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An open problem posed by Milner asks for a proof that a certain axiomatisation, which Milner

showed is sound with respect to bisimilarity for regular expressions, is also complete. One of the

main difficulties of the problem is the lack of a full Kleene theorem, since there are automata that can

not be specified, up to bisimilarity, by an expression. Grabmayer and Fokkink (2020) characterise

those automata that can be expressed by regular expressions without the constant 1, and use this

characterisation to give a positive answer to Milner’s question for this subset of expressions. In

this paper, we analyse Grabmayer and Fokkink’s proof of completeness from the perspective of

universal coalgebra, and thereby give an abstract account of their proof method. We then compare

this proof method to another approach to completeness proofs from coalgebraic language theory.

This culminates in two abstract proof methods for completeness, what we call the local and global

approaches, and a description of when one method can be used in place of the other.

1 Introduction

In 1984, Robin Milner gave a non-standard operational interpretation of regular expressions [28], viewing

them as nondeterministic processes rather than regular languages. Comparing them for bisimilarity rather

than language equivalence affects the semantics in two key ways. First, there are finite nondeterministic

processes that do not behave like any regular expression up to bisimilarity (the problem of characterising

those that do was solved first in [3]). This draws a stark contrast with the language semantics of regular

expressions, where Kleene’s theorem gives a one-to-one correspondence between finite automata and

expressions. Second, there are axioms in Salomaa’s complete axiomatisation of the algebra of regular

expressions [31] that are unsound in the process interpretation. Milner offers a modified version of

Salomaa’s axioms and shows that they are sound with respect to bisimilarity. Completeness is left as an

open problem in [28], a full solution to which has yet to appear in the literature.

Several partial solutions to Milner’s problem are known. For instance, by omitting the constants 0

and 1 from the language and replacing the Kleene star with its binary version,1 interpreted as iteration

on its first argument before proceeding with the second, one obtains the calculus introduced in [5]. The

corresponding axiomatisation was shown to be complete with respect to bisimilarity in [11, 12]. Later,

soundness and completeness were shown for the fragments including either (or both) of 0 and 1, but

with a perpetual loop operator (−)ω in place of the star [10]. These partial solutions led up to the recent

paper of Grabmayer and Fokkink [14], which solves the completeness problem for the fragment of 1-

free regular expressions, and so subsumes much of the previous work on the problem. However, what

*Silva’s work was partially supported by ERC grant Autoprobe (grant agreement 101002697) and a Royal society Wolfson

fellowship.
1In fact, Kleene’s original star operation was binary. However, the binary star operation seems to have fallen out of fashion

by the time [31] was written.
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specifically interests us in their work is that it perfectly illustrates a subtle difficulty in completeness

proofs.

Grabmayer and Fokkink’s approach consists of four key parts, as is the case for many related com-

pleteness proofs that go through automata. The first is the production of models from expressions through

the operational semantics. The second is a sort of inverse to the first, a notion of solution to a model in

the class of expressions. The third is the identification of a distinguished class of models that includes the

semantics of the expressions, every member of which admits a unique solution modulo the axioms. This

gives a one-to-one correspondence between models in the distinguished class and expressions modulo

the axioms. The fourth is the ability to combine or reduce and compare models (without leaving the

distinguished class), as well as their solutions.

The last part is subtler than the first three. In a classical proof such as [31], but also in more recent

coalgebraic formulations (e.g., [34, 19]), the distinguished class typically consists of all finite (or locally

finite) automata, and comparing automata consists of finding a bisimulation between them. Bisimulations

between finite automata are trivially finite, so the fourth step is rarely worth mentioning in this situation.

Here, the highest hurdle to clear seems to be the issue of proving that solutions are unique. This is in

stark contrast with the setting of Grabmayer and Fokkink’s paper [14], where the class of models they

consider are the so-called LLEE-charts. The necessity of identifying such a non-trivial class is caused

by the above-mentioned issue that, up to bisimilarity, not all finite processes are characterised by regular

expressions. For LLEE-charts, uniqueness of solutions is not a triviality, but also does not warrant a proof

in the main body of [14].2 In comparison, a great amount of ingenuity is involved in establishing the

fourth of the moving parts mentioned above: The ability to reduce equivalent LLEE-charts to a common

LLEE-chart.

Grabmayer and Fokkink’s solution to this problem is highly innovative and technical, and makes

use of new tools carefully crafted for proving the compositionality result mentioned above. The abstract

view we present here is no replacement for the detailed combinatorial arguments found in [14]. Instead,

the intent of the present paper is to unpack its contents by situating them in the context of universal coal-

gebra. Universal coalgebra is a well-established general framework for state-based systems, subsuming

constructs like bisimilarity and behaviour [30, 20]. We give a coalgebraic spin on some of the results of

[14], strengthening some while simplifying the proofs of others:

• We show that solutions to automata are in one-to-one correspondence with coalgebra homomor-

phisms into the expressions modulo the axioms.

• We elucidate the four moving parts of Grabmayer and Fokkink’s completeness proof mentioned

above and prove that they are sufficient in a general coalgebraic setting.

• We generalise the connect-through-to operation from [14] to a purely coalgebraic construction.

We coin the term rerouting for this construction, and show that a prevalence of reroutings can be

used to establish the fourth moving part of completeness proofs.

• Finally, we give a general account of a related approach to completeness proofs found in [19, 34,

27, 6] and show how the method used by Grabmayer and Fokkink can be restructured to fit this

mould.

Overall, we use the structure of the completeness proof in [14] as a case study in completeness proof

methods from coalgebra that do not rely on a one-to-one correspondence between expressions and all

finite automata. This culminates in two abstract proof methods for completeness, what we call the local

2It appears in the extended version [15].



244 On Star Expressions and Completeness Theorems

and global approaches, and a description of those situations in which the latter method can be used in

place of the former.

The paper is organized as follows: In section 2, we introduce the 1-free fragment of regular expres-

sions in parallel with its coalgebraic aspects. In section 3, we discuss the four moving parts of Grabmayer

and Fokkink’s completeness proof and show that they are sufficient in a general coalgebraic setting. In

section 4, we give an alternative description of LLEE-charts and show how Grabmayer and Fokkink’s

technique for reducing LLEE-charts can be strengthened. It is in this section that we generalize their

connect-through-to operation. Lastly, in section 5, we give a general account of a related approach to

completeness proofs, found in [19, 34, 27, 6], and show how the method used by Grabmayer and Fokkink

can be restructured to fit this mould.

2 Coalgebras and 1-free Star Expressions

For a fixed finite set A of atomic actions, the set of 1-free star expressions, or star expressions for short,

is generated by the BNF grammar

SExp ∋ e, f ::= a ∈ A | 0 | e+ f | e f | e∗ f

The expression e∗ f denotes the regular expression e∗ f from [28], but we write ∗ as an infix to emphasize

that it is a binary operation in this formalism, as in Kleene’s seminal paper [24].

