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Developmental pharmacology describes the impact of maturation on drug disposition

(pharmacokinetics, PK) and drug effects (pharmacodynamics, PD) throughout the pae-

diatric age range. This paper, written by a multidisciplinary group of experts, summa-

rizes current knowledge, and provides suggestions to pharmaceutical companies,

regulatory agencies and academicians on how to incorporate the latest knowledge

regarding developmental pharmacology and innovative techniques into neonatal and

paediatric drug development.

Biological aspects of drug absorption, distribution, metabolism and excretion through-

out development are summarized. Although this area made enormous progress during

the last two decades, remaining knowledge gaps were identified. Minimal risk and

burden designs allow for optimally informative but minimally invasive PK sampling,

while concomitant profiling of drug metabolites may provide additional insight in the

unique PK behaviour in children. Furthermore, developmental PD needs to be consid-

ered during drug development, which is illustrated by disease- and/or target organ-

specific examples. Identifying and testing PD targets and effects in special

populations, and application of age- and/or population-specific assessment tools are

discussed. Drug development plans also need to incorporate innovative techniques

such as preclinical models to study therapeutic strategies, and shift from sequential

enrolment of subgroups, to more rational designs.

To stimulate appropriate research plans, illustrations of specific PK/PD-related as

well as drug safety-related challenges during drug development are provided. The

suggestions made in this joint paper of the Innovative Medicines Initiative

conect4children Expert group on Developmental Pharmacology and the European

Society for Developmental, Perinatal and Paediatric Pharmacology, should facilitate

all those involved in drug development.

K E YWORD S

developmental pharmacology, drug development, paediatrics

1 | DEVELOPMENTAL PHARMACOLOGY

Pharmacotherapy is a powerful tool in preventive and curative medi-

cine, with shifts in practices based on perceived needs. In children, an

increase in outpatient prescription drug use for asthma, attention-

deficit/hyperactivity disorder (ADHD) and contraception is reported,

but a decrease in antihistamines, antibiotics, and upper respiratory

combinations drugs.1,2 Based on a survey in 2010, amoxicillin was the

most frequently prescribed drug in children up to 11 years, and meth-

ylphenidate in adolescents.2 Besides drug utilization, drug disposition

and effects may differ between populations. General clinical pharma-

cology principles apply to all populations and refer to the processes
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involved in drug disposition (pharmacokinetics, PK) and drug effects

(pharmacodynamics, PD). PK is determined by drug absorption and

distribution, followed by metabolism of most compounds and excre-

tion of the compound and/or its metabolites. PD in part relates to

characteristics of drug receptors or targets as well as postreceptor

effects. For the paediatric population (i.e. from early neonatal life

through adolescence), developmental changes in biological processes

involved in PK and PD need to be considered (developmental pharma-

cology).3,4 Due to rapid physiological changes (e.g. maturation of liver

and kidney function, organ-specific growth), developmental impact on

PK and PD is most remarkable in the neonatal period and first year of

life. However, PK and/or PD may also differ from adults during

childhood and adolescence.3,4 As a consequence, safe and effective

therapy for an individual child cannot be ensured by linear extrapola-

tion of adult dosing recommendations. Knowledge of ontogeny of

biological processes involved improves PK and PD predictions, and

supports individualized and targeted drug therapy.5 Multidisciplinary

collaboration between basic scientists, paediatric subspecialists, phar-

macists, (clinical) pharmacologists, pharmacometricians, biomedical

engineers, veterinarians and other experts expands our understanding

rapidly. Besides ontogeny, nonmaturational factors such as environ-

ment, disease states, or co-treatment can also influence PK/PD.6 The

goals of this paper are: (i) to summarize current knowledge; (ii) to pro-

vide illustrations for pharmaceutical companies, regulatory agencies

and academicians about how to incorporate the latest knowledge

regarding developmental pharmacology; and (iii) to underline why a

comprehensive approach for such incorporation should be

considered. In addition, some innovative techniques for paediatric

drug development are summarized. The scope of this paper includes

pharmacology (PK and PD), while other aspects of drug development

are not covered. This paper reflects a collaboration between

researchers from the Innovative Medicines Initiative conect4children

(IMI c4c) Expert group on Developmental Pharmacology, and the

European Society for Developmental, Perinatal and Paediatric

Pharmacology (ESDPPP).7,8

2 | DEVELOPMENTAL PK

In the outpatient setting, drugs are commonly administered orally. In

contrast, in an intensive care setting the parenteral (mainly intrave-

nous) route is used in 71.3, 60.7 and 68.7% of drug administrations in

adult, paediatric and neonatal intensive care unit patients,

respectively.9 For most drugs, children are sufficiently different from

adults to require dosing adaptations. Understanding the fate of a

compound in the body is essential to select the optimal dosing

strategy for each individual. Size and age-related changes in drug

absorption, distribution, metabolism and excretion pathways

have been extensively studied.3,10–12 Although knowledge of

developmental PK has increased, knowledge gaps still remain. Within

the developmental PK section, we will provide current evidence on

maturational aspects of absorption, distribution, metabolism and

excretion (ADME) processes. Neonates with intrauterine growth

restriction (IUGR) and adolescents were selected as special paediatric

populations to further illustrate these concepts. Furthermore, we will

discuss how including metabolite concentrations in bioanalytical

approaches can provide useful data for paediatric predictive PK

models, and how improvements can be made towards less invasive

sampling methods to gather data on drug disposition in children.

2.1 | Developmental biological processes involved
in drug disposition

2.1.1 | Absorption

Absorption determines how concentration changes after extravascular

administration, including absorption rate (how rapid?) and bioavailabil-

ity (how much?), both impacted by growth and maturation. Enteral

(buccal, rectal, oral) or nonenteral (nasal, ophthalmic, dermal,

inhalational, intramuscular, intrathecal) routes are relevant.

For enteral administration, maturation includes gastric and intesti-

nal pH and motility, pancreatic lipase activity, bile acid secretion, and

presystemic (first pass) drug metabolism and transport in the intestinal

wall. The gastric fluid composition (bile acids, osmolarity, pH) displays

age-dependent changes, further affected by feeding frequency and

type.13 The capacity of the newborn to produce gastric acid appears

similar to older populations, despite the higher pH in their gastric

fluid.13,14 This discrepancy is probably explained by the impact of

frequency and volume of milk feeds, alkalinizing the gastric content.

