High Surface Area of Polyhedral Chromia and Hexagonal Chromium Sulfide by the Thermolysis of Cyclohexylammonium Hexaisothiocyanatochromate(III) Sesquihydrate

A new organic-inorganic hybrid salt of cyclohexylammonium hexaisothiocyanatochromate(III) sesquihydrate, $\text{(C}_6\text{H}_{12}\text{NH}_3)_3[\text{Cr-(NCS)}_3] \cdot 3\text{H}_2\text{O}$, was synthesized at room-temperature by metathesis and ligand addition for the establishment of energy-saving chemical synthesis approach. The formation of this new salt was confirmed by FT-IR, UV-Vis spectrophotometry, elemental microanalysis, and single-crystal X-ray diffraction. The TGA study showed low-temperature thermal stability of this salt, where chromium oxide (Cr$_2$O$_3$) formed under air and chromium sulfide (Cr$_2$S$_3$) under argon, as PXRD confirmed their formation as nanocrystalline. The morphological studies by SEM and TEM revealed the formation of irregular polyhedron particles of Cr$_2$O$_3$ and of hexagonal packed layers of Cr$_2$S$_3$. The textural study by nitrogen physisorption disclosed the meso-porous nature and high specific surface area of Cr$_2$O$_3$ (\sim 132 m2/g) and Cr$_2$S$_3$ (\sim 241 m2/g). Cyclohexylammonium could act as an organic self-template for the formation of mesopores and the high temperature of thermolysis assisted the formation of such pores.

1. Introduction

In recent years, the synthesis and characterization of cyclohexylammonium-based compounds are of considerable interest in the field of materials chemistry. The interest is primarily in the structural arrangement and its diverse dimensional properties with varying counter anions.$^{[9]}$ The attraction of using cyclohexylammonium is specifically due to its function as a hydrogen donor for hydrogen bonding with the counter anion$^{[9]}$ and with the solvent crystallization molecules.$^{[9]}$ Furthermore, both the modelling and synthesis of novel solid-state materials by utilizing transition metal anionic complexes are a promising approach for the formation of one, two, or three-dimensional (1-D, 2-D, or 3-D) hydrogen-bonded assemblies of molecules to realize the effective functioning of the materials.$^{[9,17,21]}$

Thiocyanate metal complexes are unusual due to the intrinsic ambidentate nature, bridging ability, and denticity of thiocyanate ligand.$^{[22]}$ Among the thiocyanate metal complexes is the anionic complex of hexaisothiocyanatochromate(III) [Cr-(NCS)$_3$]$^-$, which was used broadly to construct various supramolecular structures with either organic cations$^{[11,16,20]}$ or metal cations$^{[18-20]}$ partially, because both of thiocyanate nitrogen and sulfur terminals are hydrogen acceptors when forming hydrogen bonds.$^{[1,25,31,27,29,37,39-40]}

[a] Prof. A. A. Bagabas, Dr. M. Alqahtani, R. Alrasheed, A. Alqarni, B. Ashamari
National Petrochemical Technology Center (NPTC), Materials Science Research Institute (MSRI), King Abdulaziz City for Science and Technology (KACST), P O Box 6086, Riyadh, 11442, Saudi Arabia
E-mail: alsabagas@hotmail.com

[b] Dr. M. Alqahtani
Department of Chemical & Process Engineering Technology, Industrial Chemistry Major, Jubail Industrial College, Jubail Industrial City, P O Box 10099, 31991, Saudi Arabia

[c] Dr. K. K. Taha
Department of Chemistry & Industrial Chemistry, College of Applied & Industrial Sciences, University of Baladi, Khartoum, Sudan

[d] Dr. A. Albaid
Department of Physics, Faculty of Science, University of Ha'il, P O Box 2440, Ha'il 81451, Saudi Arabia

[e] Dr. M. Sohail
Department of Chemistry, School of Natural Sciences, National University of Science and Technology, H-12, Islamabad, 44000, Pakistan

[f] Prof. I. P. Parkin
Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
The organic salts of \([\text{Cr(NCS)}_3]^+\) are soluble in many organic solvents, enabling their use as analytical reagents, synthetic blocks for new compounds, catalysts, and thermally sensitive materials.\(^{25,28,29}\) In addition, the incorporation of organic cation would affect both the properties of \([\text{Cr(NCS)}_3]^+\) and of the entire resultant salt.\(^{25}\) For instance, when the paramagnetic anion of \([\text{Cr(NCS)}_3]^+\) was combined with charge-transfer organic \(\pi\)-donors of tetrafluoroborate derivatives, the resultant salts were paramagnetic semiconductors due to their layered structures, which were composed of isolated organic cations and inorganic anions without contacts except the weak S–S contacts between cation and anion, and thereby, lack of magnetic exchange interactions.\(^{24,25,27,30}\)