Operationally, each star expression specifies a labelled transition system with outputs in 2A, called

its chart. Following [14], a chart consists of a set of states X , a transition relation
(−)
−−→ ⊆ X ×A×X , an

output relation ⇒ ⊆ X ×A, and a start state x ∈ X from which every other state is reachable via a path

of finite length. We impose the additional assumption that charts are finitely branching, ie. for any x ∈ X

and a ∈ A, x a
−→ y for finitely many y ∈ X .

Where Pω(X) = {U ⊆ X | |U |< ω}, a transition relation is equivalent to a function ∂ : X →Pω(X)A,

an output relation is equivalent to a function o : X → 2A, and they can be given together by a function

〈o,∂ 〉 : X → 2A ×Pω(X)A.

Since 〈o,∂ 〉 says nothing about a start state, we call a pair (X ,〈o,∂ 〉) a prechart.

Precharts fit nicely into the framework of universal coalgebra. For an endofunctor G on the category

Sets of sets and functions, a G-coalgebra is a pair (X ,δX) consisting of a set X of states and a struc-

ture map δX : X → GX . Thus, if P(X) = 2A ×Pω(X)A and P( f : X → Y )(o,h)(a) = (o(a), f (h(a))),
precharts are precisely P-coalgebras. Given a prechart (X ,〈o,∂ 〉), its transition and output relations can

be recovered by writing x a
−→ y to denote y ∈ ∂ (x)(a) and x ⇒ a to denote o(x)(a) = 1.

To obtain a chart from each star expression, Grabmayer and Fokkink begin by giving the set of

star expressions SExp the structure of a prechart. The transitions of SExp are built inductively from the

interpretations of expressions as processes: The constant 0 is deadlock, a ∈ A is the process that performs

the action a and then terminates, e+ f and e f are alternative and sequential composition respectively,

and e∗ f iterates e before executing f . Formally, the transitions and outputs of SExp are those derivable

from the rules in Figure 1.

Given an expression e ∈ SExp, the chart interpretation of e is the smallest subset of SExp containing

e and closed under the transition and output relations. The resulting prechart is denoted 〈e〉, and coincides

with the smallest subcoalgebra of SExp containing e, ie. if U ⊆ SExp contains e and (U,〈oU ,∂U〉) is a
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a ∈ A

a ⇒ a

ei ⇒ a

e1 + e2 ⇒ a

ei
a
−→ f

e1 + e2
a
−→ f

e1 ⇒ a

e1e2
a
−→ e2

e1
a
−→ f

e1e2
a
−→ f e2

e2 ⇒ a

e1 ∗ e2 ⇒ a

e2
a
−→ f

e1 ∗ e2
a
−→ f

e1
a
−→ f

e1 ∗ e2
a
−→ f (e1 ∗ e2)

e1 ⇒ a

e1 ∗ e2
a
−→ e1 ∗ e2

Figure 1: The prechart (SExp,〈oSExp,∂SExp〉).

P-coalgebra such that

U SExp

P(U) P(SExp)

inU

〈oU ,∂U 〉 〈oSExp,∂SExp〉

P(inU )

(1)

commutes, then 〈e〉 ⊆U . In general, a chart is a prechart of the form 〈x〉 for some (X ,〈o,∂ 〉) with x ∈ X .

In coalgebraic terminology, (1) states that the set U carries a P-coalgebra structure such that the

inclusion of U into SExp is a P-coalgebra homomorphism. For a general endofunctor G on Sets, a G-

coalgebra homomorphism from (X ,δX) to (Y,δY ) is a map h : X → Y such that δY ◦h = G(h) ◦ δX . We

write X ∼=Y if there is a bijective coalgebra homomorphism X →Y , and say that X and Y are isomorphic.

Homomorphisms coincide with the standard notion of functional bisimulation.

Lemma 2.1. A function h : X → Y between precharts is a coalgebra homomorphism if and only if for

any x ∈ X, y′ ∈ Y , and a ∈ A, (i) x ⇒ a if and only if h(x) ⇒ a, and (ii) h(x) a
−→ y′ if and only if there is

an x′ ∈ X such that h(x′) = y′ and x a
−→ x′.

Bisimulation can also be captured coalgebraically. For a general endofunctor G, a bisimulation be-

tween two coalgebras (X ,δX) and (Y,δY ) is a relation R ⊆ X ×Y carrying a coalgebra structure (R,δR)
such that the projection maps π1 : R → X and π2 : R → Y are G-coalgebra homomorphisms. It follows

from Lemma 2.1 that a relation R ⊆ X ×Y between precharts is a bisimulation if and only if for any

(x,y) ∈ R and a ∈ A, (i) x ⇒ a if and only if y ⇒ a; (ii) if x a
−→ x′, then there is a y′ ∈ Y such that

(x′,y′) ∈ R and y a
−→ y′; and (iii) if y a

−→ y′, then there is an x′ ∈ X such that x a
−→ x′ and (x′,y′) ∈ R. Con-

versely, a map h is a coalgebra homomorphism if and only if its graph Gr(h) = {(x,h(x)) | x ∈ X} is a

bisimulation. If there is a bisimulation R relating x ∈ X and y ∈Y , we say x and y are bisimilar and write

x ↔ y. Restricted to a single coalgebra, ↔⊆ X ×X is a bisimulation equivalence, a bisimulation that is

also an equivalence relation.

Within SExp, bisimilarity satisfies a number of intuitive equivalences, keeping in mind the interpre-

tation of star expressions as processes. For instance, 0e ↔ 0 and e+ f ↔ f + e for any e, f ∈ SExp.

These are captured by two of the axioms suggested by Milner in [28], appearing as (B7) and (B1) in

Grabmayer and Fokkink’s adaptation of Milner’s axioms to star expressions summarised in Figure 2. We

define ≡ to be the smallest congruence relation on SExp containing the pairs e ≡ f found in Figure 2.

In general, an equivalence relation ≡ on the state space of a G-coalgebra E is sound with respect

to bisimilarity if ≡ is a bisimulation equivalence, and complete with respect to bisimilarity if e ≡ f

whenever e ↔ f . The following theorem says that the axioms in Figure 2 build a sound equivalence

relation on SExp.

Theorem 2.1. The relation ≡⊆ SExp×SExp is a bisimulation equivalence on SExp.
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(B1) e1 + e2 ≡ e2 + e1

(B2) e1 +(e2 + e3) ≡ (e1 + e2)+ e3

(B3) e1 + e1 ≡ e1

(B4) (e1 + e2)e3 ≡ e1e3 + e2e3

(B5) e1(e2e3) ≡ (e1e2)e3

(B6) e1 +0 ≡ e1

(B7) 0e1 ≡ 0

(BKS1) e1 ∗ e2 ≡ e1(e1 ∗ e2)+ e2

(BKS2) (e1 ∗ e2)e3 ≡ e1 ∗ (e2e3)

(RSP)
e3 ≡ e1e3 + e2

e3 ≡ e1 ∗ e2

Figure 2: A sound and complete axiomatisation [14]. Here, e1,e2,e3 ∈ SExp.