Consequently, plasma concentrations of the acid-labile antibiotic peni-

cillin reached 5–6 times higher values in neonates compared to older

children.15 Gastric emptying is another example of the merged effect

of maturation and feeding practices. In a meta-analysis of data from

preterm neonates to adults, not age but meal type (aqueous>breast

milk>formula milk>semi-solid, solid) was the main determinant of

gastric emptying, with collinearity between age and meal type.16

Pancreatic lipase activity is typically low at birth and evolves during

infancy, somewhat compensated by lipase activity (bile salt-stimulated

lipase) in fresh human milk.17 The bile acid pool size, bile flow and its

ileal reabsorption also display maturation, resulting in lower duodenal

bile acid concentrations in neonates.10 The activity of intestinal drug-

metabolizing enzymes (DMEs) and drug transporters (DTs) co-

determine age-dependent drug bioavailability.18,19 Intestinal drug

metabolism matures slowly, as exemplified by midazolam's decreasing

bioavailability over the paediatric age range (reflecting increasing first

pass metabolism in the intestine and liver), although nonmaturational

factors also determine a significant part of the variability.20 For

example, Blake et al. illustrated that dextromethorphan and caffeine

metabolism in infants were affected by the type of nutrition (human

milk vs. formula).21

For nonenteral administration routes that display an absorption

phase, absorption kinetics relates to the drug diffusion rate as well as

tissue perfusion rate (i.e. regional blood flow), with possible bypass of

the first-pass effect. Absorption through the skin can be more rapid

and/or more extensive in children (e.g. topical timolol for infantile
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haemangioma in preterm neonates, or minoxidil for paediatric hair dis-

orders)22,23 prompting attention to possible unintended (systemic)

side-effects after local application.

2.1.2 | Distribution

Following absorption, most drugs will gain access from the systemic

circulation to other body compartments. Distribution profiles depend

on drug (e.g. size, lipophilicity), patient (e.g. blood flow,

biological barrier characteristics including DT expression, membrane

composition), or both (e.g. plasma/tissue protein binding). The appar-

ent volume of distribution (Vd, L or L/kg) reflects the degree to which

a drug is distributed in body tissue relative to the plasma. Weight is

the obvious main driver of the absolute volume of distribution (L),

while age-related changes in drug protein binding and body composi-

tion in part explain developmental differences in distribution, when

expressed as relative volume (L/kg). The major drug binding protein

albumin (primarily binds neutral to acidic drugs) increases in concen-

tration during the first 1–3 years.24 Data on α-1-acid glycoprotein

(binds basic or cationic drugs) are sparse, but paediatric reference

ranges indicate an increase up to 5 years of life.25 Besides proteins

abundance, binding of competitors at protein binding sites can alter

binding affinity and influence unbound, pharmacologically active, drug

fractions. The unbound fraction of albumin-bound drugs, cefazolin,

flucloxacillin, vancomycin, cefoperazone and phenobarbital, is higher

in neonates compared to older populations.26–30 Concerning body

composition, the total body water fraction (>70%) is higher in

neonates compared to children and adolescents (around 60%).31,32

With maturation the fraction of total body water declines, while the

fraction of fat mass increases. One study in nonobese children (age

7–14 years) demonstrated a mean percentage body fat of 20% in

boys and 25% in girls,33 but the obesity epidemic in children,

adolescents and adults has resulted in large variations in fat mass.34

Variation in body composition may require a different drug dosing.35

Multiple brain-specific factors impact drug distribution to the

brain, and their influence differs throughout development. Blood–

brain (BBB) and choroidal blood–cerebrospinal fluid (BCSFB) barrier

function is still immature in children. Efflux transporters acting on

amphiphilic drugs are likely to be more efficient around birth at the

BCSFB, while at the BBB, some transporter expression is down-

regulated compared to adult levels.36 Verscheijden et al. recently

described location and transporter-specific maturation of ATP-binding

cassette transporters in both human BBB and BCSFB.37 Besides,

cerebral blood flow, drug binding to and uptake by neural cells, drug

metabolism, volume of cerebral fluid compartments and rate of cere-

brospinal fluid secretion contribute to cerebral drug bioavailability.36

In addition to development, nonmaturational factors (e.g. diseases,

co-treatment) affects drug distribution. It has been documented that

sepsis alters drug distribution, resulting in lower amoxicillin concentra-

tions and a longer half-life in neonates as compared to nonsystemic

disease conditions.38 Also, body composition may be altered in condi-

tions such as severe illness or eating disorders.32,39 Extracorporeal

membrane oxygenation (ECMO) in neonates leads to a larger Vd for

both lipophilic and hydrophilic drugs.40 During paediatric ECMO the

Vd (L/kg) of e.g. analgo-sedatives also increases, showing the

importance of including infants and children treated with ECMO in PK

studies for drugs relevant to this population.41

2.1.3 | Metabolism

Drug metabolism takes place in the liver and a variety of other organs,

and is highly variable. The impact of maturation is highest in the first

years of life. Drugs can be metabolized by Phase I and II DMEs, which

show enzyme- and organ-specific maturational patterns. Recent

proteomics analyses have quickly increased understanding of these

patterns.42,43 Three patterns can be identified with: (i) most DMEs

being low at birth and increasing to adult levels during the first

months of life; (ii) high at birth and decreasing thereafter and; iii) sta-

ble expression. Most DMEs (e.g. CYP1A2, 2A6, 2D6; 2E1, 3A4) follow

the first pattern, with birth and external factors contributing to rapid

maturation. Based on in vitro data, adult values of CYP1A2 activity

and protein expression are reached at age 5–15 and 1–5 years of age,

respectively. For CYP2E1 activity is low in foetuses and reaches 50%

of adult values in infants. Its foetal protein expression is variable and

adult values are reached at 1–5 years of age.44 In vivo data display

additional variability.45 For the CYP3A family, protein expression is

65–80% in foetuses but remains relatively constant at later ages.

Interestingly, CYP3A4 enzyme activity hereby increases after birth

(reaching 30–40% of adult values at 1 month, 50% at 6–12 months

and 100% at age 1–5 y), while CYP3A7 is highly active in foetuses

and early neonatal life, with a subsequent decrease in activity during

the first weeks of life.44,46,47 This shift between CYP3A7 and 3A4

occurs immediately after birth.46 A detailed overview on multilevel

ontogeny patterns of hepatic DT and DMEs is recently compiled by

van Groen et al.44 When doses are linearly extrapolated, immature

drug metabolism can lead to toxicity. Exceptions may occur such

as for paracetamol, where immature uridine 50-diphospho-

glucuronosyltransferase (UGT) activity is compensated by high

sulfation activity directly after birth.48 For many metabolized drugs,

clearance is increased in toddlers and young infants resulting in

subtherapeutic exposure, which is often not due to increased DME

activity per se, but overall increased metabolic capacity as a result of a

relatively large liver size at this age.49 The interplay of maturation with

other factors further adds variability to paediatric drug metabolism.