The metal salts of \([\text{Cr(NCS)}_3]^+\) are classified as bimetallic complexes or double complex salts.\(^{21–49}\) They are able to form molecular magnets.\(^{22}\) They are useful precursors for the synthesis of various functional materials, polymeric systems, catalysts, nanocomposites, and reversible thermochromic materials.\(^{21–48}\) The \([\text{Cr(NCS)}_3]^+\), as an inert bulky ion, is a precipitating agent for lanthanide ions in organic-aqueous medium.\(^{24,36,38,40,42,43,46,49}\) In addition, \([\text{Cr(NCS)}_3]^+\) is a very good reagent for the gravimetric analysis of heavy metal ions, such as copper, silver, cadmium, mercury, lead, thallium, and bismuth, in the aqueous medium, even in the microscale range.\(^{15,50}\)

The thermolysis, under air, of double complex salts of lanthanides, complexed by the neutral \(\sigma\)-caprolactam, and \([\text{Cr(NCS)}_3]^+\) results in a mixture of the corresponding lanthanide oxide (Ln_2O_3) and chromia (Cr_2O_3) nanoparticles due to their relatively low temperatures of decomposition.\(^{40}\) On the other hand, the thermolysis of heavy metal complexes with \([\text{Cr(NCS)}_3]^+\), under air, gives metal-containing products, depending on the identity of the heavy metal. It results in a mixture of metal sulfate and chromia, when the heavy metal is

| Table 1. Elemental Analysis for \((\text{C}_6\text{H}_{12})_3\text{NH}_3\)\([\text{Cr(NCS)}_3]\) \(\cdot\) 3\(\text{H}_2\text{O}\) |
|-----------------|-----------------|-----------------|
| **Element** | **Theoretical (wt/wt %)** | **Experimental (wt/wt %)** |
| C | 39.59 | 39.74 |
| H | 6.23 | 6.30 |
| N | 17.31 | 16.98 |
| S | 26.43 | 25.72 |
| O | 3.30 | 3.19 |
| C | 7.14 | 6.97 |

| Table 2. Comparison of the scattering angles of the main peaks for experimental and simulated PXRD patterns. Errors in \(2\theta\) are given by \(\Delta 2\theta_{\text{calc}} = 2\theta_{\text{exp}} \times 100 = 2\theta_{\text{calc}}\). |
|-----------------|-----------------|
| **Peak** | **2\(\theta_{\text{exp}}\)** (degree) | **2\(\theta_{\text{calc}}\)** (degree) | **Error in \(2\theta\)** (%) | **Miller Index (h k l)** |
| 1 | 6.45 | 7.26 | 12.48 | 1 0 1 |
| 2 | 9.42 | 9.54 | 1.25 | 2 1 0 |
| 3 | 10.78 | 10.97 | 1.25 | 1 0 2 |
| 4 | 13.32 | 14.55 | 1.64 | 2 0 2 |
| 5 | 15.16 | 15.35 | 1.29 | 3 1 1 |
| 6 | 17.22 | 17.44 | 1.25 | 3 1 1 |
| 7 | 18.93 | 19.13 | 1.14 | 4 0 2 |
| 8 | 20.25 | 20.50 | 1.26 | 4 1 1 |
| 9 | 21.82 | 22.11 | 1.35 | 4 1 2 |
| 10 | 23.67 | 24.06 | 1.66 | 3 1 4 |
| 11 | 24.83 | 25.40 | 1.34 | 10 5 |
| 12 | 25.22 | 26.01 | 3.11 | 5 3 2 |
| 13 | 28.60 | 28.90 | 1.03 | 6 3 0 |
| 14 | 28.93 | 29.25 | 1.08 | 5 3 1 |
| 15 | 31.08 | 31.39 | 1.01 | 3 3 2 |
| 16 | 32.00 | 32.36 | 1.10 | 6 3 1 |
| 17 | 36.19 | 36.64 | 1.25 | 6 4 0 |
| 18 | 38.84 | 38.73 | 0.30 | 5 1 6 |
| 19 | 57.53 | 58.30 | 1.33 | 10 0 2 |

Figure 1. FTIR spectrum of \((\text{C}_6\text{H}_{12})_3\text{NH}_3\)\([\text{Cr(NCS)}_3]\) \(\cdot\) 3\(\text{H}_2\text{O}\)
silver, thallium, lead, or bismuth, whereas cupric oxide and delafossite (CuCrO$_2$) result when the heavy metal is cuprous and cadmium oxide and cadmium chromite spinel (CdCr$_2$O$_4$) result when the heavy metal is cadmium.