The role that bisimulation equivalences play in coalgebra is analogous to the role that congruences

play in algebra. The kernel ker(h) = {(x,x′) ∈ X ×X | h(x) = h(x′)} of any coalgebra homomorphism

h is a bisimulation equivalence,3 and every bisimulation equivalence R is the kernel of some coalgebra

homomorphism X → X/R [30]. By Theorem 2.1, the set SExp/≡ of star expressions modulo prov-

able equivalence is itself a P-coalgebra, and the quotient map [−]≡ : SExp → SExp/≡ is a coalgebra

homomorphism.

2.1 Linear Systems and Solutions

Starting with an expression e ∈ SExp, obtaining a prechart X with a state x ∈ X such that e ↔ x is only a

matter of computing 〈e〉. However, going from a prechart X and a state x ∈ X to an expression e ∈ SExp

such that e ↔ x is more difficult (and in fact, is not always possible). The following theorem hints at a

method for doing so.

Theorem 2.2. Let e ∈ SExp. Then e ≡ ∑
e⇒a

a+ ∑
e

a
−→ f

a f , where ∑
n
i=1 ei = e1 +(∑n

i=2 ei).
4

Given a finite prechart (X ,〈o,∂ 〉), its corresponding linear system is the set of equations

x = ∑
x⇒a

a+ ∑
x

a
−→x′

ax′ (2)

indexed by X , where we are thinking of each x ∈ X as an indeterminate. A solution to the linear system

associated with X is a map s : X → SExp such that

s(x) ≡ ∑
x⇒a

a+ ∑
x

a
−→x′

a s(x′) (3)

for all x ∈ X . Composing a solution s with the homomorphic image homomorphism [−]≡ : SExp →
SExp/≡, (3) becomes the equation

[s(x)]≡ = ∑
x⇒a

a+ ∑
x

a
−→x′

a [s(x′)]≡ (4)

It follows from (4) that {(x, [s(x)]≡) | x ∈ X} is a bisimulation between X and SExp/≡. Since this is

the graph of the map [−]≡ ◦ s, if s : X → SExp is a solution, then [−]≡ ◦ s : X → SExp/≡ is a coalgebra

3Actually, this is only true if G preserves weak pullbacks. This is a common assumption, however, and holds for each of the

concrete functors we consider here.
4Here, the generalised sum on the left is well-defined up to the commutativity and associativity of + assumed in Figure 2.
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homomorphism. Conversely, if [−]≡◦s is a homomorphism, then (4) holds. As (3) and (4) are equivalent,

we obtain:

Lemma 2.2. A map s : X → SExp is a solution iff [−]≡◦s : X → SExp/≡ is a coalgebra homomorphism.

We often identify solutions with their corresponding homomorphisms into SExp/≡.

3 A Local Approach

In the previous section, we observed that the axioms in Figure 2 are sound with respect to bisimilarity, and

that solutions from [14] coincide with coalgebra homomorphisms into SExp/≡. In loc. cit., Grabmayer

and Fokkink show that the axiomatisation in Figure 2 is complete with respect to bisimilarity: that e ≡ f

whenever e ↔ f , for any e, f ∈ SExp. Next, we give an abstract description of Grabmayer and Fokkink’s

approach to proving soundness and completeness, which we call the local approach, and compare it to

an approach found in classical automata theory. Grabmayer and Fokkink’s approach can essentially be

organized into four steps.

Step 1 is to show that the provable equivalence relation ≡ is a bisimulation equivalence. This is the

content of Theorem 2.1 from section 2, and establishes soundness.

Step 2 is to identify a class C of precharts such that for any e ∈ SExp, 〈e〉 ∈ C.

Step 3 is to show that for any X ∈ C, there is a unique homomorphism X → SExp/≡. By Lemma 2.2,

homomorphisms into SExp/≡ are identifiable with solutions, so this is the same as saying that

precharts in C admit unique solutions.

Step 4 is to show that C is closed under binary coproducts and bisimulation collapses. That is, for any

X ,Y ∈ C, we find X ⊔Y ∈ C and X/↔∈ C as well.

It should be noted that Grabmayer and Fokkink never explicitly show that their class C is closed under

binary coproducts, due to their focus being on charts, which do not have this property. Thus, the four

steps above are a coalgebraic rephrasing of their approach that requires the introduction of coproducts.

However, the coalgebraic analogue of Grabmayer and Fokkink’s distinguished class of models is easily

seen to be closed under binary coproducts, as we will see in section 4.

The four steps above are sufficient for showing soundness and completeness of an axiomatisation of

bisimilarity in general. In fact, we can even replace step 4 with a weaker version:

Step 4 is to show that C is collapsible, ie. for any X ,Y ∈ C and any x ∈ X and y ∈ Y such that x ↔ y,

there is a Z ∈ C and a pair of homomorphisms p : X → Z and q : Y → Z such that p(x) = q(y).

Steps 1-4 constitute the local approach, leading to soundness and completeness via the following theo-

rem.

Theorem 3.1. Let ≡ be a bisimulation equivalence on a fixed G-coalgebra E, and C be a collapsible

class of G-coalgebras containing 〈e〉 for each e ∈ E. If there is exactly one homomorphism X → E/≡
for every G-coalgebra X ∈ C, then e ≡ f if and only if e ↔ f for any e, f ∈ E.

A class of G-coalgebras that is closed under binary coproducts and bisimulation collapses is col-

lapsible: If X and Y are in the class, and x ↔ y for some x ∈ X and y ∈ Y , let Z = (X ⊔Y )/↔ and take

p= [−]↔◦ inX and q= [−]↔◦ inY . Here, inX : X →֒ X ⊔Y is the inclusion of X into the coproduct X ⊔Y ,

and similarly for inY , and [−]↔ : X ⊔Y ։ Z is the bisimulation collapse homomorphism. Because x ↔ y

in X ⊔Y , p(x) = q(y), from which collapsibility follows.
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Steps 1 through 3 of the local approach should be familiar to readers acquainted with equational ax-

iomatisations in classical automata theory. Some aspects of the soundness and completeness theorems of

regular algebra can be seen to trace each of the first three steps above. Since two states of a deterministic

automaton are bisimilar if and only if they recognize the same language, one could reasonably expect that

the local approach to proving soundness and completeness, of any one of the existing axiomatisations of

language equivalence for regular expressions, should be successful.

Kleene proved in [24] that a language is regular if and only if it is recognized by a state in a determin-

istic finite automaton (or DFA). This motivates choosing DFAs as the distinguished class of coalgebras.

