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Abstract
Objective: To test whether high-sensitivity cardiac troponin T (hs-cTnT) could act as a diagnostic or prognostic bio-
marker in ALS, comparing hs-cTnT to neurofilament light (NfL). Methods: We performed a case-control study, includ-
ing 150 ALS patients, 28 ALS mimics, and 108 healthy controls, and a follow-up study of the ALS patients, during
2014–2020 in Stockholm, Sweden. We compared concentrations of hs-cTnT in plasma and NfL in the cerebrospinal
fluid between cases and controls. To evaluate the diagnostic performance, we calculated the area under the curve
(AUC). Hazard ratios (HRs) were estimated from Cox models to assess associations between hs-cTnT and NfL at ALS
diagnosis and risk of death. The longitudinal analysis measured changes of hs-cTnT and NfL since ALS diagnosis.
Results: We noted higher levels of hs-cTnT in ALS patients (median: 16.5 ng/L) than in ALS mimics (11ng/L) and
healthy controls (6ng/L). Both hs-cTnT and NfL could distinguish ALS patients from ALS mimics, with higher AUC
noted for NfL (AUC 0.88; 95%CI 0.79–0.97). Disease progression correlated weakly with hs-cTnT (Pearson’s r¼ 0.18,
p¼ 0.04) and moderately with NfL (Pearson’s r¼ 0.41, p< 0.001). Shorter survival was associated with higher levels of
NfL at diagnosis (HR 1.08, 95%CI 1.04–1.11), but not hs-cTnT. hs-cTnT increased (12.61ng/L per year, 95%CI
7.14–18.06) whereas NfL decreased longitudinally since ALS diagnosis. Conclusions: NfL is a stronger diagnostic and
prognostic biomarker than hs-cTnT for ALS. However, hs-cTnT might constitute a disease progression biomarker as it
increases longitudinally. The underlying causes for this increase need to be investigated.

Keywords: Case-control study, follow-up study, amyotrophic lateral sclerosis, cardiac troponin T, neurofilament proteins

Introduction

Cardiac troponin T (cTnT) is commonly used as
a biomarker for myocardial infarction (1). Several
studies have detected elevated levels of cTnT in
patients with neuromuscular disorders (2–8). The
role of cTnT in ALS patients is, however, not fully

understood as previous studies have reported
largely inconsistent results. Elevated levels of
cTnT were identified among ALS patients in two
studies with 40 and 22 ALS patients, all free of
cardiac disease (9,10). In contrast, normal cTnT
levels were found in two other studies, including
28 and 60 ALS patients, respectively (11,12).
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In the present study, we aimed to investigate
the performance of high-sensitivity cTnT (hs-
cTnT) in plasma as a diagnostic and prognostic
biomarker for ALS, in comparison to NfL in CSF,
which is currently one of the most promising bio-
markers of ALS (13–21).

Materials and methods

We performed a case-control study and recruited
patients who received a diagnosis of ALS between
1 January 2014 and 28 February 2020 at the
Karolinska University Hospital neurology clinic
that manages all ALS patients in Stockholm,
Sweden (n¼364). Patients who met the revised El
Escorial criteria for clinically definite, probable,
and possible ALS were included (n¼ 332) (22).
We excluded from the study patients without hs-
cTnT in plasma and NfL in CSF measured at the
time of diagnosis, leaving in the analysis
150 patients.

We recruited ALS mimics and healthy persons
as controls. Individuals with signs of muscle weak-
ness, who were referred to the clinic under initial
suspicion of ALS but later diagnosed with other dis-
eases, and had hs-cTnT measured, were recruited
as mimics (n¼28; Supplementary Table 1). We
reviewed the mimics in September 2020 again, to
ensure their diagnosis. We included siblings and
partners of ALS patients as healthy con-
trols (n¼ 108).

We also performed a follow-up study of ALS
patients. We followed patients from the date of
diagnosis until the date of death or tracheostomy,
or 28 February 2020, whichever came first.
Among the 150 patients, 110 had at least one
more measurement of hs-cTnT and 47 had at least
one more measurement of NfL during follow-up
(Supplementary Table 2). Thus, we defined a
baseline cohort including 150 patients with a
measurement at diagnosis and a longitudinal
cohort including 110 patients with at least two
measurements of hs-cTnT.

ALS patients were categorized as having bulbar
or non-bulbar onset. We calculated diagnostic
delay as the time interval between symptom onset
and diagnosis. Disability was measured using the
revised ALS Functional Rating Scale (ALSFRS-
R). Disease progression rate was estimated by 48
minus ALSFRS-R score at diagnosis divided by
diagnostic delay in months (23).