In contrast, the thermolysis of organic salts of [Cr(NCS)$_6$]$^3^-$ has been less explored than the metal salts. In one study by House and Marquardt, the thermolysis of piperidinium salt of [Cr(NCS)$_6$]$^3^-$ under nitrogen, resulted in chromium sulfide (Cr$_2$S$_3$), as the final chromium-containing solid product.

In the light of the importance of cyclohexylammonium and [Cr(NCS)$_6$]$^3^-$, we report, herein, for the first time, the synthesis and the characterization of the organic-inorganic hybrid salt of cyclohexylammonium hexaisothiocyanatochromate(III) sesqui-hydrate, (C$_6$H$_{11}$NH$_3$)$_2$[Cr(NCS)$_6$]$^3^-$·3H$_2$O, as well as its thermolysis as a single-source precursor for the synthesis of high surface area polyhedron of Cr$_2$O$_3$ under air and hexagonal plates of Cr$_3$S$_4$ under helium atmosphere. The applications of Cr$_3$O$_4$ are varied in number and it is especially useful as catalyst, anode for lithium-ion batteries, hydrogen absorption, gas sensor, magnetic materials, pigments, and the production of paint products. On the other hand, the industrial applications of Cr$_3$S$_4$ have been realized in the manufacture of catalysts, supercapacitors, and energy storage devices.

2. Results and Discussion

2.1. Elemental analysis

Table 1 presents the elemental micro-analysis of (C$_6$H$_{11}$NH$_3$)$_2$[Cr(NCS)$_6$]$^3^-$·3H$_2$O. Based on the elemental results, the correlation
between the theoretical and experimental results was within the acceptable error range, confirming the molecular formula of \(\text{C}_{24}\text{H}_{42}\text{N}_{2}\text{S}_{2}\text{O}_{3}\text{Cr} \) for our synthesized hybrid organic-inorganic salt.

2.2. FTIR spectrophotometry

Figure 1 illustrates the DRIFT spectrum of \((\text{C}_{6}\text{H}_{12}\text{H}_{2}\text{N})_{3}\text{[Cr(NCS)]}_{3} \cdot 3/2\text{H}_{2}\text{O} \). The weak, broad bands in the range of 3700–3350 cm\(^{-1}\) could be assigned to the asymmetric vibration of O–H bonds of the crystallization water molecules.\(^{[29]}\) The broadness of these peaks could be due to the involvement of the crystallization water molecules into intermolecular hydrogen bonds with the terminal sulfurs of \([\text{Cr(NCS)}]^{3-}\) anion and with the amine protons of the cyclohexylammonium cations.\(^{[28]}\) In addition, the band around 1600 cm\(^{-1}\) could be assigned to the bending mode of \(\text{H}_{2}\text{O} \)\(^{[22]}\). The FTIR spectrum showed characteristic vibrations of binding thiocyanate ligand via its N-terminal to the Cr(III) ion center. The main C–N asymmetric stretching vibration, \(\nu(\text{CN}) \), appeared as very strong band at 2091 cm\(^{-1}\), while the C–S stretching, \(\nu(\text{CS}) \), was detected as a weak band at 846 cm\(^{-1}\). The bending vibration of the N–C–S band, \(\delta(\text{NCS}) \), was observed as a strong band at 480 cm\(^{-1}\).\(^{[22]}\) The coordination of hard Cr(III) ion center by the hard N-terminal of thiocyanate ligand is consistent with Pearson’s concept of hard and soft acids and
bases (HSAB). Furthermore, structural studies by single X-ray diffraction confirmed the binding of N-terminal to Cr(III) in [Cr(NCS)₂]⁶⁻ [24-27,29-31].