This trivializes step 4, as finiteness is preserved under binary coproducts and bisimulation collapses.

Thus, the central difficulties surpassed in the first completeness proofs of regular algebra lay in step

3 [31, 25].

Although all four steps had been taken, neither of the completeness proofs in [31, 25] conclude

with an observation like Theorem 3.1. Instead, bisimulations between DFAs are treated as DFAs, and

solutions are pulled back across projection homomorphisms. As Grabmayer and Fokkink point out in

[14], this use of bisimulations does not translate to the case of 1-free regular expressions. This is due to

the fact that the distinguished class C, consisting of the precharts for which they could prove the existence

and uniqueness of solutions, does not include every bisimulation between precharts in C. This is where

the need for collapsibility becomes apparent.

Comparing the difficulties in Salomaa’s approach with the difficulties in Grabmayer and Fokkink’s

approach reveals a crucial aspect of discovering soundness and completeness theorems in general: When

choosing a distinguished class of models C, there is a balance to be kept between the difficulty of finding

solutions to models in C and proving their uniqueness on the one hand, and ensuring desirable structural

qualities of C on the other. Salomaa circumvented the difficulties of steps 2 and 4 by including every

finite automaton in his distinguished class, but this made step 3 a difficult problem. Grabmayer and

Fokkink were able to take step 3 and prove uniqueness of solutions for precharts in their distinguished

class with relative ease, but step 4 took great ingenuity.

4 Layered Loop Existence and Elimination

Grabmayer and Fokkink prove that Milner’s axioms are complete with respect to bisimilarity for the

1-free fragment by modelling star expressions with charts. They single out a specific class of charts,

namely those satisfying their layered loop existence and elimination property, or LLEE-property for

short. Roughly, a prechart is said to satisfy the LLEE-property if there is a labelling of its transitions

by natural numbers such that an edge descending into a loop accompanies a descent in natural number

labellings, and such that no successful termination can occur mid-loop. The existence of such a labelling

ensures that loops are never mutually nested, and requires threads to finish every task in a loop before

termination. Every chart interpretation of a star expression has the LLEE-property, and every prechart

with the LLEE-property admits a unique solution.

In this section, we discuss a coalgebraic version of Grabmayer and Fokkink’s distinguished class of

models, the class of so-called LLEE-precharts, and review the proof of its collapsibility. As it so happens,

a slight variation of Grabmayer and Fokkink’s proof of collapsibility shows something much stronger:

That the class of finite LLEE-precharts is closed under arbitrary homomorphic images. The main tool

used in the proof of collapsibility is the connect-through-to operation, which preserves bisimilarity while

it identifies bisimilar states. We generalize Grabmayer and Fokkink’s connect-through-to operation, and

show that it can be used to establish closure under homomorphic images in general.
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4.1 Well-layeredness

We give an equivalent but different characterisation of LLEE-precharts that makes them easier to describe

coalgebraically, and rename the property well-layeredness. While we recall all of the necessary details,

much of what is covered here can be found in more detail in [14].

A simple but interesting observation about well-layeredness is that it makes no reference to the action

labels of a prechart. In other words, well-layeredness is really a property of transition systems with output

(transition systems for short), coalgebras for the endofunctor 2×Pω(−).
A well-layered transition system is a transition system that carries a particular labelling, called an

entry/body labelling, that satisfies a few extra conditions. Here, an entry/body labelling of a transition

system (X ,〈o,∂ 〉) is a coalgebra (X ,〈o,∂ •〉) for the endofunctor 2×Pω({e,b}× (−)) such that ∂ (x) =
π2(∂

•(x)) for any x ∈ X . We typically denote an entry/body labelling of a transition system X with X•.

To state the extra conditions on the labellings that define well-layeredness, we need some notation.

Given an entry/body labelling X• = (X ,〈o,∂ •〉), the following glyphs are used to denote its various

transition types: For any x,y ∈ X , x ⇒ means o(x) = 1, x→e y means (e,y) ∈ ∂
•(x), and x →b y means

(b,y) ∈ ∂
•(x). Furthermore, x y y means

(∃v1, . . . ,vk) x→e v1 →b · · · →b vk →b y, x 6∈ {v1, . . . ,vl ,y}

and y ü x means

(∃v1, . . . ,vk) x→e v1 →b · · · →b vk →b x, y ∈ {v1, . . . ,vl}, x 6∈ {v1, . . . ,vl}.

Transitions of the form x→e y and x →b y are called entry and body transitions, respectively. We enclose

a relation in (−)+ or (−)∗ to denote its transitive or transitive-reflexive closure respectively.

Definition 4.1. A layering witness is an entry/body labelling X• that is

1. locally finite, meaning that 〈x〉 is finite for all x ∈ X ;

2. flat, meaning that x→e y implies ¬(x →b y) for all x,y ∈ X ;

3. fully specified, meaning that for all x,y ∈ X ,

(a) ¬(x →+
b

x) and

(b) if x→e y for some y 6= x, then y →+ x.

4. layered, meaning that the directed graph (X ,y) is acyclic; and

5. goto-free, meaning that x y y implies ¬(y ⇒), for all x,y ∈ X .

A transition system is well-layered if it is the underlying transition system of a layering witness.

Every prechart (X ,〈o,∂ 〉) also comes with an underlying transition system X = (X ,〈o,∂ 〉), given by

o =
∨

a∈A

o(a) ∂ (x) =
⋃

a∈A

∂ (x)(a)

for any x ∈ X . A layering witness for a prechart is a layering witness for its underlying transition system,

and a prechart is said to be well-layered if it has a layering witness.

Remark 4.1. Every bisimulation R between precharts X and Y carries an underlying bisimulation R

between the transition systems X and Y . However, not every bisimulation between X and Y lifts to

a bisimulation between X and Y : Such relations ignore action labels in general, while bisimulations

between precharts do not.
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Remark 4.2. It can be checked that the underlying transition system of a locally finite prechart X is

well-layered if and only if X has an LLEE-witness [14]. To obtain an LLEE-witness from a layering

witness, replace each x→e y with a weighted transition x
[|x|en ]
−−−→ y, where

|x|en = max{m ∈ N | (∃x1, . . . ,xm) x y x1 y · · ·y xm s.t. x 6= xi 6= x j for i 6= j}

and each x →b y with x
[0]
−→ y. This is a well-defined translation because we have assumed that 〈x〉 is

finite and (〈x〉,y) is acyclic. To obtain a layering witness from an LLEE-witness, replace each x a
−→[n] y

by x→e y if n > 0 and y →+ x, or by x →b y otherwise. This entry/body labelling is flat because every

resulting entry transition appears in a minimal cycle, and every minimal cycle contains precisely one

entry transition by (W1) and (W2)(b) from [14]. Each of the remaining conditions are by construction,

or are a direct consequence of the LLEE-witness conditions. For example, full specification follows from

(a) local finiteness and (W1) in loc. cit., and (b) our assumption that x→e y implies y →+ x for all

x,y (see [33, Proposition C.1]).