For ALS patients, CSF and blood were col-
lected at diagnosis and repeatedly thereafter.
Samples were collected from mimics during the
diagnostic work-up, and from healthy controls
shortly after the diagnosis of the index patient.
The assessment of hs-cTnT was performed using
Roche Diagnostics’ Elecsys 5th generation assay
(Rotkreuz, Switzerland). The measurement of NfL

was based on UmanDiagnostics’ sandwich
enzyme-linked immunoassay (Umeå, Sweden; cat
no 10-7001).

We used Kruskal-Wallis nonparametric test to
compare differences in the distributions of age and
sex, and the Mann–Whitney U test to compare hs-
cTnT and NfL levels, between ALS patients and
mimics as well as between ALS patients and
healthy controls. To evaluate the diagnostic per-
formance of hs-cTnT and NfL in separating ALS
patients from mimics and healthy controls, we cal-
culated Area Under the Curve (AUC) values and
compared Receiver Operating Characteristic
(ROC) curves (24). We compared AUC values by
the Chi-square test.

Among ALS patients, we first calculated
Spearman’s rank correlation coefficients to meas-
ure the correlation between hs-cTnT and NfL. We
then used Pearson’s correlation coefficients and
linear regression models to assess relationships
between hs-cTnT and NfL at diagnosis and dis-
ease progression rate, adjusting for age at sam-
pling, sex, site of onset, and diagnostic delay in
linear regression. We used the Mann–Whitney U
test to assess correlations between hs-cTnT and
NfL, and site of onset.

We used the baseline cohort to assess associa-
tions between hs-cTnT and NfL at diagnosis and
the risk of death after ALS diagnosis. We plotted
Kaplan–Meier survival curves for patients with dif-
ferent levels of hs-cTnT and NfL. We used Cox
models to estimate hazard ratios (HRs) and their
95% confidence intervals (CIs), with time since
symptom onset as the underlying time scale. To
assess the prognostic values independent of known
prognostic indicators of ALS, we adjusted for sex,
site of onset, age at onset, diagnostic delay, body
mass index at diagnosis, disease progression rate at
diagnosis, and C9orf72 status in the analysis
(25,26). hs-cTnT and NfL were mutually adjusted
for one another.

We used the longitudinal cohort to present the
temporal changes of hs-cTnT and NfL, using a
linear regression model with cluster-robust stand-
ard errors adjusted for age and sex. We first ana-
lyzed all patients together and then according to
sex, age at diagnosis (<65 and �65 years), onset
type, and progression rate.

In all analyses, we considered p<0.05 as a
level of statistical significance. We performed the
analyses in Stata software, version 16 (StataCorp,
College Station, TX).

Protocol approvals and registrations

This study was approved by the Regional Ethical
Review Board in Stockholm, Sweden, and fol-
lowed the ethical principle as declared by the
Declaration of Helsinki.
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Results

The characteristics of study participants are sum-
marized in Table 1. The ALS patients included in
the study are the general representative of the
entire population of ALS patients in Stockholm
(Supplementary Table 3).

The median level of hs-cTnT in plasma was
higher in ALS patients at baseline (16.5 ng/L) than
in mimics (11 ng/L, p<0.001) and healthy con-
trols (6 ng/L, p<0.001) (Figure 1 and
Supplementary Table 4). 82 ALS patients
(54.7%), six mimics (21.4%) and 12 healthy con-
trols (11.1%) had hs-cTnT above the 99th per-
centile (1). ALS patients also had higher levels of
NfL in CSF than controls.

Higher AUC was noted for NfL (p¼0.02)
than cTnT in separating ALS patients from
mimics (Table 2). Adding hs-cTnT to NfL did
not increase the AUC (p¼0.47). The result was
similar when comparing ALS patients to healthy
controls. ROC curves are shown in Supplementary
Figure 1. hs-cTnT did not correlate with NfL at
baseline, in ALS patients (Spearman’s rho �0.04;
p¼0.76). There was a correlation between disease

progression rate and hs-cTnT (Pearson’s r¼0.18,
p¼ 0.04; multivariable regression p¼ 0.05) and
NfL (Pearson’s r¼0.41, p<0.001; multivariable
regression p¼ 0.001). The median level of hs-
cTnT was lower among ALS patients with bulbar
onset (13 ng/L) than patients with non-bulbar
onset (20 ng/L) (p¼ 0.003). There was no differ-
ence in the levels of NfL by type of onset.