Inflammation/sepsis leads to decreased CYP3A4 mediated midazolam

clearance,50 while genetic variation further affects omeprazole and

tacrolimus disposition.51,52 Moreover, treatment modalities may lead

to variable disposition, e.g. during therapeutic hypothermia.53

2.1.4 | Excretion

Excretion occasionally occurs through the hepato-biliary or pulmonary

route, but most commonly by the kidneys (glomerular filtration rate
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[GFR], tubular secretion and tubular reabsorption). Ontogeny of biliary

excretion appears to be fast, attaining adult activity within the first

weeks to months.54 Elimination kinetics in the lung is determined by

alveolar ventilation, functional residual capacity and cardiac output.55

Based on aminoglycoside and vancomycin datasets, GFR matura-

tion has been described, using a bodyweight-dependent exponent

and postnatal age (PNA).56 By pooling of GFR estimates (polyfructose,

chrome-ethylenediaminetetraacetic acid, mannitol or iohexol) GFR

has been shown to reach half the mature value based on allometric

body size by 48 weeks postmenstrual age (PMA), with full maturity

being attained before 2 years of age.57 In a recent analysis on differ-

ences in GFR between preterm and term neonates, Salem et al. docu-

mented that both postnatal and gestational age (GA) are relevant in

GFR development until 1.25 years, as PMA ignores birth as a pivotal

event.58 Compared to glomerular filtration, tubular functions appear

to mature more slowly.59,60 Our knowledge is limited, but recent kid-

ney drug transporter expression data show different rates and pat-

terns of maturation, which appears aligned with PK data of

corresponding substrates.61,62

In addition to maturation, GFR variability is further affected by

nonmaturational covariates. To illustrate both ends of the spectrum,

critically ill children may display enhanced kidney perfusion and

glomerular hyperfiltration, resulting in augmented renal clearance.63 In

contrast, chronic kidney disease (CKD) and acute kidney injury are

associated with reduced clearance. The impact of CKD is not limited

to decreased excretion, as it may lead to modifications in absorption,

distribution, transport, and/or metabolism.64

2.1.5 | Special populations

As mentioned earlier, two specific paediatric populations will be dis-

cussed, namely neonates with IUGR and adolescents, to further stress

the relevance and diversity in developmental PK. IUGR is the result of

foetal growth failure caused by various factors, displaying foetal and

postnatal features of malnutrition, while small for GA (SGA) is based

on any birth weight <10th percentile for a given GA and may reflect

genetic influences on size.65,66 Although definitions differ, both terms

are often used interchangeably, as illustrated below. Sparse data are

available on the impact of IUGR/SGA on PK. Hepatic DME and DT

expression are affected by IUGR.67,68 To illustrate its relevance,

S-ibuprofen clearance was 3.11-fold higher in SGA compared to

appropriate for GA preterms.69 IUGR also results in decreased renal

clearance due to impaired renal developmental programming,

decreased nephron number and GFR, leading to CKD.70 Examples are

reduced vancomycin, gentamicin or amikacin clearance in SGA com-

pared to appropriate for GA neonates.71–73 Finally, the impact of

IUGR on PK probably remains relevant throughout paediatric life as

e.g. GFR remains lower.74

At the other end of the paediatric spectrum, adolescents are

commonly regarded as similar to adults with respect to PK. However,

some organ systems undergo intense development during adoles-

cence (e.g. skeleton, reproductive tissue, central nervous system, etc.),

with PK implications. Activity of several DME change throughout

physical and sexual maturation, with largest variability in infants and

adolescents. As an example, alterations in sex and growth hormones

appear to reduce DME (CYP1A2) activity, except progesterone which

appears to increase CYP3A activity.75,76 To illustrate altered PK, for

the oral combined (nomegestrol acetate + oestradiol) contraceptive

pill Zoely (Theramex Ireland, Dublin, Ltd), lower exposure of oestradiol

(�36%) was observed in adolescents compared to adults.77 Another

study evaluating the effect of lixisenatide observed shorter time to

maximal serum concentration (Cmax), and lower absolute Cmax in

adolescents compared to adults.78 Finally, a recent systematic review

showed differences regarding dose-related concentrations in children

and adolescents compared to adults for 14 of 26 neuroactive/

psychoactive drugs.79 These examples of age-dependent PK differ-

ences underscore (i) the need to involve paediatric pharmacologists to

evaluate when detailed studies on drug efficacy and safety are needed

in paediatric subgroups, and (ii) that developmental age rather than

administrative (chronological) age needs to be considered when

assessing PK(/PD) in adolescents.76 Approved dosing for adults and

adolescents seems highly equivalent, allowing allometric scaling with

subsequent limited PK studies on a case-by-case approach.80,81

Nevertheless, the unique developmental setting of adolescence often

requests population-specific PK(/PD) attention.76

2.2 | Utility of measuring drug metabolite levels to
support PK studies in children

About a decade ago, Anderson and Holford already pointed towards

knowledge and expertise gaps in paediatric pharmacotherapy: the

poorly studied impact of metabolites on effect was 1 of these fac-

tors.82 Indeed, while metabolism generally leads to loss of activity,

several drugs that are also used in neonates and children are known

to generate metabolites that are pharmacologically active. The fact

that this level of clinically relevant detail on metabolite disposition

remains unknown for many drugs used in paediatric populations

underscores the need for increased efforts to measure drug metabo-

lites. The advances in the performance of bioanalytical methods in

the past decade can facilitate this ambition. Indeed, recently devel-

oped methods have pushed the limits to new heights, not only in

terms of analytical sensitivity (lower quantification limits) and sample

volume requirements (often below 10 μL or even less), but also in

terms of the ability for concomitant measurement of parent and mul-

tiple metabolites in a single injection for liquid chromatography with

tandem mass spectrometry (LC–MS/MS) analysis.83,84 Also, the use

of a [14C]-microtracer with accelerated mass spectrometry for metab-

olite profiling has been reported.85 In the current section, we aim to

illustrate the possible utility of measuring drug metabolite concentra-

tions to support PK studies in neonates and children. While metabo-

lite levels will not always provide additional insights regarding the

disposition of a given drug, in several cases metabolite profiles will

support: (i) enhancing the knowledge of in vivo impact of ontogeny

of elimination pathways; and (ii) improved understanding of the
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PKPD profiles of drugs generating pharmacologically/toxicologically

active metabolites. As described in detail below, morphine and para-

cetamol generate a pharmacologically and a toxicologically relevant

metabolite, respectively. In addition, metabolites may contribute to

unravel developmental toxicity mechanisms like for ifosfamide86 or

valproic acid.87

2.2.1 | Morphine and its metabolites

Morphine undergoes biotransformation to morphine-3-glucuronide

and morphine-6-glucuronide (M6G). Only M6G has a μ-opioid

agonism. The PK-related effect of morphine in neonates and chil-

dren thus depends not only on ontogeny of the morphine elimina-

tion process, but also on specific ontogeny profiles of M6G

formation and elimination, justifying quantification of M6G next to

morphine also in paediatric morphine PK studies. A meta-analysis

reported moderate (2-fold) to high (10-fold) interindividual variabil-

ity in morphine clearance (and in relative M6G levels) depending

on the paediatric age group, but especially in critically ill patients.88

Moreover, the highest interpatient variability in dose–exposure

relationship was observed in neonates and infants. Specifically in

neonates morphine elimination is driven by hepatic maturation,

while renal maturation determines its glucuronides excretion. As

illustrated in a meta-analysis by Knosgaard et al.,84 PMA and PNA

provide the best elimination predictions of morphine and its glucu-

ronides, respectively. By additionally taking into account size-

related parameters, the authors constructed a model to describe

morphine and metabolites PK in (pre)term neonates.