By restricting a layering witnesses X• to a subcoalgebra U of X , one obtains a layering witness U•

for U . It follows from this observation and the lemma below that 〈e〉 is well-layered for any 1-free star

expression e.

Lemma 4.1. The prechart SExp is well-layered.

This completes Step 2 from section 3: Where C is the set of finite well-layered precharts, we find

〈e〉 ∈ C for any e ∈ SExp. For a concrete example, let f = (ab) ∗ (ba) and e = f ∗a, where a,b,c ∈ A.

The prechart 〈e〉 is depicted below along with a layering witness.

eae (b f )e

a

c

b

a a

b

eae (b f )e

It is important to note that not every well-layered prechart has a unique layering witness. The prechart

〈(aa)∗0〉, for example, has exactly two.

4.2 Existence and uniqueness of solutions

Steps 1 and 2 consisted of showing that ≡ is a bisimulation equivalence and 〈e〉 is a well-layered prechart

for each e ∈ SExp. To complete step 3 of the local approach, Grabmayer and Fokkink give an explicit

description of a solution to a chart X = 〈v〉 with layering witness X•, and show that it is equivalent to any

other solution to X . For any x ∈ X , let

sX(x) ≡











∑
x

a
−→e

x

a+ ∑
x

a
−→e

y
x6=y

a tX(y,x)











∗



∑
x⇒a

a+ ∑
x

a
−→b

y

a sX (y)



 (5)
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where

tX(x,z) ≡











∑
x

a
−→e

x

a+ ∑
x

a
−→e

y
x6=y

a tX(y,x)











∗



∑
x⇒a

a+ ∑
x

a
−→b

y

a tX(y,z)





Both functions are well-defined by induction on the pair (|x|en, |x|b), where |x|en is given in Remark 4.2

and |x|b = max{m | (∃x1, . . . ,xm) x →b x1 →b · · · →b xm}, with respect to the lexicographical ordering

on N×N.

It is shown in [14] that for any solution s : X → SExp, s(x) ≡ sX(x) for all x ∈ X . This proves

that well-layered charts have unique solutions. The same result readily extends to the prechart case:

If X is an arbitrary well-layered prechart and x ∈ X , then s〈x〉(x) is a well-defined expression, as 〈x〉 is

a subcoalgebra of X and is therefore also well-layered. By uniqueness of solutions for charts, the map

sX : X → SExp given by sX(x) = s〈x〉(x) is a well-defined solution to X . Furthermore, since every solution

to X restricts to a solution to 〈x〉 for each x ∈ X , sX is the unique solution to X .

Lemma 4.2. If X is a well-layered prechart, then there is a unique solution sX : X → SExp/≡ to X.

4.3 Reroutings and Closure under homomorphic images

The crucial step in Grabmayer and Fokkink’s proof is step 4 of the local approach, showing that the

bisimulation collapse of a finite well-layered chart is also well-layered. This is done in a step-by-step

procedure that exhaustively identifies bisimilar states. In each step, a specially chosen pair (w1,w2) of

distinct bisimilar states is reduced to the singleton w2 by rerouting all of w1’s incoming transitions to w2

and then deleting w1.

Formally, given a prechart (X ,〈o,∂ 〉) and a pair (x1,x2) of distinct states of X , the connect-x1-

through-to-x2 construction returns the prechart X [x2/x1] = (X −{x1},∂ [x2/x1]), where

∂ [x2/x1](x)(a) =

{

{x2}∪ (∂ (x)(a)−{x1}) if x1 ∈ ∂ (x)(a),

∂ (x)(a) otherwise

The connect-x1-through-to-x2 operation preserves bisimilarity, in the sense that if R is a bisimulation

equivalence on X , then R ∩ (X ×X −{x1}) is a bisimulation between X and X [x2/x1]. This has the

following consequence: If the only pairs of distinct states in R are (x1,x2) and (x2,x1), then R1 =R∩(X×
X −{x1}) is the graph of a homomorphism between X and X [x2/x1], and consequently X [x2/x1]∼= X/R.

Otherwise, R|X−{x1} = R∩ (X −{x1})
2 is a bisimulation equivalence containing a pair of distinct states

(x3,x4). If (x3,x4) and (x4,x3) are the only such pairs, then R2 = R|X−{x1} ∩ (X −{x1}×X −{x1,x3})
is the graph of a homomorphism X [x2/x1] → X [x2/x1][x4/x3], and therefore R1 # R2 = R ∩ (X × X −
{x1,x3}) is the graph of a homomorphism X → X [x2/x1][x4/x3], where # denotes relational composition,

and X [x2/x1][x4/x3] ∼= X/R. Generally, if X is finite, then iterating this construction yields the graph

R1 # · · · # Rm (for some m) of the homomorphism X → X/R (up to ∼=). Taking R =↔, the bisimulation

collapse of a finite prechart X can be computed by iterating the connect-through-to operation until no

distinct pairs of bisimilar states are left.

For an arbitrary well-layered prechart X and a pair of distinct bisimilar states (x1,x2), X [x2/x1] may

not be well-layered. An example discussed in [14] is the connect-through-to construction depicted in

Figure 3, which takes a well-layered chart to a chart that does not admit a layering witness.
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x2 v v′ x1 x2 v v′

X• X [x2/x1]

Figure 3: A bisimulation rerouting that does not preserve well-nestedness.

However, if (x1,x2) is chosen carefully, then the connect-x1-through-to-x2 operation preserves well-

layeredness. Where X• is a layering witness for X , it is shown in [14] that X [w2/w1] is well-layered for

any pair (w1,w2) of distinct bisimilar states satisfying one of the following three conditions in X•:

(C1) ¬(w2 →
∗ w1); and if (∃x) x y w1, then ¬(∃y)(w2 →

∗ y ⇒)
(C2) w2 ü

+ w1

(C3) ¬(w2 →
∗
b

w1); and (∃x) w1 ü x and w2 ü
+ x and if w1 ü y, then x ü y

As Grabmayer and Fokkink point out in loc. cit., if X• is a layering witness for a finite prechart X such

that X 6∼= X/↔, then there is a pair (w1,w2) of distinct bisimilar states satisfying one of (C1)-(C3) in X•.

A slight variation on their proof yields the following.

Lemma 4.3. Let X• be a layering witness for X, and R be a bisimulation equivalence on X. If R is

non-trivial, ie. X 6 ∼=X/R, then there is a pair (w1,w2) ∈ R of distinct states satisfying one of (C1)-(C3).

By iterating the connect-through-to construction on the pairs guaranteed to exist in Lemma 4.3, every

homomorphic image of a finite well-layered prechart is seen to be well-layered.