We included in the survival analysis of the
baseline cohort 125 ALS patients with baseline
measures of hs-cTnT and NfL and all other prog-
nostic factors (n¼93 including also C9orf72 status;
Supplementary Table 5). Supplementary Figure 2
depicts the Kaplan–Meier survival curves. After
multivariable adjustment, a 1000-unit increase in
NfL was associated with a higher risk of death
(HR 1.08, 95% CI 1.04–1.11) (Table 3). The
result was similar after further controlling for
C9orf72 status. Although increasing levels of hs-
cTnT were suggested to be associated with a
higher risk of death, the results were not statistic-
ally significant.

In the longitudinal cohort, after controlling for
age and sex, hs-cTnT increased (12.61 ng/L per
year, 95% CI 7.14–18.06; corresponding to

Table 1. Characteristics of ALS patients, ALS mimics and healthy controls, and the number of measurements of hs-cTnT in plasma
and NfL in CSF.

All ALS patients, ALS mimics, and healthy controls ALS patients
with at least
one more

measurement
of hs-cTnT

during follow-upALS patients ALS mimics
Healthy
controls

p Value for
difference

No. of participants 150 28 108 110
No. of hs-cTnT measurements 150 28 108 110
No. of NfL measurements 150 28 13 47
Female, n (%) 70 (46.7) 9 (32.1) 67 (62.0) 0.006 49 (44.6)
Age at first sample, median

(IQR), years
68.0 (60.4–74.1) 67.8 (51.8–75.1) 63.5 (57.4–70.2) 0.02 66.9 (60.2–73.8)

Age at onset, median (IQR), years 66.9 (59.6–73.0) – – – 65.6 (58.9–72.3)
Type of onset, n (%) Bulbar: 55 (36.7)

Spinal: 89 (59.3)
Other: 6 (4.0)

– – – Bulbar: 42 (38.2)
Spinal: 64 (58.2)
Other: 4 (3.6)

Months from onset to diagnosis,
median (IQR)

12.1 (7.5–18.2) – – – 12.4 (8.6–18.3)

C9orf72 expansiona 10 (9.4%) out of
106 tested

– – – 9 (10.5%) out of 86 tested

SOD1 mutationb 3 (2.9%) out of
102 tested

– – – 3 (3.7%) out of 82 tested

BMI at diagnosis, median (IQR) 23.4 (21.3–26.9) – – – 23.8 (21.2–27.1)
ALSFRS-R at diagnosis,

median (IQR)
40 (35–43) – – – 41 (36–43)

Disease progression rate at
diagnosis, median (IQR)

0.64 (0.33–1.12) – – – 0.57 (0.30–1.06)

Months of follow-up,
median (IQR)

25.5 (16.7–34.5) – – – 27.9 (19.6–37.4)

Death during follow-up, n (%)c 85 (56.7) – – – 51 (46.4)
Months from onset to death,

median (IQR)
25.0 (14.6–33.4),
among 85 that died
during follow–up

– – – 25.0 (16.8–33.4),
among 51 that died
during follow–up

Note. p Values were calculated using Kruskal–Wallis test. aThe most common genetic risk factor for ALS. bThe second most common
genetic risk factor for ALS. cDeath or invasive ventilation.

IQR: interquartile range; BMI: body mass index.
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68.7%increase per year) whereas NfL decreased
(�1709ng/L per year, 95% CI �1851 to �113;
corresponding to 22.4% decrease per year) over
time since diagnosis (Supplementary Table 6).
The increasing hs-cTnT level was noted among all
patients regardless of sex, age, type of onset, or
progression rate. NfL decreased over time among
patients younger than 65 years, patients with non-
bulbar onset, and patients with the fastest progres-
sion rate. Figure 2 displays the temporal pattern of
hs-cTnT and NfL for each ALS patient
from diagnosis.

Discussion

In a case-control study of ALS supplemented with
a longitudinal follow-up of the ALS patients, we
found evidence of elevated hs-cTnT in ALS

patients compared to mimics and healthy controls.
We also demonstrated longitudinally increasing hs-
cTnT levels in ALS patients after diagnosis,
regardless of patient characteristics.

Previous studies have provided conflicting
results on hs-cTnT levels in ALS patients com-
pared to controls. Studies with negative findings
did not directly study cTnT (11,12), whereas stud-
ies with positive findings, like our study, directly
studied cTnT (9,10). We confirmed earlier studies
in demonstrating elevated levels of NfL in CSF
among ALS patients compared with mimics and
healthy controls (14–16,18–21). In the analysis of
diagnostic performance, hs-cTnT performed mod-
erately well in distinguishing mimics from ALS
patients. NfL, however, performed better, at a
level similar to previous reports (15,16,18,20,21).

Elevated levels of hs-cTnT were found to cor-
relate with faster disease progression, although
weakly. Non-bulbar onset ALS patients had higher
hs-cTnT levels compared to bulbar onset patients.
Consistent with previous studies, NfL was found
to correlate with a faster disease progression rate
and was associated with a higher risk of death
(15,16,18,20,21). No association was noted
between the level of hs-cTnT and risk of
death, however.

