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Abstract. Misinformation takes the form of a false claim under the guise
of fact. It is necessary to protect social media against misinformation by
means of effective misinformation detection and analysis. To this end, we
formulate misinformation propagation as a dynamic graph, then extract
the temporal evolution patterns and geometric features of the propagation
graph based on Temporal Point Processes (TPPs). TPPs provide the
appropriate modelling framework for a list of stochastic, discrete events.
In this context, that is a sequence of social user engagements. Furthermore,
we forecast the cumulative number of engaged users based on a power law.
Such forecasting capabilities can be useful in assessing the threat level of
misinformation pieces. By jointly considering the geometric and temporal
propagation patterns, our model has achieved comparable performance
with state-of-the-art baselines on two well known datasets.
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1 Introduction
Social media has empowered human society in many ways. It is easier than
ever to keep in touch with those we wish to, allowing an enormous variety of
relationships to transcend physical isolation [19]. More so than ever before, social
media has a responsibility for our mental wellbeing, as the arbiter of interactions
between colleagues, friends and loved ones [24,13]. It is therefore a matter of the
utmost importance that we make this platform a safe environment, protected
against those wishing to corrupt the service with fake news [20].

Various methods have been used to tackle the misinformation problem.
Content-based misinformation analysis models apply natural language processing
tools to the text content of claims [23]. Alone, content-based models fail to trace
the dynamics of spread for tasks such as early detection or spread forecasting.
Recent misinformation analysis models use static graph neural networks to extract
geometric propagation patterns; others leverage time-series analysis by treating
misinformation spread as a temporal event sequence [15,4]. These two approaches
each neglect the alternative propagation structure with neither leveraging both
geometric and temporal dissemination features.

Propagation-based misinformation analysis makes use of patterns that can
be attributed to the dynamics of spread. Our principal goal is to utilise the



2 Q. Zhang et al.

maximum space of these spreading features, so as to make the most effective use
of the available data. Specifically, we first formulate misinformation propagation
as a dynamic graph, then we employ a continuous-time temporal point process
to extract the temporal evolution patterns and geometric features. Furthermore,
we use a power law to model the growth in the temporal network scale, so as to
forecast the future rate of spread for a claim identified as misinformation. The
contributions of this study can thus be summarised as follows. (i) We formulate
misinformation propagation as a dynamic graph. (ii) We then design temporal
point processes (TPPs) to utilize both temporal and geometric features of the
dynamic graph for misinformation detection. (iii) This study is the first to
introduce forecasting of user engagements to misinformation analysis.

2 Related Work
To figure out the differences between true and false statements, most researchers
conduct studies from three approaches: textual content, multimedia features and
social context. Misinformation often contains opinionated language [2], which
motivates textual content-based detection [1]. Sentiment features like positive
words (e.g., love, sweet) and negating words (e.g., not, never) are reported to help
detect rumours [6]. Misinformation also relies on sensational images to provoke
an emotional response in consumers. As an example, Deepfakes [3] employed deep
learning to generate fake images and videos to convey misleading information.

In social media, every piece of news is correlated to other posts and users. User
engagements (e.g., commenting) provide rich reference evidence in two ways: by
aggregation with relevant posts for a specific affair, and by temporal evolution. The
first way relies on the “wisdom of crowds” to locate potential misinformation [1],
while the second way captures temporal propagation patterns. For example,
Hawkes processes are used to analyze how user stance changes temporally in [11].
However, these methods neglect geometric propagation features.

Graph neural networks can extract geometric propagation patterns. Graph
Convolutional Networks (GCN) are used in [14] to encapsulate the propagation
structure of heterogeneous data. Graph-Aware Co-Attention Network (GCAN) is
proposed in [4,8] to utilise the co-attention mechanism in graph modeling. Each
of these works use static graphs and researchers neglect temporal information.

3 Problem Formulation
This section gives definitions and describes notation. A source claim takes the
form of c = (x, t), where x is a concatenation of the posting user account features
and the claim’s text features, i.e. x = [u || M ]. Here, u is the user account
representation and M is the text message representation. t is initially zero, as
ensuing dissemination events are timestamped with respect to the source claim.