Theorem 4.1. Let X be a finite well-layered prechart, and R be a bisimulation equivalence on X. Then

X/R is a well-layered prechart as well.

This completes step 4 of Grabmayer and Fokkink’s proof that Milner’s axioms are complete with

respect to bisimilarity for the 1-free fragment of regular expressions.

Theorem 4.2. For any e, f ∈ SExp, if e ↔ f , then e ≡ f .

Proof. Let C be the set of finite well-layered precharts. Lemma 4.1 tells us that 〈e〉 ∈ C for any e ∈ SExp,

and Theorem 4.2 tells us that precharts in C admit unique solutions.

By Theorem 3.1, it suffices to show that C is collapsible. We have already seen that a class of

coalgebras closed under binary coproducts and homomorphic images is collapsible, so by Theorem 4.1

it suffices to show that C is closed under binary coproducts. To this end, observe that if X• and Y • are

layering witnesses for X and Y respectively, then X•⊔Y • is a layering witness for X ⊔Y .

4.4 Reroutings, in general

Interestingly, the connect-through-to construction can be performed on general G-coalgebras. For a fixed

prechart X and a pair of states x1,x2 ∈ X , if i : X −{x1} →֒ X is the inclusion map and j : X ։ X −{x1}
is the map identifying x2 with x1, then the prechart X [x2/x1] = (X −{x1},〈o,∂ [x2/x1]〉) obtained from

the connect-x1-through-to-x2 construction is given precisely by

∂ [x2/x1](x)(a) = j(∂ (x)(a)) = Pω( j)◦∂ ◦ i(x)(a).
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In other words, the following diagram commutes.

X −{x1} X

2×Pω(X −{x1}) 2×Pω(X)A

〈o,∂ [x2/x1]〉

i

〈o,∂ 〉

id2 ×Pω ( j)A

Notice that (i, j) is a splitting, meaning j ◦ i = idX−{x1}. In general, given any G-coalgebra X and any

splitting (i, j) with i : U →֒ X , we define

X [i, j] = (U,G( j)◦d ◦ i),

and call X [i, j] the rerouting by (i, j) of X . As is the case for the connect-through-to operation, reroutings

that identify bisimilar states preserve bisimilarity.

Lemma 4.4. Let R be a bisimulation equivalence on a prechart X, and (i, j) be a splitting with i : U →֒ X

and ker( j)⊆ R. Then Q = R∩ (X ×U) is a bisimulation.

A rerouting X [i, j] is called an R-rerouting if R is a bisimulation and ker( j)⊆ R. In case R =↔, we

will use the phrase bisimulation rerouting instead.

A common assumption in universal coalgebra is that the endofunctor G under consideration preserves

weak pullbacks [30, 16]. This property is sufficient for ensuring that the relational composition of two

bisimulations is again a bisimulation. In general, if R is an equivalence on X , and Z ⊆ Y ⊆ X , then

R∩ (X ×Z) = (R∩ (X ×Y )) # (R∩ (Y ×Z)) and R∩ (Y ×Y ) is an equivalence relation. Thus, by iterating

Lemma 4.4, we obtain the following generalisation of Theorem 4.1.

Theorem 4.3. Let G be an endofunctor that weakly preserves pullbacks, and C be a class of finite G-

coalgebras closed under isomorphism. Then the following two statements hold.

1. If for any X ∈ C and any nontrivial bisimulation equivalence R ⊆ X × X there is a nontrivial

R-rerouting U of X such that U ∈ C, then C is closed under homomorphic images.

2. If for any X ∈ C such that X 6∼= X/↔ there is a nontrivial bisimulation rerouting U of X such that

U ∈ C, then C is closed under bisimulation collapses.

As closure under bisimulation collapses is often enough to establish collapsibility, Theorem 4.3 tells

us that establishing an abundance of reroutings in the distinguished class can be a crucial step towards

completeness.

5 A Global Approach

We now discuss a different approach to proving soundness and completeness theorems in process al-

gebra, which we call the global approach, and show how the soundness and completeness theorems of

[14] fit in this setting. Fitting Grabmayer and Fokkink’s proof into the mould of the global approach

involves expanding the class of finite well-layered precharts to a much larger class that is closed under

homomorphic images. We further show how the same remoulding technique can remould many local

approach proofs into global ones.

The global approach originates in coalgebraic automata theory [19, 34, 35, 27, 6]. Its main goal

is to show that the expression language modulo provable equivalence is isomorphic to a subcoalgebra

of a final coalgebra. For example, in [19], Jacobs proves that the Kleene algebra axioms (see [25, 9])
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are sound and complete with respect to language equivalence by exhibiting a coalgebra isomorphism

between the initial Kleene algebra and the algebra of regular languages. The coalgebras that appear in

Jacobs’ paper are a standard choice for deterministic automata, the 2× (−)A-coalgebras. This estab-

lishes the soundness and completeness of the Kleene Algebra axioms because bisimilarity and language

equivalence coincide. Silva successfully applies the same method in [34] to a variety of expression lan-

guages and axiomatisations parametrized by the functor G, with Jacobs’ proof given by the special case

G = 2× (−)A. Following the same pattern, Milius gives an expression language and axiomatisation of

language equivalence for stream circuits in [27], and generalizes some of the results in [34] to endofunc-

tors on categories other than Sets. Following a similar approach, all three of the above are unified in

[6].

In order to explain precisely how the global approach works, fix a G-coalgebra E , thought of as an

abstract expression language, and let ≡ be an equivalence relation on E . Similar to the local approach,

the global approach involves a sequence of four steps:

Step 1 is showing that ≡ is a bisimulation equivalence. This establishes soundness.

Step 2 consists of identifying a class C of G-coalgebras in which E/≡ is weakly final in C, ie. that

E/≡∈ C and every X ∈ C admits a homomorphism X → E/≡. Again, homomorphisms into E/≡
play the role of solutions, so it can be said that coalgebras in C admit solutions.

Step 3 is a proof that E/≡ is final in C, ie. every X ∈ C admits exactly one solution.

Step 4 consists of showing that C is closed under homomorphic images.

These four steps are sufficient for showing the soundness and completeness of the axiomatisations in

each of the cases considered in [19, 34, 35, 27, 6] because the functors that are present there satisfy two

key properties. The first key property is that there is a G-coalgebra Z that is final, ie. every G-coalgebra

X admits a unique homomorphism !X : X → Z. Following the steps above, this implies that E/≡ is a

subcoalgebra of Z.

Lemma 5.1. Assume that a final G-coalgebra exists, and call it Z. If C is closed under homomorphic

images and has a final object Y , then !Y : Y → Z is injective.

Proof. Where !Y : Y → Z is the unique coalgebra homomorphism from Y into Z, let J = !Z(Y ). The

image of a coalgebra homomorphism is always a subcoalgebra of the codomain [30], so J ∈ C by closure

under homomorphic images. Since Y is final in C, J admits a unique coalgebra homomorphism h : J →Y .