The asymmetric stretching vibration of (NH₃⁺) bonds of cyclohexylaminonium cation could be assigned to the strong, broad bands in the range of 3300-3000 cm⁻¹. This red shift in the asymmetric stretching of NH could be due to the positive charge borne by the nitrogen atom and the hydrogen bonding to the water crystallization molecules and to the S-terminals of [Cr(NCS)₂]³⁻ anion. The medium intense band at 1594 cm⁻¹ could be due to N-H scissoring, while the two weak bands at 1318 and 1281 cm⁻¹ could be ascribed to N-H wagging. The medium intense band at 920 cm⁻¹ could be owing to N-H twisting. The bands at 2940 and 2861 cm⁻¹ could be assigned to the asymmetric and symmetric stretching vibrations of (CH₃)⁻ respectively. The two medium intense bands at 1485 and 1452 cm⁻¹ could be due to (CH₃)⁻ deformation. The medium intense band at 1223 cm⁻¹ could be owing to (CH₃)⁻ wagging. The medium intense band at 1116 cm⁻¹ and the weak band at 1066 cm⁻¹ might be ascribed to (CH₃)⁻ twisting, while the (CH₃)⁻ rocking seemed to be observed at 846 (medium), 784 (weak), 603 (very weak), 564 (weak), and 548 (weak) cm⁻¹. The weak band at 1033 cm⁻¹ and the strong band at 1000 cm⁻¹ could be assigned to the C-N stretching. The medium intense band at 874 cm⁻¹ could be due to C-H bending. Ring deformation could be assigned to the bands at 1172 (weak), 889 (weak), and 782 (weak) cm⁻¹, while ring breathing could be ascribed to the band at 949 (medium) cm⁻¹. The ring C-N bending could be due to the two strong bands at 482 and 459 cm⁻¹. [30,37]

On the basis of FTIR analysis, the formation of (C₆H₅NH₃)⁶[Cr(NCS)₂] · 3H₂O can be confirmed. Figure S1, in the supplementary information, shows all the FTIR bands labeled with their corresponding wavenumbers, as per the above elucidation.

2.3. UV-Vis spectrophotometry

The absorbance spectrum in the ultraviolet-visible region of dissolved (C₆H₅NH₃)⁶[Cr(NCS)₂] · 3H₂O in absolute ethanol is presented in Figure 2. The two strong broad bands, with their maxima absorbance at 557 nm (ν₁) and 416 nm (ν₂), are characteristic for the purple, octahedral hexaisothiocyanato-chromate(III) anionic complex, [Cr(NCS)₂]³⁻. The ν₁ band refers to $A_2g(F)\rightarrow T_2g(F)$ transition and the ν₂ band corresponds to $A_2g(F)\rightarrow T_1e(F)$ transition. [22,23,32,35,36,38,39] The UV-visible and FTIR absorption spectra confirmed the binding of the thiocyanate ligand via its N-terminal to the Cr(III) ion centre.

2.4. SXRD and PXRD

Single crystal X-ray study showed that the complex crystallized in trigonal space group R. The asymmetric unit consisted of two one-sixth units of hexaisothiocyanato-chromate(III) anions, a cyclohexylaminonium cation, and a half molecule of water due to presence of three fold axis of rotation and an inversion center. The Cr(III) ions were located on 3-fold roto-inversion axis, whereas the cyclohexylaminonium cation and water molecule were situated at general positions. Each chromium ion center formed an octahedron by coordinating with six nitrogen atoms of six isothiocyanate ligands. Cyclohexylaminonium cation adopted nearly chair confirmation, where ammonium occupies an equatorial position, as reported previously. [10-14,16-20] The oxygen-bound hydrogen atoms in water molecules were also refined by using the riding model because the X-ray data was not of sufficient quality to locate them in difference Fourier map. The sulfur atoms of isothiocyanate ligands in both complex units had disorder, which was modeled ellipsoid over two positions in each case. The hydrogen bonding (between oxygen of water molecules and hydrogen of ammonium of cyclohexylaminonium cation), chelate bond-ing (S−O and S−N as shown in Figure 3), and non-classical hydrogen bondings appeared to direct the packing of mole-
Figure 7. PXRD of (a) Cr$_2$O$_3$ and (b) Cr$_2$S$_3$ produced by the thermal decomposition of (C$_5$H$_5$NH$_3$)$_2$Cr(NCS)$_4$·3H$_2$O under air and helium, respectively.

cules in the lattice. These crystal features confirmed the FTIR and UV-visible spectroscopic findings.