2.2.2 | Paracetamol and its metabolites

Several independent studies have addressed the maturation of

elimination of paracetamol and its phase-2 metabolites (paracetamol

glucuronide, paracetamol sulfate).89,90 Whereas glucuronidation

matures during the first 2 years of life, sulfation shows a different

developmental pattern with higher expression of sulfotransferase

(SULT)1A1 and SULT2A1 in infants and young children compared to

adults.42 In addition, a population PK study demonstrated that the

oxidative paracetamol biotransformation pathway (eventually yielding

a.o. mercapturic acid metabolites) was subject to only small matura-

tional changes.91 Consistently, in very preterm neonates, paracetamol

glucuronidation was very low, whereas other pathways (sulfation, glu-

tathione conjugation) were of relatively higher importance compared

to adults.92 Interestingly, the clinical relevance of UGT1A9 polymor-

phism, the glucuronosyltransferase isoform involved in paracetamol

glucuronidation, resulted in up to 42% decreased glucuronide forma-

tion clearance in some neonates. This finding illustrates that the

impact of polymorphisms on top of maturational covariates should

not be ignored a priori in neonatal pharmacology.93 In addition, mea-

suring paracetamol glucuronide concentrations thus contributed to a

more accurate identification of the factors (polymorphism and CL

maturation) determining variability in neonatal paracetamol exposure.

A similar concept was recently presented for omeprazole. Based on a

population PK model in infants for omeprazole and 2 metabolites, the

complex interplay of both ontogeny and polymorphism of CYP2C19

was illustrated.52 For older paediatric age groups, knowledge gaps

exist regarding paracetamol PK, as illustrated in a review on paraceta-

mol use in overweight children and adolescents.94 It remains uncertain

whether the documented increased clearance in obese adults also

applies to obese adolescents. This urges to determine PK of

paracetamol and its (hepatoxicity-related) metabolites in this

population, which can then support acceptable dosing recommenda-

tions in children and adolescents.

2.3 | Minimal risk and burden designs for PK in
vulnerable populations

The study of PK in infants and children has historically been challeng-

ing due to sample size, heterogeneity of study population and patient

burden (blood sampling).95 Optimal PK sampling strategy must

consider both timing and number of samples per patient, and also

minimizing sample volume using innovative bioanalytical methods.

Trial designs need to minimize risk and burden for participants and

their families. This covers not only sampling, but broader trial-related

and ethical considerations.96 The child's interest should always prevail

over that of science and society.96

2.3.1 | Timing and number of samples per patient

Each sample is precious and should only be collected if it is predicted

to provide optimal and needed information. From a PK modelling

perspective, optimal sampling design allows parameter estimation with

maximal precision. Modelling and simulation are strongly rec-

ommended in paediatric investigation plans97 and methods for opti-

mally designing sampling schedules and to derive the required number

of study participants98 are now available. From previously developed

PK models in adults or older children, it is possible to derive optimal

sampling times with the highest chance of estimating PK parameters

most precisely in the population of interest. Opportunistic PK sampling

design could mitigate the challenges associated with PK studies in chil-

dren. However, it should consider the density and quality of sampling,

as well as the stability of the drug.99 Inappropriate design will result in

biased100 or imprecise101 PK model estimates. Judicious use of optimal

design102 or simulation estimation103 can, however, mean that with a

few samples precise estimates can be derived making studies minimally

invasive and maximally informative. Mathematically optimal sampling

design might not be clinically optimal in terms of number and timing of

samples. It is therefore important to take the practicalities of sampling

and ethical aspects into consideration when designing PK studies.96

Furthermore, reliability of extrapolation methods may differ between

paediatric subpopulations and should be considered to limit the num-

ber of samples as much as possible.104
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2.3.2 | Low volume sampling

Microsampling, which is the collection of smaller-than-normal plasma

samples for bio-analysis, may provide a solution and includes mainly

dried blood spots (DBS), dry plasma spots, volumetric absorptive

microsampling or capillary microsampling techniques. In DBS or dry

plasma spots, a small volume of blood or plasma is applied on an

absorbent paper which is dried after saturation has occurred. In the

laboratory, the blood or plasma is eluted out of the paper and

analysed. The advantage of DBS is that analytes have higher stability

in ambient conditions for several days or months.105 Application of

DBS and rapid LC–MS/MS-based methods have allowed a deepening

knowledge of propranolol PK in (pre)term neonates.106 Cohen-

Wolkowiez et al. reported on the feasibility of using DBS concentra-

tions in combination with plasma samples for PK model building of

piperacillin and tazobactam in infants.101 A quite similar, optimized

technique is volumetric absorptive microsampling, in which a fixed

blood volume is absorbed by the porous, hydrophilic tip of the device.

After the tip is dried, it is sent to the lab for drug extraction and bio-

analysis. In capillary microsampling, blood is collected in a capillary

tube and subsequently centrifuged in this tube before bio-analysis.

Overall, microsampling seems promising as it would allow a significant

reduction in the blood volume required.

Besides minimally invasive blood sampling, approaches for sam-

pling in other matrices are developed/under development.