Composing, h◦ !Y : Y → Y is a homomorphism, so finality of Y in C tells us that h◦ !Y = idY . As !Y has

a left inverse, it is injective.

This means that if every X ∈ C admits a unique solution and C is closed under homomorphic images,

then [e]≡ = !E(e) for any e ∈ E .5 The second key property is preservation of weak pullbacks.

Lemma 5.2 (Rutten [30]). Let X and Y be G-coalgebras, x ∈ X, and y ∈ Y . Assume that a final G-

coalgebra exists. If G preserves weak pullbacks, then x ↔ y if and only if !X(x) = !Y (y).

Following steps 1 through 4 above, and assuming that G has a final coalgebra and preserves weak

pullbacks, Lemmas 5.1 and 5.2 tell us that [e]≡ = !E(e) = !E( f ) = [ f ]≡ if and only if e ↔ f , for any

e, f ∈ SExp.

Theorem 5.1. Assume G preserves weak pullbacks, and let ≡ be a bisimulation equivalence on a G-

coalgebra E. Let C be a class of G-coalgebras that is closed under homomorphic images. If E/≡ is a

final object in C, then e ≡ f if and only if e ↔ f for any e, f ∈ E.

5Here, we have identified E/≡ with its isomorphic copy in Z.
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It follows from standard observations about the prechart functor P that there is a final P-coalgebra [30]6

and that P preserves weak pullbacks [17]. This suggests the possibility that the global approach can be

taken to proving Theorem 2.1 and Theorem 4.2. This is indeed the case, although the class of finite

well-layered precharts needs to be extended so as to include SExp/≡.

5.1 A global approach to the 1-free fragment

Returning to the 1-free fragment of regular expressions, we have already seen that the class of well-

layered precharts has SExp as a member. It is likely that SExp/≡ is also well-layered, but proving this

turns out to be unnecessary for our purposes.

In order to have the global approach go through for the 1-free fragment, we make a slight change in

the distinguished class of precharts from section 4. Let Cloc be the class of locally well-layered precharts,

ie. X ∈ Cloc if and only if X is locally finite and every finite subcoalgebra of X is well-layered. Using the

fact that the finite well-layered precharts are closed under homomorphic images, we obtain the following

key lemma.

Lemma 5.3. Let X be locally well-layered and q : X ։ Y a surjective coalgebra homomorphism. Then

Y is locally well-layered as well.

Every well-layered prechart is locally well-layered, so SExp is locally well-layered by Lemma 4.1.

Since SExp ∈ Cloc and SExp/≡ is the image of SExp under the homomorphism [−]≡ : SExp→ SExp/≡,

Lemma 5.3 tells us that SExp/≡ ∈ Cloc as well.

So far, we have taken step 4 and the first half of step 2 from the global approach. Interestingly, step

3 and the latter half of step 2 are possible because of Theorem 4.2, the uniqueness-of-solutions theorem

for finite precharts. To see how this works, let X ∈ Cloc. By Theorem 4.2, every finite subcoalgebra U

of X admits a unique solution sU : U → SExp/≡. Since homomorphisms restrict to subcoalgebras, this

clearly implies that X admits at most one solution. To see that SExp/≡ is final in Cloc, it suffices to

construct a solution to X .

The unique solution to X is the map sX : X → SExp/≡ given by sX(x) = sU (x) for any finite sub-

coalgebra U of X containing x. To see that this is well-defined, recall that X is locally finite, meaning

that every state of X is contained in a finite subcoalgebra of X . If U and V are finite subcoalgebras of X

with x ∈U and x ∈V , then U ∩V is a finite subcoalgebra of X containing x. We have assumed U ∩V is

well-layered, so by Theorem 4.2, U ∩V admits a unique solution. Restricting sU and sV to U ∩V also

obtains a solution, so it must be that sU (x) = sU∩V (x) = sV (x). To see that s is indeed a solution, observe

that a map h : X → Y between locally finite coalgebras is a coalgebra homomorphism if h|U : U → Y is

a coalgebra homomorphism for any finite subcoalgebra U of X . Since the latter statement is true of s by

definition, s is a solution to X . This establishes the lemma below.

Lemma 5.4. Let Cloc be the class of locally well-layered precharts. Then SExp/≡ is a final object in the

class Cloc.

Together, Theorems 2.1, 4.2, and Lemmas 5.3, 5.4 constitute steps 1 through 4 of the global approach

to proving soundness and completeness of Milner’s axioms for the 1-free fragment of regular expressions

modulo bisimulation, thus providing an alternative proof of 4.2.

6Namely, that it is bounded.
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5.2 From local to global

As Lemma 5.4 illustrates, there are instances in which a completeness proof taking the global approach

can be obtained from the four steps in the local approach. This is particularly the case when the dis-

tinguished class of coalgebras is closed under binary coproducts and homomorphic images, like the

well-layered precharts. Where E is a locally finite G-coalgebra and ≡ is a bisimulation equivalence on

E , assume that in the four steps of the local approach we have obtained a class C of finite G-coalgebras

such that

(a) each X ∈ C admits a unique homomorphism into E/≡,

(b) 〈e〉 ∈ C for any e ∈ E , and

(c) C is closed under binary coproducts and homomorphic images.

Then the class Cloc of locally C coalgebras, locally finite coalgebras X such that every finite subcoalgebra

of X is in C, satisfies the necessary conditions for steps 2 through 4 of the global approach.

Going through the same motions as in the prechart case, for any X ∈Cloc the unique solution sX : X →
E/≡ is defined locally. If x ∈ X and U is a finite subcoalgebra of X containing x, then sX (x) = sU(x),
where sU is the unique solution to U . Furthermore, if h : X ։Y is a surjective coalgebra homomorphism

and X ∈ Cloc, then for any finite subcoalgebra U of Y , U = h(V ) for some finite subcoalgebra V of X .

By closure under homomorphic images, U ∈ Cloc, and by extension Y ∈ Cloc as well. Lastly, E ∈ Cloc

by definition, so E/≡ ∈ Cloc by closure under homomorphic images. The following theorem obtains a

global approach-style proof of completeness from the four steps of the local approach when C is closed

under coproducts and homomorphic images.

Theorem 5.2. Let C be a class of finite G-coalgebras satisfying (a)-(c) above. Then Cloc is closed under

homomorphic images, and E/≡ is a final object of Cloc.

On the other hand, not every global approach-style completeness proof gives rise to a local one

with such immediacy. For example, few of the distinguished classes of coalgebras found in the global

approach-style proofs in [34] include the DFA interpretation of every expression in the language (each

such DFA fails to be locally finite).