In our longitudinal analysis of ALS patients,
hs-cTnT was found to increase over time. A

Figure 1. Boxplot on levels of (A) hs-cTnT in plasma, and (B) NfL in CSF, among ALS patients at baseline, ALS mimics, and healthy
controls. All on a base 10 logarithmic scale. p Values were calculated using Mann–Whitney U test.

Table 2. Area under the curve (AUC) values with 95% CI for
hs-cTnT in plasma, NfL in CSF, and combined, in separating
ALS patients from ALS mimics and healthy controls.

ALS (n5 150) vs
ALS mimics
(n5 28)

ALS (n5150) vs
healthy controls

(n5 13)

hs-cTnT 0.70 (0.61–0.79) 0.88 (0.79–0.97)
NfL 0.88 (0.79–0.97) 0.98 (0.97–1.00)
hs-cTnTþNfL 0.89 (0.82–0.96) 0.99 (0.99–1.00)
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similar pattern was noted by Mach et al., showing
that ALS patients with elevated cTnT had a longer
disease duration at sampling compared to those
with normal cTnT levels (9). NfL slowly decreased
over time, in contrast to prior studies that showed

NfL to increase in early disease stages (16,27–29)
and become stable thereafter (16,27,29–32). The
contrasting temporal patterns of hs-cTnT and NfL
indicate a potential use of hs-cTnT as an easily
accessible and affordable disease progression

Table 3. Multivariable Cox proportional hazards regression models for hs-cTnT in plasma and NfL in CSF among ALS patients with
and without adjustment for C9orf72 repeat expansion.

Cox regression adjusting for C9orf72 (n5 93) Cox regression not adjusting for C9orf72 (n5 125)

HR 95% CI p Value HR 95% CI p Value

hs-cTnT in plasma,
per 1 unit increase

1.01 1.00–1.03 0.14 1.01 1.00–1.02 0.09

NfL in CSF, per 1000
units increase

1.08 1.03–1.14 0.001 1.08 1.04–1.11 <0.001

Female sex 0.93 0.50–1.74 0.82 0.89 0.54–1.46 0.65
Bulbar onset 1.92 0.97–3.81 0.06 1.75 1.02–3.00 0.04
Age at onset, per

year increase
1.03 1.00–1.07 0.09 1.04 1.01–1.08 0.008

Diagnostic delay, per
month decrease

1.05 1.01–1.09 0.01 1.03 0.99–1.06 0.15

BMI at diagnosis, per
unit increase

0.98 0.88–1.09 0.72 0.99 0.93–1.06 0.82

Disease progression
rate, per
unit increase

2.02 1.07–3.81 0.03 1.90 1.41–2.57 <0.001

C9orf72
repeat expansion

0.68 0.14–3.20 0.62 – – –

Note. BMI: body mass index.

Figure 2. Temporal changes of (A) hs-cTnT in plasma (n¼115), and (B) NfL in CSF (n¼47), after ALS diagnosis.
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biomarker in clinical trials. The increasing levels
over time in all subgroups of ALS patients also
demonstrate its potential use.

The strengths of our study include the large
sample size, the rich information on clinical char-
acteristics, and the complete follow-up. It is to our
knowledge the first study to examine the correla-
tions between cTnT and NfL as well as clinical
characteristics in ALS. There are some limitations.
First, this study did not investigate the sources or
pathophysiological mechanisms of the elevated and
increasing levels of hs-cTnT in ALS patients.
Myocardial injury (1) and defects (11), sympa-
thetic dysfunction (33–36), cardiomyopathy
(37,38), and chronic myocardia hypoxia due to
respiratory failure in ALS (39), etc. might all con-
tribute. In the present study, we had a measure of
creatine kinase (CK) for 45 patients with ALS and
found a moderate correlation between CK and hs-
cTnT (Spearman’s rho ¼ 0.42; data not shown).
Future studies should therefore examine the cor-
relation between hs-cTnT and disease stage or
number of body regions with involvement of upper
or lower motor neurons, to better understand if
hs-cTnT reflects central or peripheral damage.
This applies to patients with ALS but also ALS
mimics. Another limitation is the heterogeneous
group of mimics.

In summary, we provide evidence that hs-
cTnT in plasma is elevated in ALS patients com-
pared to ALS mimics and healthy controls.
However, NfL in CSF performs better than hs-
cTnT, both as a diagnostic and prognostic bio-
marker. In contrast to NfL, hs-cTnT increases
longitudinally as the disease progresses and might
constitute a potential disease progres-
sion biomarker.
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