Microneedle technology is known as a (transdermal) drug delivery

system.107 Nevertheless, as it creates (a) transient channel(s) across

the skin, it can also be used for sampling. Microneedle-based intersti-

tial fluid (ISF) sampling can complement conventional blood or urine

sampling. In adults, microneedle-based ISF from human skin was

collected to quantify selected biomarkers, and was well tolerated.108

To illustrate its applicability, caffeine PK in adults and glucose

response after a meal and insulin administration in diabetic children

were reported to be similar in plasma and ISF.108 Although this

technique is mainly applied in research settings, it is promising as

microneedle insertion was less painful compared to subcutaneous

catheters in diabetic children and adolescents.109

A noninvasive technique for measuring drug exposure is using

saliva as matrix. The advantages of saliva monitoring in paediatric PK

trials are acknowledged by the Food and Drug Administration (FDA)

as it reduces blood sampling, is easy to collect and causes minimal dis-

comfort.110 The usefulness of saliva for therapeutic drug monitoring

has been studied for e.g. anti-epileptics, antiretrovirals, antipsychotics,

antibiotics and antifungals, but is dependent on the physicochemical

properties of the drug.111–114

2.3.3 | Microdosing

Microdosing is another promising method to minimize patient burden

while studying PK. The dose is 1/100th of the no observed adverse

effect level. A microdose can be quantified using the most sensitive

ultra-performance LC techniques or when labelled with [14C], as

microtracer quantified by accelerator mass spectrometry. A prerequi-

site is dose linearity from the microdose up to therapeutic ranges.115

In children, it has shown feasible to perform such studies which can

also be used to study age-related variation in drug and metabolite

PK. Studies characterising paracetamol, midazolam and ursochol PK

are published.20,116–118 The recent FDA guidance on neonatal drug

studies suggests to consider microdosing to explore ontogeny.119

Moreover, a recent proof-of-concept study showed the feasibility to

safely use a [14C] microtracer to elucidate paediatric metabolite path-

ways, which may address the challenges discussed above.85

3 | DEVELOPMENTAL PD

There is limited progress in knowledge on how growth and develop-

ment impact PD.4 To determine the effects of growth and

development on PD, the greatest challenge is probably the robust and

direct quantification of drug effects. Receptors for most drugs are not

in the vascular space, but in the tissues. Because of technical and

ethical constraints, such tissue compartments cannot be easily

accessed repeatedly in children.120 Therefore, PD evaluation usually

depends on indirect measurements of drug action. To mitigate these

challenges, researchers started to explore the use of (functional) bio-

markers as tools for assessing developmental PD.121,122 Biomarkers of

PD as clinical substitutes for defining PD in paediatric patients are

currently still limited.123

Developmental PD investigates the age-related maturation of

biological systems and how this affects drug response (i.e. potency,

efficacy or therapeutic range). We aim to illustrate that developmental

aspects can be considered in drug targets and in PD endpoints, using

2 groups of conditions as examples (section 3.1 and 3.2), and in

disease-specific PD assessment (section 3.3). As these sections are

based on illustrations, no generalizable conclusions can be drawn.

3.1 | Identifying and testing treatment targets and
effects in rare diseases

Basic science has elucidated the pathogenetic mechanisms of

disorders that often present in the paediatric population, such as

spinal muscular atrophy (SMA), Pompe's disease and fragile X

syndrome.124–126 This knowledge is relevant to paediatric drug

development because it provides the opportunity to identify new drug

targets (Table 1). Mechanism-targeted drug development may rather

lead to disease-modifying therapies than the traditional symptom-

targeted approaches, at least in conditions with relatively simple

mechanisms.126,127 Nevertheless, for e.g. fragile X syndrome, specific

treatment hypotheses were formulated following understanding of

the imbalance between excitatory glutamatergic transmission and

inhibitory GABAergic system, but clinical trials have not yet provided

evidence of efficacy for the proposed treatments.125 However, even

in this setting, mechanism-targeted drug development may serve to

guide research. A specific challenge for paediatric drug development
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is identifying if and how a treatment response is dependent on the

developmental stage of the child. Possible windows of opportunity for

the treatment of disorders that often present in the paediatric

population, adds to the complexity of paediatric pharmacology

(Table 1). Even more challenging is drug development for conditions

such as autism spectrum disorder, whose pathogenesis has not been

clarified yet and is probably heterogeneous. In this area, there

are ongoing trials based on hypotheses of neuronal transmission

abnormalities.138,139

The evaluation of PD effects and the impact of growth and

development are challenging to study in rare inherited diseases. The

variable clinical phenotypes and time points of diagnosis, and the low

incidence make it difficult to evaluate PD and separate the impact of

maturation and natural disease course from other factors. Moreover,

the drug of interest is usually the only treatment option, making

placebo-controlled designs ethically critical. Innovative methods can

overcome these challenges. Clinical trial endpoints can be optimized

by modelling natural history data (registries),140 fallback tests for co-

primary endpoints,141 and goal attainment scaling.142 Confirmatory

adaptive designs can minimize the number of needed patients and

improve the significance of results.143 The dilemma of placebo control

in untreatable diseases can be addressed by delayed start randomiza-

tion.144 Furthermore, registry-based studies can support risk–benefit

analysis.145

3.2 | Developmental PD: The adaptive immune
system as illustration

In the early days of human immunodeficiency virus (HIV) therapy it

was thought that CD4 T cell count was an unreliable biomarker of dis-

ease progression in children younger than 5 years.146 Despite having

normal CD4 counts, infants and young children often had uncontrolled

viral loads and poor clinical outcomes. This was due to the fact that

thymic output displays age-related activity, resulting in infants and

young children having up to 5-fold higher normal CD4 counts than

adolescents.132,147 By leveraging biological prior data on thymic out-

put inferred from T-cell receptor excision circles and T-cell turnover

inferred from Ki67 expression,148 one can scale PD models for

expected changes in T-cell production and turnover. PD models using

this scaling can be developed and applied in paediatric studies.149 For

the immunosuppressant cyclosporine, in vitro age-dependent PD has

been reported (Table 1).134

3.3 | Developmental PD: Neurological and
psychiatric disorders as illustration

The structural and functional changes in the brain throughout

infancy, childhood, adolescence and young adulthood are reflected

in continuous modifications in the phenotypic manifestations of

psychopathology (e.g. ADHD, Table 1).136 It is important that

symptom rating scales take this developmental trajectory into

account. Developmentally appropriate assessment tools should be

sufficiently sensitive and valid to treatment-related effects in chil-

dren with neurological disorders for use in clinical trials. In addition

to disease-specific core symptoms, also comorbidities may require

their specific assessment tools. Besides efficacy, safety profiles can

differ between children and adults. For antipsychotics and antide-

pressants, a significantly higher incidence and a different profile of

adverse drug reactions (ADRs) was reported in children (including

adolescents) compared to adults (Table 1).137 Central nervous

system changes including synaptogenesis, connectivity, and

differential maturation of neurotransmitter systems continue

throughout adolescence and can even take 3 decades.150,151 This

can also contribute to differential response to pharmacotherapy

between adolescents and adults.128

4 | INNOVATIVE TOOLS FOR PAEDIATRIC
DRUG DEVELOPMENT

Drug development plans not only need to incorporate the latest

advances on developmental PK (section 2) and PD (section 3), but also

innovative techniques. While some innovative approaches mentioned

earlier (e.g. microsampling section 2.3) are already more established,

the current section provides illustrations of experimental tools.

Multidisciplinary collaboration creates opportunities to model

pathophysiological processes, identify molecular targets and test

pharmacotherapy. Table 2 gives examples of innovative tools available

in the developmental pharmacology field.