Suppose the claim c is accompanied by a sequence of social engagements
S = {v1,v2, . . . ,vj , . . . ,vN}, where vj = (xj , tj). Similarly, xj is the feature of
an engaging node and tj is the engagement time with respect to claim post time.
Social engagements include all forms of interactions that users conduct with
claims on social media platforms, such as reposting, commenting and tagging.
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Our temporal, dynamic graph is represented as a sequence of time-stamped
snapshots G = {G(t0),G(t1), · · · ,G(tj), · · · ,G(tN )}, where the first snapshot
simply represents the source claim node and further snapshots are added with
each representing the state of the dissemination network when a new node is
connected. Let G(t) =< V(t), E(t) > denote the state of the temporal graph G at
time t, where V(t) = {c,v1,v2, . . . ,vj , . . . ,vN(t)}, with N(t) being the number
of nodes to have directly or indirectly interacted with the claim c as of time
t. A new graph snapshot G(tj+1) is generated when a node vj+1 is added to
the sequence of social engagements. The graph structure of an exemplary false
claim’s dissemination tree is demonstrated in Figure 1.

Fig. 1. Graph representation of source claim dissemination tree, where nodes represent
interaction events such as comments and retweets.

4 Model Description

With the temporal evolution of the propagation graph G(t), new engagement
nodes will establish edges with existing nodes and thus update the graph. To
capture both geometric and temporal propagation features, we view the addition
of new engagement nodes as the chronological events and develop a temporal
point process that generates node embeddings of the dynamic graph G(t).

4.1 Propagation by Temporal Point Processes
A temporal point process (TPP) is a stochastic process that is realised as a list
of discrete events in the continuous time domain t ∈ R+. TPPs usually rely on
an intensity function, which is defined as the probability of the occurrence of an
event in an infinitesimal time interval [22], to describe the temporal dynamics.
They have been used to model dynamic graphs in [10,17,25].

In our propagation graph use-case, the timestamped event sequence comprises
static graph snapshots. This static propagation graph represents the final state of
the misinformation dissemination tree. Symbolically, S = {(xj , tj)}Nj=1, where xj

are the event features (previously node features) and tj is the timestamp of the
jth event in the sequence S. Intuitively, the added edge ei,j between the source
node vi and the new node vj are influenced by not only vi and vj , but also
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the history nodes of vi. With this assumption, we define the intensity function
associated with adding the new edge ei,j as,

λi,j(t) = g(xi,xj) +
∑
i′∈Hi

αi′j(t)f(xi′ ,xj)κ(t− ti′). (1)

where Hi contains history events of the node i. The function g(·) calculates the
affinity between two nodes, which is implemented as a bilinear interaction with
the trainable parameter W1,i.e., f(xi,xj) = xi ∗W1 ∗xj . A non-linear activation
ReLU is used to define the base intensity g(·) = ReLU(f(·)).

The influence from history nodes are measured via the self-attention mecha-
nism as proposed in [21,22]. For history nodes before time t, we calculate attention
weight for each node,

αi′j =
exp(f(xi′ ,xj))∑

k∈Hi exp(f(xk,xj))
. (2)

With the intensity function, we derive the probability of having a new node
vj following an existing node vi at the timestamp t,

p
(
vi,vj | Hi(t)

)
=

λi,j(t)∑
i′∈Hi(t) λi′,j(t)

. (3)

The objective function to minimize is the negative log-likelihood of all the events
in the sequence, LTPP = −

∑
t∈T

∑
(vi,vj ,t)∈E log p

(
vi,vj | Hi(t)

)
. Negative

sampling is used to generate non-existing edges in the objective function as done
in [9], so that the learnt node embeddings are able to distinguish which two nodes
are connected and which two are not, i.e., the geometric structure. Maximizing
the intensity at occurrence timestamps while minimizing the intensity otherwise
will enforce the node embeddings to capture temporal dynamics.

4.2 Predictive Task
Macro-dynamics describe the evolution pattern of the network scale. We assume
the network scale can be described with a certain dynamics equation. Given a
dynamic graph G, we have the cumulative number of nodes N(t) by timestamp
t. We empirically find that N(t) increases in a power law, which is presented
in Section 5. To approximate the power law, we define the following predictive
equation

N̂(t) = Nmax ∗ (1− α ∗ exp(−β ∗ t)), (4)

where Nmax, α and β are learnable parameters. Nmax is the maximum number
of nodes that this graph will contain while α and β control how fast the graph
scale will increase. Predictive loss is measured by LPred = (N(t)− N̂(t))2.