Crystal Data for Cr$_5$H$_7$Cr$_4$N$_6$O$_4$S$_{11}$ (M=1456.07 g/mol): trigonal, space group $R3$, char=0x00adFinatimplemented(no. 148), $a=18.85286(6)\ \text{Å}$, $c=18.6352(11)\ \text{Å}$, $V=5540.8(5)\ \text{Å}^3$, $Z=3$, $T=100(2)\ \text{K}$, $\mu(\text{MoK})=0.682\ \text{mm}^{-1}$, $D_{\text{calc}}=1.309\ \text{g cm}^{-3}$, 14292 reflections measured ($5.056 \leq 2\theta \leq 56.564$), 3051 unique ($R_{int}=0.0433$, $R_{wp}=0.0292$) which were used in all calcula-
The crystal data, atomic coordinates and equivalent isotropic displacement parameters, bond lengths and angles, and anisotropic displacement parameters are given in the Tables of the supplementary information (Tables S1–S4). The bond lengths and angles of cyclohexylammonium were close to those reported in literature. Furthermore, the bond lengths and angles of hexaisothiocyanatochromate(III) were similar to those published previously.

The structure of \(\text{C}_9\text{H}_{24}\text{NH}_{2}\text{H}_{2}\text{H}_2\text{C}_2\text{Cr}([\text{NCS}]_2) \cdot 3/2\text{H}_2\text{O}\), obtained from the X-ray diffraction of its single crystal at 100 K, is shown in Figure 4. The PXRD pattern, in the two theta range of 5.0–65.0, of the synthesized \(\text{C}_9\text{H}_{24}\text{NH}_{2}\text{H}_2\text{H}_2\text{C}_2\text{Cr}([\text{NCS}]_2) \cdot 3/2\text{H}_2\text{O}\), confirmed its high degree of crystallinity. The structure belongs to the trigonal crystal and rhombohedral lattice system. The hexagonal unit cell for the rhombohedral Bravais lattice consists of three lattice points. The simulated PXRD pattern, based on the above structure, was generated by “Mercury” program.

The experimental PXRD pattern was compared with the simulated one, as depicted in Figure 5. This comparison was made in order to use the simulated PXRD pattern as a reference standard. We can find good match between the predicted crystal structure of the simulated pattern and the structure of the experimental pattern.

The positions of main peaks for both patterns are almost matched, as illustrated in Table 2. The specimen displacement error might be responsible for the small peak shifts between the simulated and experimental PXRD patterns. On the other hand, there are some peaks in the experimental PXRD pattern,
which cannot be found in the simulated pattern due to the

doctors in the atomic configuration at room temperature.

The disorders in the atomic configuration can also be seen from

the structure obtained by the X-ray diffraction of single crystal at

100 K. The standard number of atoms inside each cell is three

multiples of the chemical formula \((\text{CaH}_{3},\text{N})_6(\text{CaCrN}_{3}S_{9})_2 \cdot 3(\text{H}_2\text{O})\)

because there are three lattice points for each cell. We found

doctors in the water crystallization molecules and sulfur atoms.

There were 62 sulfur atoms and 18 water molecules inside each

cell instead of 36 sulfur atoms and 9 water molecules of the

standard numbers, as shown in Figures 4 (b) and (c), respectively.

Twenty six couples out of 62 of sulfur atoms existed at the

periphery of the anionic complex of \([\text{Cr(NCS)}_{6}]^P\). This disorder

in atomic configuration would be expected to increase at room tem-
The listed Miller indices (hkl) in Table 2 are used to identify different planes of atoms. Our crystal system displays the rotational symmetry operations for each lattice point as: x, y, z; y, x, z; and x, y, z. Because the rotational symmetry mixes x and y coordinates and leaves z coordinate unchanged, the corresponding Miller indices h and k would mix, as can be seen from the numerator of the first term of the planer spacing formula:

$$d_{\text{hf}} = \frac{1}{\sqrt{3}} \left(\frac{h^2 + h k + k^2}{c^2} \right)^{1/3}$$

where $d_{\text{hf}} = \frac{1}{n} \sin \theta$ and $1 \frac{1}{4} 1.54056 \ \AA$ is the wavelength of the X-ray from Cu target of K_{α} radiation. The lattice parameters are given by: $a \frac{3}{4} \frac{1}{4} 18.8526 \ \AA$; $c \frac{3}{4} 18.686 \ \AA$; $a \frac{3}{4} b \frac{3}{4} 90^\circ$ and $c \frac{3}{4} 120^\circ$. The above formula indicates that Miller indices h and k lead to the same planer spacing d_{hf} when exchanging their values.