For understanding the ontogeny of the drug target organ sys-

tem, in vitro research, and preclinical (animal) models can be

implemented. For the latter, species-specific differences in organ

maturation, logistical disadvantages and imbalance between disease

model and drug development are limitations to consider.166 Finding

preclinical (animal) models that display physiology and development

comparable to human models is challenging.167 Differences often

relate to ADME characteristics, size or receptors. Although under-

explored, juvenile pig models are of interest to investigate disease

mechanisms (for neonates several [e.g. asphyxia,168 necrotizing

enterocolitis,169 IUGR170 and resuscitation171] are described), and

subsequently to assess PK/PD. Disposition of dexmedetomidine

during hypothermia, and an approved paediatric investigation plan

for 2-iminobiotin, both in perinatal asphyxia pig models illustrate

the potential and limitations of juvenile animal models.172 Such

data can be used to develop a PBPK framework, and allow to dis-

tinguish the impact of asphyxia vs. hypothermia on PK, which is

not feasible in a clinical setting.160

In section 4.1, we discuss opportunities and challenges of exam-

ples of preclinical cellular systems and additional animal disease

models. Innovative methodology is also being developed to increase

understanding of the ADME ontogeny. This will be illustrated in sec-

tion 4.2 by selected endogenous biomarkers reflecting ADME relevant

protein activity: the applicability of this work in paediatrics is limited,

and this is considered as a research tool.
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4.1 | Examples of experimental and preclinical
models for paediatric drug development

4.1.1 | Ex vivo 3-dimensional organotypic bone
culture model

The growth plate (physis) is a hierarchic organized complex system

and can be described as an organ. It is the site where elongation of

the long bones occurs in longitudinal growth during development.

Particularly in paediatrics and the growing bone, it is paramount to

investigate (adverse) and/or osteogenic effects of drugs and

biomaterial-based devices on the physis and the growing skeleton in

the biological growth mimicking environment.173,174 Unfortunately,

investigating growth at the physis is challenging since an optimal

model is currently lacking and inconsistencies between in vitro and

in vivo studies exist. The current in vitro models focus on the behav-

iour of developing osteoblast progenitors, osteoclasts or endothelial

cells following drug administration. However, the events occurring in

the growth plate during development are not mirrored in these

in vitro models.174,175 New approaches can be found in use of ex vivo

3-dimensional organotypic cultures.176 An ex vivo bone growth model

is based on bone slices from femurs of early postnatal rats, cultured

for several weeks, and can further be implemented in preclinical, toxi-

cological and therapeutic investigations.176

4.1.2 | Mouse models for preclinical efficacy
assessment

Mouse models can be used to study disease mechanisms in associa-

tion with development and growth. While requirements are defined

for toxicity assessment of new drugs, no regulation is available for

preclinical pharmacology data used to support human trials.177

Irrespective, an animal model can be useful for validation of target

engagement (proof-of-concept studies). Clinically oriented preclinical

studies can support assessment of efficacy also at young ages,

support toxicology and dose-finding studies. However, translation of

the efficacy profile from mice to humans remains challenging, due to

differences in (patho)physiology, the issue of age-matching, presence

of different genetic modifiers in mice and humans, and finally by the

quality of preclinical data.178 The absence of requirements for

reporting standards in scientific publications has led to efforts in com-

piling facultative ARRIVE guidelines,179 but the implementation of

these guidelines is still very limited.180 In the neuromuscular commu-

nity, a (facultative) advisory board for clinical trials uncovered the

challenges of applying results from poorly designed preclinical studies

to human trials to improve translatability.181 Scientific and clinical

communities, and industry need to be aware of the risk of using inade-

quately validated mice model (or other animal model) data for prema-

ture translation to a human trial.

4.2 | Endogenous biomarkers reflecting ADME
relevant protein activity

Although their relevance is still controversial, endogenous bio-

markers have been suggested as possible surrogates for enzymatic

activity in adults.182 Examples are plasma 4β-hydroxycholesterol

(4β–OHC, with 4β-OHC/cholesterol ratio) and urinary 6β-

hydroxycortisol (6β-OHF, with 6β-OHF/cortisol ratio) for CYP3A4

activity. It is important to know that paediatric data on these

markers are only explorative.

Developmental patterns are described: at birth, neonates have

lower 4β-OHC, but the level increased significantly between birth and

age 4 months to reach adult values. However, a median 4β-OHC/

cholesterol ratio at birth (0.19) was already comparable to adults, and

TABLE 2 Examples of innovative tools for paediatric drug development

Tool Aim Example

Patient derived inducible
pluripotent stem cells

To model cellular phenotypes of inherited diseases for drug

discovery and characterization of pharmacodynamics

Duchenne muscular dystrophy152

Spinal muscular atrophy153

Organoids To study molecular pathophysiology mechanisms, drug

disposition and drug effects

Nephrotic syndrome154

Genetic kidney diseases, including cystinosis,

ADPKD155

Cystic fibrosis156,157

Biliary atresia158

Juvenile animal models To develop a preclinical model for paediatric drug research

and a juvenile PBPK model: Maturational, or disease-

related

Juvenile Göttingen minipig model

- for physiology data (maturational)159

- for perinatal asphyxia (disease)160

To study therapeutic strategies for developmental lung

diseases

Juvenile rabbit model for BPD161

To identify genes important in human traits and disorders Zebrafish mutant model for ASD162

Endogenous biomarkers To assess endogenous metabolic activity reflecting drug

metabolic activity

4β–OHC and 6β-OHF as surrogates for

in vivo CYP3A4 activity160,163–165

ADPKD: autosomal dominant polycystic kidney disease; PBPK: physiology-based pharmacokinetics, BPD: bronchopulmonary dysplasia, ASD: autism

spectrum disorder, 4β–OHC: 4-β-hydroxycholesterol, 6β-OHF: 6-β-hydroxycortisol.
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this ratio did not change until 4 months.163 In children (age 1–17 y)

with epilepsy, carbamazepine induces CYP3A4/5, with subsequent

4β-OHC increase.183 Takaki et al. demonstrated that several

oxysterols in urine and plasma undergo developmental changes and

may be promising candidates for becoming biomarkers for paediatric

liver disease.184 Also 6β-OHF levels display age-dependency, with

maximum values at 14–20 years for both sexes.164 Concerning

6β-OHF/cortisol ratios, higher values are reported in neonates (PNA

1–15 days) compared to infants (30–359 days),185 while others found

different results.186 A correlation between this ratio and GA and birth

weight is described.186 The ratio at birth in preterm infants was lower

than term cases and remained stable the first 14 days, while in term

neonates the ratio decreased after birth to preterm levels at PNA

5 days. This ratio further declines with age and remains stable from

21–25 years onwards.164

Following (i) confirmation of the patterns observed and

(ii) demonstration of the correlation with DME activity, these data

might inform future PBPK models for drugs undergoing metabolic

elimination. They may contribute to define changes in DME activity

due to strong inducers/inhibitors.

