypothesis that can be
simulated in the HFIM.

Conclusions

This systematic review found wide variability in reporting, with
most HFIM studies not providing sufficient information for their

Table 3. Percentage and raw number reporting of microbiological outcome measures

Outcome measure % Reported (n) % Not reported (n) % Not applicable (n)

Medium 58.14 (75) 41.09 (53) 0.78 (1)

Contamination 0.0 (0) 99.22 (128) 0.78 (1)

Control 91.47 (118) 5.43 (7) 3.10 (4)

Inoculum 76.74 (99) 20.16 (26) 3.10 (4)

cfu 83.72 (108) 13.95 (18) 2.33 (3)

Viability 4.65 (6) 91.47 (118) 3.88 (5)

Resistance 73.64 (95) 23.26 (30) 3.10 (4)

Genotyping 20.93 (27) 75.97 (98) 3.10 (4)

Table 4. Percentage and raw number of publications reporting repeat
testing in HFIM

Number of
repeats

% Technical
repeats (n)

% Biological
repeats (n)

Single 82.9 (107) 75.2 (97)

Duplicate 14.0 (18) 17.8 (23)

�Triplicate 3.1 (4) 7.0 (9)
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results to be evaluated. This creates difficulty in data comparison
and reproducibility of studies. We believe there is scope for devel-
oping standards of reporting widely accepted as the recommen-
dation for future HFIM studies.
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