6 Discussion and Future Work

In this paper, we explore a coalgebraic take on Grabmayer and Fokkink’s approach, what we call the local

approach, to proving the completeness of Milner’s axiomatisation of the 1-free star expressions modulo

bisimilarity [14]. We use the insights gained from our exploration to give a general version of their

method in section 3 that can be applied in other contexts. We do the same for a different proof method

in section 5, what we call the global approach, originating in [19, 34, 6], and show how Grabmayer and

Fokkink’s proof can be remoulded to fit the global approach. At the end of the latter section, we give

general conditions under which such a remoulding of a completeness proof that takes a local approach

to a global one is possible.

A method is presented at the end of section 5 for turning a distinguished class C from the local ap-

proach into a class Cloc suitable for a global approach. Interestingly, the class Cloc of locally C coalgebras

is closed under arbitrary coproducts, subcoalgebras, and homomorphic images when C is closed under

subcoalgebras and homomorphic images. In the case of the prechart functor P, and with C the class of

finite well-layered precharts, these structural qualities imply that Cloc is a covariety, meaning that it can

be presented by a predicate on a cofree P-coalgebra in some number κ of colours (that is, a coequation in
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κ colours) [30]. The final P-coalgebra is a cofree coalgebra in one colour, but a covariety presented by a

coequation in one colour is closed under bisimilarity [18], which we know from Figure 3 is not the case

for Cloc. We suspect that the number of colours needed to present the covariety of locally well-layered

precharts is infinite, due to the infinitary nature of the layeredness condition, but more work needs to be

done to be sure.

The use value of covarieties in the pursuit of completeness theorems is generally not well-understood.

From Theorem 5.2, we expect there to be a deeper connection, but this is something that can only

be uncovered by considering more examples. For instance, a covariety appears as the distinguished

class of automata in the completeness proof in [32], the presenting coequation being the image of the

expression language under the final coalgebra homomorphism. The situation in loc. cit. was similar

to Grabmayer and Fokkink’s, in that it was a completeness proof which lacked the use of a full Kleene

theorem, and so could be an example of the phenomenon we are alluding to. We think other examples

could be found by giving different operational interpretations of star expression languages considered

in the literature, including as [26, 23, 21, 36, 32], as well as their fixed-point versions. Furthermore,

we generally suspect that when going from semantics to expressions via solutions that depend only on

generated subcoalgebras, a coequation should specify the distinguished class of models, thus enabling

either of the two approaches to completeness discussed in this paper to go through.
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[1] Jiřı́ Adámek (2005): Introduction to coalgebra. Theory and Applications of Categories [electronic only] 14,

pp. 157–199.

[2] Jos C. M. Baeten, Flavio Corradini & Clemens Grabmayer (2006): On the Star Height of Regular Expressions

Under Bisimulation (Extended Abstract). EXPRESS ’06.

[3] Jos C. M. Baeten, Flavio Corradini & Clemens Grabmayer (2007): A characterization of regular expressions

under bisimulation. J. ACM 54(2), p. 6, doi:10.1145/1219092.1219094.

[4] Jørgen Bang-Jensen & Gregory Z. Gutin (2009): Digraphs - Theory, Algorithms and Applications, Second

Edition. Springer Monographs in Mathematics, Springer, doi:10.1007/978-1-84800-998-1.

[5] J. Bergstra, I. Bethke & A. Ponse (1994): Process Algebra with Iteration and

Nesting. The Computer Journal 37(4), pp. 243–258, doi:10.1093/comjnl/37.4.243.

arXiv:https://academic.oup.com/comjnl/article-pdf/37/4/243/1067027/370243.pdf.

[6] Marcello M. Bonsangue, Stefan Milius & Alexandra Silva (2013): Sound and Complete Axiomatizations of

Coalgebraic Language Equivalence. ACM Trans. Comput. Logic 14(1), doi:10.1145/2422085.2422092.

[7] Janusz A. Brzozowski (1964): Derivatives of Regular Expressions. J. ACM 11(4), pp. 481–494,

doi:10.1145/321239.321249.

[8] Hubie Chen & Riccardo Pucella (2003): A Coalgebraic Approach to Kleene Algebra with Tests. In H. Peter

Gumm, editor: 6th International Workshop on Coalgebraic Methods in Computer Science, CMCS 2003,

Satellite Event for ETAPS 2003, Warsaw, Poland, April 5-6, 2003, Electronic Notes in Theoretical Computer

Science 82, Elsevier, pp. 94–109, doi:10.1016/S1571-0661(04)80634-0.

[9] John Horton Conway (2012): Regular algebra and finite machines. Courier Corporation.

[10] Wan Fokkink (1997): Axiomatizations for the perpetual loop in process algebra. In Pierpaolo Degano,

Roberto Gorrieri & Alberto Marchetti-Spaccamela, editors: Automata, Languages and Programming,

Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 571–581, doi:10.1145/321312.321326.

[11] Wan J. Fokkink & Hans Zantema (1994): Basic Process Algebra with Iteration: Completeness of its Equa-

tional Axioms. Comput. J. 37(4), pp. 259–268, doi:10.1093/comjnl/37.4.259.

http://dx.doi.org/10.1145/1219092.1219094
http://dx.doi.org/10.1007/978-1-84800-998-1
http://dx.doi.org/10.1093/comjnl/37.4.243
https://arxiv.org/abs/https://academic.oup.com/comjnl/article-pdf/37/4/243/1067027/370243.pdf
http://dx.doi.org/10.1145/2422085.2422092
http://dx.doi.org/10.1145/321239.321249
http://dx.doi.org/10.1016/S1571-0661(04)80634-0
http://dx.doi.org/10.1145/321312.321326
http://dx.doi.org/10.1093/comjnl/37.4.259


258 On Star Expressions and Completeness Theorems

[12] Wan J. Fokkink & Hans Zantema (1997): Termination Modulo Equations by Abstract Commutation with an

Application to Iteration. Theor. Comput. Sci. 177(2), pp. 407–423, doi:10.1016/S0304-3975(96)00254-X.

[13] Nate Foster, Dexter Kozen, Matthew Milano, Alexandra Silva & Laure Thompson (2015): A Coalgebraic

Decision Procedure for NetKAT. In Sriram K. Rajamani & David Walker, editors: Proceedings of the 42nd

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mum-

bai, India, January 15-17, 2015, ACM, pp. 343–355, doi:10.1145/2676726.2677011.

[14] Clemens Grabmayer & Wan Fokkink (2020): A Complete Proof System for 1-Free Regular Expressions

Modulo Bisimilarity. Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science,

doi:10.1145/3373718.3394744.

[15] Clemens Grabmayer & Wan Fokkink (2020): A Complete Proof System for 1-Free Regular Expressions

Modulo Bisimilarity. arXiv:2004.12740.

[16] H. Gumm (1998): Functors for Coalgebras. Algebra Universalis 45, doi:10.1007/s00012-001-8156-x.

[17] H. Gumm (1999): Elements Of The General Theory Of Coalgebras.
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