Based on a recent systems biology analysis,187 several

endogenous compounds were listed as substrates for human drug

transporters of the SLC (solute carrier) family. These compounds

might be candidates for future biomarkers of in vivo activities of

various SLC isoforms in children. Finally, testotsterone glucuronide

normalized by androsterone glucuronide seems a promising urinary

UGT2B17 biomarker in children. In line with the developmental pat-

tern of UGT2B17 expression, this marker was significantly associated

with sex, age and copy number variation.188

5 | REFLECTIONS ON HOW KNOWLEDGE
REGARDING DEVELOPMENTAL
PHARMACOLOGY SHOULD BE
IMPLEMENTED IN THE PAEDIATRIC DRUG
DEVELOPMENT PATHWAY

Due to the anticipated relevance of developmental PK and PD on the

design of paediatric clinical trials, there is regulatory guidance and a

framework to support paediatric drug development.189 This has been

converted in a paediatric decision tree (Figure 1).190

The use of this pathway depends on the availability of an

underlying rationale as to what can or cannot be extrapolated from

adult to paediatric data and between different paediatric age

groups. Bridging can be done by extrapolation, modelling and simu-

lation and has been used for regulatory evaluation.190,191 Based on

assumptions on (dis)similarities in disease and concentration–

response profiles, PK, PD and safety data are collected to design

the paediatric drug development programme. Data sources may

include adult studies, paediatric studies, preclinical (animal) models,

F IGURE 1 Paediatric study decision tree with identified scenarios (from Manolis and Pons, Br J Clin Pharmacol 2009,190 with permission
from Rightslink, John Wiley and Sons and Copyright Clearance Center). PK, pharmacokinetics; PD pharmacodynamics
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in vitro and in silico models.192 Ollivier et al. described the shift

that occurred within paediatric pharmacotherapy from implicit

(subjective, driven by practical experience, resulting in eminence-

based off-label use), to explicit (based on and driven by scientific

rationale) extrapolation.104 This shift on how to approach off-label

drug use is also reflected in the joint policy statement of the

European Academy of Paediatrics and the ESDPPP.193

The studies used to construct the paediatric programme need to

be planned early in the adult programme and may be included in the

adult programme (e.g. identifying dose-exposure-response relation-

ships). Understanding developmental pharmacology is needed to plan

and interpret these studies to deploy appropriate methods and

existent data.

The goal of developmental pharmacology is to have sufficient

evidence about the disposition and effects of drugs to inform and

support authorization and accurate pharmacotherapy in children.

Large, traditional clinical trials are tools to gather data and knowl-

edge, but are not always the best approach to fill these knowledge

gaps. First, in the presence of a well-characterized condition and

strong evidence for similar drug effects across age groups, well-

justified extrapolation supported by modern tools can generate a

similar strength of dosing and efficacy evidence as large clinical

trials. Modern tools include pharmacometrics, PBPK, and clinical

biomarkers. Extrapolation requires fewer patients than required for

large trials, as illustrated for HIV or partial-onset seizures,194 and

can also reduce the number of samples per patient. Second, when

efficacy trials are done, integrating trial-derived and

pharmacometrics-derived results can reduce the uncertainties that

the trials address, e.g. refinement towards more targeted and effi-

cient designs. The international paediatric multiple sclerosis study

group recommends reconsidering paediatric study designs (including

studying safety instead of efficacy and the ethical considerations

of using placebo for a highly active disease), as disease

mechanisms are shared across the age span.195 This study group

illustrates that knowledge regarding developmental pharmacology

can be combined with drug information to justify recruitment of

adolescents (or children) to adult studies as long as sufficient infor-

mation on drug and target population (including ontogeny) is pre-

sent. This approach is endorsed in FDA recommendations about

study eligibility criteria that suggest increasing diversity in patient

enrolment, including children, pregnant or lactating women in

e.g. confirmatory clinical trials.196 However, crucial to such an inclu-

sive approach is that developmental PK and PD characterization

are considered from the earliest drug development stages. Similarly,

sequential enrolment of paediatric age groups, moving to younger

age groups only when studies in an older age group have demon-

strated safety and efficacy should no longer be taken for granted,

unless justified and based on clear scientific rationale such as

potential developmental safety concern. Arbitrary sequential enrol-

ment of paediatric subgroups (from older, going to younger ages)

in drug development has been questioned in both EMA and FDA,

as this may lead to delays in data availability, especially in the

younger ages.96,196 This may result in prolonged off-label practices

in these subgroups, with subsequent difficulties to conduct relevant

trials in these groups, once the drug is marketed.

This is because sufficient information to justify starting studies in

multiple age-groups can emerge from modelling and simulation.196

Because of the more limited information on ontogeny and pathophys-

iology, Ollivier et al. stated that extrapolation remains most difficult in

(pre)term neonates.104,194 Depending on the neonatal drug

development programme, each of the earlier mentioned data sources

(adult studies, paediatric studies, preclinical (animal) models, in vitro

and in silico models) can be considered to varying degrees and levels

of confidence to guide dosing. Using an illustrative approach, neonatal

programmes on meropenem (disease similar to children or adults),

clopidogrel or thyroid hormone (diseases related but not similar) or

caffeine and surfactants (diseases unique to neonates) have been

described.192

5.1 | Paediatric drug development pathway,
challenges related to PK and PD

PK data are crucial to paediatric drug development as exposure will

determine (side-) effects (Figure 1). However, this is not unique to

children, so that sufficient adult—or rarely—preclinical (animal) data

(section 4.1, Table 2) should be gathered to understand the

concentration–time profile (PK) and optimal concentration–response

(PD) profile.192 Repurposing is an important setting, as another

indication may require new dose-findings studies, like ibuprofen for

closure of a patent ductus arteriosus, or sildenafil for treatment of

pulmonary hypertension.197,198 The earlier mentioned modelling

and simulation or PBPK modelling should provide supportive guid-

ance on conducting and designing PK studies, to reduce individual

burden (e.g. number and volume of samples, sample technique,

opportunistic or scavenged, time window, maximize flexible sam-

pling approach). This should be based on a priori simulations that

justify the approach taken and maximize the information used as

the source for extrapolation.

Characterizing the impact of development on subsequent PD is

still challenging. Paediatric biomarkers should be sufficiently sensi-

tive to discriminate time-dependent changes from medicine- or

intervention-related effects to enable modelling of drug–response

relationships across the paediatric spectrum.4 Again, modelling and

simulation can support trial design and conduct, while strategies

related to enrichment (e.g. treatments for SMA targeting type I vs.