4.3 Veracity Classification

We have designed a temporal point process to capture the geometric struc-
ture and temporal evolution of the propagation graph. With node embed-
dings, we obtain the graph embedding by concatenating the mean pooling
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and the maximum pooling of all nodes as well as the source claim being ver-
ified, xG = [MeanPool(S)||MaxPool(S)||c] . The graph embedding is then
concatenated by parameters in predictive tasks, i.e., x = [xG||Nmax||α||β].
The veracity prediction is conducted by a Multi-Layer Perceptron (MLP) ŷ =
softmax (ReLU (W2x+ b)) , where W2 and b are trainable parameters. And
the classification loss is calculated by cross-entropy: LMLP = −y log (ŷ1)− (1−
y) log (1− ŷ0) . We take the weighted sum of the TPP loss, predictive loss and
the MLP loss as the final loss function L = LTPP + ω1 ∗ LPred + ω2 ∗ LMLP .

5 Experiments

Table 1. Statistics of the used datasets.
Twitter 15 Twitter 16

# Source Tweets 742 412
# True 372 205
# False 370 207
# Users 190,868 115,036
avg. retweet per story 292.19 208.70

We use two Twitter datasets [12],
i.e., Twitter15 and Twitter16, in
the experiments. Each dataset has
a collection of stories with a source
tweet being verified and a sequence
of its retweets. We pick “True” and
“False” source tweets to make the
experimental datasets, and split
the dataset into training, valida-
tion and test sets with 70%, 10%
and 20% respectively. We train the model with the training set, tune hyperpa-
rameters with the validation set and report performance on the test set. We crawl
user information according to their user IDs via Twitter API.

As we set out to tackle the misinformation detection task, we compare our
model with state-of-the-art baselines. RFC [5] is a random forest model with
features from the source tweets and engaged user profiles. CRNN [7] combines
convolutional neural networks and recurrent neural networks to extract features
from engaged users and retweet texts. CSI [15] incorporates relevant articles and
analyses the group behaviour of engaged users. dEFEND [16] uses a co-attention
mechanism to study the source claims and user features. The graph-based baseline
GCAN has been explained in Related Works.

6 Results and Analysis

To demonstrate the dissemination trends of true and false claims, we plotted
the mean number of nodes within temporal graphs associated with each veracity
classification at 5 minute time intervals for the first 200 minutes following a
source Tweet’s posting time. In Figure 2, we make three interesting observations.
(1) Both claim veracity types exhibit a similar power-law trend of plateauing
gradient. (2) Contrary to much of the misinformation literature, which suggests
that fake news spreads faster than true news [18], within our datasets, true news
stories spread faster and reach more users on average. (3) There is a far greater
disparity between the mean spreading plots in the Twitter16 dataset than there is
in the Twitter15 dataset. This would indicate that it is easier to extract temporal
features that are consistent within a given veracity classification in Twitter16.
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Fig. 2. Plots of average number of nodes comprising a dissemination tree with respect
to time from the moment of source claim publication. The left is Twitter15 while the
right is Twitter16. The solid curves follow the power law approximation.

Table 2. Test results on the two experimental datasets.

Twitter15 Twitter16
Model F1 Recall Precision Accuracy F1 Recall Precision Accuracy
RFC 0.4642 0.5302 0.5718 0.5385 0.6275 0.6587 0.7315 0.6620
CRNN 0.5249 0.5305 0.5296 0.5919 0.6367 0.6433 0.6419 0.7576
CSI 0.7174 0.6867 0.6991 0.6987 0.6304 0.6309 0.6321 0.6612
dFEND 0.6541 0.6611 0.6584 0.7383 0.6311 0.6384 0.6365 0.7016
GCAN 0.8250 0.8295 0.8257 0.8767 0.7593 0.7632 0.7594 0.8084
Ours 0.7698 0.7643 0.7754 0.7988 0.7774 0.7741 0.808 0.8453

We show the misinformation detection performance of our model against
state-of-the-art baselines on test subsets. From Table 2, we can tell that we are
able to achieve comparable performance with GCAN. Specifically, we beat GCAN
on the Twitter16 dataset. This can be explained by the fact that Twitter16
displays greater disparity between the mean spreading of true and false claims,
and our model captures such patterns to reach higher performance.

7 Conclusion

This study sets out to detect and forecast misinformation. We model the misinfor-
mation propagation as a continuous-time dynamic graph, and employ Temporal
Point Processes to capture geometric and temporal patterns of the graph. We
also develop a power law equation to forecast the the growth of the graph
scale. Experiments show the effectiveness of our model to achieve state-of-the-art
performance in misinformation detection tasks. Future works will investigate
more comprehensive methods to combine temporal and geometric features for
propagation-based misinformation detection.
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