2.5. TGA

Figure 6 illustrates the thermogravimetric analysis of $(C_7H_{10}N)_2[Cr(NCS)_6] \cdot 3/2H_2O$, where the effect of temperature by heating on the sample weight was investigated under two different atmospheres: air (blue line) and helium gas (red line). The thermolysis was found to be stepwise (5-step thermal decomposition), irrespective of the atmosphere type.
The complex started to decompose thermally under air atmosphere (Figure 6; blue line) upon heating from room temperature to lose ~3.71% of its weight at temperature of ~150 °C. This first step in weight lost corresponded to the loss of 1.5 water molecules, where the low temperature of losing water indicated that they were not coordinated to the Cr(III) ion center, but rather were crystallization molecules, a result in agreement with elemental, FTIR, UV-visible, and X-ray single-crystal analyses. The eventually produced anhydrous form of the complex at this stage, (C₆H₅NH₃)₃[Cr(NCS)₃], lost one of its counter cations, (C₆H₅NH₃)+, and one of its isothiocyanate ligands, NCS⁻, at ~242 °C, in the second step of decomposition. With raising the temperature to ~373 °C, a loss of the remaining two (C₆H₅NH₃)+ and one NCS⁻ ligand was observed in the third step of decomposition. The fourth step corresponded to the loss of one NCS⁻ ligand at ~396 °C. The final step of decomposition linked to the loss of the remained three NCS⁻ ligands and the formation of chromium, Cr₂O₃, at ~576 °C. The formation of Cr₂O₃ was assessed by calculating the remaining percentage weight (cal. 10.43%; exp. ~10.25 %); and was corroborated by the PXRD analysis (Figure 7a).

On the other hand, the thermolysis of the complex under helium atmosphere was slower with enhanced thermal stability than what was observed under air atmosphere. The first step corresponded to the loss of the 1.5 water molecules of crystallization at ~168 °C to result in the formation of the anhydrous form of the complex, which lost subsequently one (C₆H₅NH₃)+ and one (NCS⁻) ligand at ~249 °C, in the second step. The loss of the remaining two (C₆H₅NH₃)+ could take place in the third step at ~338 °C. The fourth step was due to the loss of four (NCS⁻) ligands and nitrogen atom ~600 °C. The fifth step was due to the loss of carbon and the obtention of Cr₂S₃ at ~700 °C. The formation of Cr₂S₃ was corroborated by PXRD (Figure 7b). The formation of Cr₂S₃ was also deduced from thermolysis of piperidinium hexaisothiocyanatocromate (III), (C₆H₅₂⁺)[Cr(NCS)₃]₃, under dry nitrogen at 700 °C.⁵¹

2.6. PXRD of thermal decomposition products of (C₆H₅NH₃)₃[Cr(NCS)₃]·3/2H₂O

Figure 7 (a) shows the PXRD pattern of the thermal decomposition of (C₆H₅NH₃)₃[Cr(NCS)₃]·3/2H₂O at 600 °C under air atmosphere. It revealed somewhat sharp, symmetrical basal
peaks at 2θ of 24.3, 33.4, 36.01, 38.6, 41.3, 43.3, 50.03, 54.6, 58.01, 63.19, 64.87, 72.59, 76.70, 79.94, 84.07, 86.35, 89.94, and 95.09. These peaks were indexed to the characteristic peaks with Miller indices: (012), (104), (110), (006), (113), (202), (024), (116), (122), (214), (300), (101), (220), (306), (021), (134), (226), and (2110), respectively, of trigonal \textit{ekzolaita} phase of porous crystals of Cr₂O₃ (JCPDS 84-1616).

Figure 7 (b) shows the PXRD pattern of Cr₂S₃, the thermal decomposition product of \((\text{C₆H₄NH₂})[\text{Cr(NCS)}₄] \cdot 3\text{H₂O}\) at 730°C under helium atmosphere, having reflections at 2θ of 31.50, 38.78, 44.52, 45.27, 53.30, 56.32, 71.80, and 75.18 (PDF:10-0340). These characteristic peaks were indexed to: (112), (201), (203), (212), (205), (027), (008), and (224), respectively, for the trigonal phase. In addition, the rhombohedral phase was detected with peaks at 2 theta 30.34, and 58° assigned to the (110), (113), and (203) planes, respectively.