II vs. III, or cystic fibrosis drug modulator therapies, targeted to a

specific mutation) can also be useful.196 Robust modelling efforts

necessitate rich data on e.g. the natural disease course and func-

tional outcome variables while considering impact of maturation/

development (e.g. sharing of clinical research data on SMA, or

natural trend data of lung function tests in cystic fibrosis), most

relevant in the field of rare diseases.199,200 We should focus on

patient (and when relevant parent/family)-centred outcome

variables, using approaches to include children and young people's

opinions.201,202
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5.2 | Paediatric drug development pathway,
challenges related to safety

Drug safety remains 1 of the key elements of the benefit/risk

balance assessment by regulatory authorities, health care

providers and the public. Standardization of pharmacovigilance and

safety is key to facilitate comparison and is embedded in

guidance documents. This resulted in regulatory requirements to

assess seriousness, causality and severity, irrespective of the popu-

lation considered, but all have their issues when applied in

paediatrics.

Serious adverse event outcomes are clearly defined as including:

death, life-threatening events, inpatient hospitalization or prolonga-

tion of hospitalization, persistent or significant incapacity or disrup-

tion of daily life functions, or a congenital anomaly. However, it

may be difficult to disentangle prolonged hospitalization in specific

subpopulations such as preterm neonates.203 Causality assessment

is another issue, as e.g. the Naranjo algorithm or Uppsala causality

tool are not tailored to all paediatric subpopulations.204 To stress

the relevance of availability of these tools, the inter-rater

reliability for different tools when applied to suspected ADRs in

neonates remained fair (κ �0.3).205 Similar issues exist for severity

assessment, subdivided into mild, moderate, severe, life threatening

or death (grade 1–5). To limit inter-rater variability, consensus

documents related to e.g. vaccine trials (Division of Acquired

Immune Deficiency Syndrome—table, adults, paediatrics), oncology

(Common Terminology Criteria for Adverse Events, adults and pae-

diatrics) or, recently, neonatology have been reported.206–209 To

illustrate their relevance, grading in part depends on the impact on

age-appropriate instrumental activities of daily living. To limit variabil-

ity and standardize event assessment, the impact on daily living

should be translated to a population-specific setting, such as

reported by the generic severity criteria for the neonatal ADR

scale.206

It is important that safety biomarkers used in drug development

programmes, also display age- and non–age-related differences in pat-

terns or quantification. QT(c) times are commonly used biomarkers to

prevent cardiac arrhythmias, but these markers display maturational

and nonmaturational changes.210 Recognition and quantification of

adverse events of the kidney necessitate age-appropriate reference

intervals of kidney function and injury markers.211,212 Besides these

‘general’ safety biomarkers, growth, pubertal development (and repro-

duction) or neurocognitive and behavioural development are of

specific relevance to this population.

6 | GENERAL SUGGESTIONS AND
CONCLUSION

Knowledge on developmental pharmacology is rapidly expanding, and

should be captured in paediatric drug development to achieve safe,

effective and individualized pharmacotherapy. A few general sugges-

tions can be made:

• To reduce knowledge gaps in developmental PK, profiling drug

metabolites can support mechanistic PK studies and provide

insight into in vivo impact of ontogeny of elimination pathways,

while minimal risk and burden designs allow for optimally informa-

tive but minimally invasive PK sampling. In addition, integration of

innovative methodology to better understand ADME ontogeny,

can provide paediatric drug development initiatives with more pro-

found data on drug disposition in paediatric subgroups. However,

limitations of currently underexplored preclinical models and still

explorative biomarkers need to be considered. Furthermore,

linking exposure (PK) to effect (PD) remains difficult. Clearly esta-

blishing robust dose–response relationships is important before

exposure-based individualized dosing can be pursued. We are

aware that this paper focusses on maturational factors impacting

PK/PD. Nonmaturational factors further contribute to inter- and

intrapatient PK/PD variability. As impact of both types of factors

cannot always be distinguished from each other in clinical trials,

preclinical models might offer add-on benefit (e.g. to separate the

impact of asphyxia vs. hypothermia on PK).160

• In addition to developmental PK, PD data are even more relevant,

but difficult to collect, as drug efficacy and safety are often consid-

ered as final endpoints of pharmacotherapy. Therefore, real world

paediatric patient data (e.g. laboratory results from routine clinical

care, registries, electronic health files) are useful to support paedi-

atric PD endpoints.213 Based on disease- and target organ-

specific examples, we illustrated that developmental PD should be

considered during drug development. However, many age- and

disease-specific, validated markers and references values covering

the paediatric range are currently lacking for a reliable PD assess-

ment. Finally, when short-term efficacy and safety data become

more evident, focus on long-term clinical data on paediatric phar-

macotherapy is appropriate.

• The Göttingen minipig is the reference pig strain for PK studies in

drug development, but its use remains limited.166 Regulatory

guidelines recommend to use the same species in juvenile and

adult toxicity studies. However, species selection for adult studies

is not clearly defined and lacks consistency. Optimal selection

criteria would probably increase Göttingen minipig use for adult

toxicity studies. Also for drug indications limited to children, this

strain is the preferred model for preclinical PK and toxicity

studies.166 Further ADME research and PBPK models for this

species are needed.214

• PK and PD characterization in paediatric subgroups should be

considered from the earliest drug development stages. To uniform

trial-related approaches, the use of recent instruments e.g. the pae-

diatric decision tree for extrapolation (Figure 1), or assessments of

seriousness, causality and severity of adverse effects in paediatric

drug development is suggested.

• Continued improvements on targeted and efficient clinical trial

designs should become standard in paediatric drug develop-

ment.189,206 As highlighted in section 5, some of these reflections

are supported by scientific societies on developmental pharmacol-

ogy (e.g. European Academy of Paediatrics, ESDPPP) and/or
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regulatory agencies (FDA, European Medicines Agency). In addi-

tion, developmental pharmacology expertise, as part of strategic

feasibility—such as the advice offered by the European

public-private conect4children consortium—should be integrated in

paediatric drug development. We hereby also want to stress the

importance of shifting from an arbitrary sequential enrolment of

paediatric subgroups to more rational study designs.

In conclusion, this paper summarizes current evidence of developmen-

tal PK and PD, and provides scientific insights and suggestions to

incorporate the latest knowledge on developmental pharmacology

and innovative techniques into paediatric drug development. The

developmental pharmacology research field should be driven by

developmental (patho)physiology, and multidisciplinary collaboration

between academia, industry, regulatory agencies, health-care workers,

patients and parents. As an illustration on how to put this call to

action, conect4children project (www.conect4children.org) initiated a

strategic feasibility advice service to build the bridge between all

these partners involved. The aim is to provide innovative methodol-

ogy advice, including on developmental pharmacology and sharing the

latest knowledge, e.g. through this White Paper.

DISCLAIMER

The publication reflects the author's view and neither IMI nor the
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