Scherrer’s equation was applied to calculate the crystallite size.

\[D = \frac{0.901}{b \cos \theta} \]

Where the symbols: \(\theta\), and \(b\) stand for the 1.5406 Å Cu K\(\alpha\) line, Bragg's XRD diffraction angle, and the full width at half maximum (FWHM) in radians. The crystallite sizes were 52.62 and 39.16 nm for Cr₂O₃ and Cr₂S₃, respectively. On the other hand, the lattice parameters \(a = b\) and \(c\) were calculated by using the formula

\[\frac{1}{\alpha^2} \frac{4}{\pi} \frac{b - b_k}{a^2} \frac{b_k^2}{c^2} \frac{b^2}{c^2} \frac{1}{3} \]

The values for Cr₂O₃ were \(a = b = 4.940\) and \(c = 13.590\) Å, in agreement with values reported in literature, while for Cr₂S₃, the values were \(a = b = 6.17\) and \(c = 11.520\) Å, and the obtained data were greatly similar to previously reported data.

In accordance with the Williamson-Hall method, strain \((\varepsilon)\) and crystallite size \((D)\) have substantial contribution to the diffraction lines broadening (equation 3) where they are only...
considered to reflect the peak width due to their to 2θ. In the uniform deformation model UDM (equation 4) of Williamson–Hall approach, it is assumed that crystals are isotropic and subsequently their properties are independent of the crystallographic direction along which the measurement is performed.

\[
b_\text{b}\cos\theta = \frac{\lambda}{D} \cdot 4\sin\theta \quad (4)
\]

A plot of \(b_\text{b}\cos\theta\) versus \(4\sin\theta\) (θ) corresponds to the (012), (104), (110), (024), (116), (122) and (214) planes of \(\text{Cr}_2\text{O}_3\), and (112), (203), (212), (205) and (224) planes of \(\text{Cr}_3\text{S}_2\) (Figure 8) is a linear graph, where the crystallite size \(D\) and micro-strain \(\varepsilon\) can be respectively obtained from the intercept and slope (Figure 8). The crystallite sizes were 40.8 nm for \(\text{Cr}_2\text{O}_3\) and 46.2 nm for \(\text{Cr}_3\text{S}_2\) with an increased strain \(\varepsilon\) for the smaller size \(\text{Cr}_2\text{O}_3\) nanoparticles (0.0006 and 0.0007 for \(\text{Cr}_3\text{S}_2\) and \(\text{Cr}_2\text{O}_3\), respectively). The average crystallite sizes estimated by using Scherrer’s and W H methods exhibited disparity that could be ascribed to variation in particle size distribution averaging by using more peaks.\(^{97}\)

The quantitative analysis showed weight/weight percentage of Cr (57.61 %) and of S (36.68 %), which were relatively close to those of \(\text{Cr}_2\text{S}_3\) bulk (Cr: 51.95 %; S: 48.05 %). On the other hand, carbon was detected on the surface. Carbon might be either from some amorphous carbon present on the surface after calcination under helium or from the carbon tape used for sticking the sample on the holder.

2.9. TEM micrographs of \(\text{Cr}_2\text{O}_3\) and \(\text{Cr}_3\text{S}_2\)

Figure 11 presents the TEM micrographs of \(\text{Cr}_2\text{O}_3\) particles at two magnifications of \(\times 100,000\) (Figure 11a) and \(\times 200,000\) (Figure 11b). A conglomerate of \(\text{Cr}_2\text{O}_3\) particles was observed with irregular shapes having multi faces, which agreed with the SEM results.

On the other hand, irregular hexagonal packed layers of \(\text{Cr}_3\text{S}_2\) particles were also observed in the TEM micrographs at magnifications of \(\times 40,000\) (Figure 12a) and \(\times 60,000\) (Figure 12b), which were consistent with those results obtained by SEM. Figure 12b shows the porous nature of \(\text{Cr}_3\text{S}_2\), observed as sponge-like, a feature confirmed by the nitrogen physisorption measurements.

2.10. Adsorption of Nitrogen

Figures 13 and 14 depict the adsorption-desorption curves of nitrogen physisorption of \(\text{Cr}_2\text{O}_3\) and \(\text{Cr}_3\text{S}_2\), respectively. Type IV adsorption isotherms for mesoporous material were obtained for both chromium oxide and chromium sulfide, as per the IUPAC classification.\(^{106}\) The amount of adsorbed nitrogen increased with relative pressure (P/P₀), where the adsorbed amount at specific pressure for \(\text{Cr}_3\text{S}_2\) was much higher than that of \(\text{Cr}_2\text{O}_3\). This observation was reflected by the higher specific surface area of \(\text{Cr}_3\text{S}_2\) of 241.2 m²/g with a t-pore external surface area of 331.9 m²/g than that of \(\text{Cr}_2\text{O}_3\) of 131.7 m²/g with a t-pore external surface area value of 195.7 m²/g.\(^{106}\) In addition, the higher surface area of \(\text{Cr}_3\text{S}_2\) was supported by the higher pore volume of 0.24 cm³/g with a pore width of ~ 20 Å than that of \(\text{Cr}_2\text{O}_3\) of 0.18 cm³/g with a pore width of ~ 40 Å, as inferred from Barrett, Joyner, and Halenda (BJH) pore size distribution adsorption curves for \(\text{Cr}_2\text{O}_3\) (Figure 13 inset) and for \(\text{Cr}_3\text{S}_2\) (Figure 14 inset). The BJH pore size distributions of both \(\text{Cr}_2\text{O}_3\) and \(\text{Cr}_3\text{S}_2\) were greater than 2.0 nm and less than 50 nm, i. e. were within the range of mesoporous according to IUPAC classification of porous materials.\(^{106}\) The BJH pore size distribution of \(\text{Cr}_2\text{O}_3\) was in the range of 7-12 nm, which was narrower than that of \(\text{Cr}_3\text{S}_2\), which in the range of 20-40 nm. Furthermore, the pore size of \(\text{Cr}_3\text{S}_2\) was much smaller than that of \(\text{Cr}_2\text{O}_3\), as it could be concluded from the BJH pore size distribution. The formation of mesopores could be attributed to the action of cyclo-hexyloxymmonium as a soft organic template.\(^{106}\) Furthermore, the synthesis of stable mesoporous material is preferred at high temperature.\(^{80}\) The BET surface area of the synthesized mesoporous \(\text{Cr}_2\text{O}_3\) greatly exceeds the reported surface areas for \(\text{Cr}_2\text{O}_3\) of 37.9 m²/g\(^{107}\) 23 m²/g\(^{108}\) 27 m²/g\(^{107}\) 81.05 m²/g\(^{105}\) and 21.14 m²/g\(^{109}\) and the BET surface area.
of the obtained mesoporous Cr$_2$S$_3$ surpasses the reported surface area of 9 m2g$^{-1}$ for Cr$_2$S$_3$, making mesoporous Cr$_2$O$_3$ and Cr$_2$S$_3$ potential candidates for adsorption and catalysis applications.

3. Conclusion

We prepared a novel organic-inorganic hybrid salt of cyclohexylammonium hexa(isothiocyanato)molybdate(III) sesquihydrate via simple, economic approach based on metathesis and ligand addition. The validation for the formation of this desired compound came from elemental microanalysis, spectroscopic, and X-ray single crystal characterizations. The thermal decomposition of the material proved its utility as a single-source precursor for the production of mesoporous either Cr$_2$O$_3$ or Cr$_2$S$_3$ under air or inert atmosphere, with high specific surface area and micrometer size particles, though a self-templating mechanism by cyclohexylammonium and high temperature for obtaining these two products. Both of Cr$_2$O$_3$ and Cr$_2$S$_3$ were nanocrystalline, as proven by their PXRD and the estimation of their average crystallite sizes by using Scherrer’s and W H methods. Moreover, Cr$_2$O$_3$ showed polyhedron particles, while Cr$_2$S$_3$ had irregular hexagonal packed layers. All these textural and morphological properties make both of Cr$_2$O$_3$ and Cr$_2$S$_3$ suitable for many applications in catalysis, batteries, and sensing.

X-ray crystallography

Deposition numbers 2043686 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.

Supporting Information Summary

Detailed experimental of synthesis procedures and characterization methods are given in the SI. Tables for the crystals structures and labeled FTIR bands of cyclohexylammonium hexa(isothiocyanato)molybdate(III) as well as the EDX spectra of Cr$_2$O$_3$ and Cr$_2$S$_3$ are provided in the SI.

Acknowledgements

We are grateful to King Abdullah City for Science and Technology (KACST), Saudi Arabia, for funding this work through project No. 20-0180.

Conflict of Interest

The authors declare no conflict of interest.