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Abstract

Global climate change is presenting opportunities for new networks of maritime

transportation through the Arctic. However, these sea routes are often infested by

floating sea ice, which brings uncertainties to shipping operators, designers and

builders.

This work aimed to develop reliable simulation approaches for shipping scenarios

in the presence of sea ice and investigate the associated changes to ship calm water

resistance. For this purpose, computational fluid dynamics and ice solid mechan-

ics were combined to model the potential ship-wave-ice interactions. Specifically,

models were developed to simulate the two primary scenarios of a cargo ship op-

erating in the Arctic, respectively a waterway with floating ice floes and an open-

water channel created by icebreakers. Additionally, to build understanding of the

Arctic sea condition, two other models were developed simulating the interaction

of ocean waves with a rigid ice floe and then an elastic ice sheet, which provided

a new solver capable of modelling hydroelastic fluid-structure interactions. Based

on validation against experiments, these models provided the ability to accurately

predict the ship-wave-ice interactions and the ice-induced resistance changes.

Through conducting a systematic series of simulations, it was found that ice floes

can increase the ship resistance by the same order of magnitude as the open water

resistance, but this is strongly dictated by the ship beam, ice concentration, ice

thickness and floe diameter. An open-water ice channel was found to increase the

ship resistance by up to 15% compared to the situation without ice, particularly

when the channel width is less than 2.5 times the ship beam and the ice thickness is
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greater than 5% of the ship draught.

Moreover, this work developed a procedure to derive simple ice-resistance equa-

tions from the simulation results, enabling fast prediction of ship fuel consumption

in sea ice fields and incorporation into a new Arctic Voyage Planning Tool.
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Impact statement

The emerging Arctic sea routes offer shorter voyage distances compared to their tra-

ditional counterparts and provide access to rich reserves of oil, gas, mines, �shing

grounds and tourism. Attracted by the unexploited resources and potential �nancial,

time and emission savings, the shipping industry is keen on maximising the oppor-

tunities afforded by Arctic shipping. Yet, the �oating ice present in the Arctic sea

routes is holding back the stakeholders with navigational concerns. Therefore, reli-

able simulation models are required to correctly predict the ice resistance on ships,

so that the industry can prepare accordingly.

Addressing this challenge, this work provided new models that can accurately sim-

ulate ship operation in �oating ice �oes and in open-water channels between ice

sheets. The models can be applied to predict the ice resistance on a given ship. This

will in turn allow naval architects to optimise ice-going vessels by comparing po-

tential hull forms and comparing retro�ts of a hull form; marine engineers to equip

the vessels with adequate propulsion systems; and structural engineers to assess ice

loads on a hull and plan scantlings to strengthen key areas.

The work also developed a procedure to derive a simple ice-resistance equation

based on systematic simulations. During the European Union's Horizon 2020

project – SEDNA (Safe maritime operations under extreme conditions, the Arctic

case), the ice resistance question was combined with open-water resistance equa-

tions to provide a quick prediction of a ship's total resistance and fuel consumption

for a given ice-infested route. This facilitated a voyage planning tool that links with

real-time metocean and ice data to calculate a ship's fuel consumption along poten-
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tial routes, allowing ship operators to select routes with lower energy costs. This

software is currently being commercialised by project partner GreenSteam.

The output of this work can also contribute to future international guidelines and

regulations for polar maritime transportation. For example, based on the developed

simulation approaches, associations such as the International Towing Tank Confer-

ence could develop a fuller guideline on how to model ship-wave-ice interactions.

The �ndings regarding ice resistance on ships could help the International Maritime

Organisation to extend their Polar Code to formulate advice on ship operations in

�oating ice �oes and in open-water ice channels, and the Finnish-Swedish Ice Class

Rules may do the same to expand their scenarios.

Moreover, this work provided higher education and research institutions with tools

and knowledge to account for the transforming Arctic environment. As the Arctic

used to be covered by continuous level ice all year round, new knowledge for the

emerging ice-�oe environment has been urgently required, not only for shipping,

but also to gain a better understanding of global warming and how to deal with it.

For example, contemporary climate models still cannot accurately predict Arctic

ice evolution and global temperature change. One of the main reasons is that they

need to improve the parametrisation that represents wave-ice interactions, because

ocean waves propagating in the ice �elds dictate the ice layout and the associated

ice-re�ected solar radiation. The provided computational models for wave-ice in-

teractions could �ll this gap and potentially help remedy the inaccuracies in current

analytical methods.
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Chapter 1

Introduction

1.1 Background

With global warming, the sea ice extent in the Arctic is reducing quickly. As shown

in Figure 1-1, the Arctic ice extent usually hits a maximum in March and a minimum

in September [1], and satellite images have observed its summer minimum to have

decreased by approximately 12% per decade [28]. According to this trend, an ice-

free Arctic could appear by the middle of this century [29].

The ice reduction creates open water and leads to the notion that commercial ship-

ping through the Arctic will be viable [30], with numerous waterways opening for

travelling between continents and the Arctic, which are used to access oil, gas,

mines, �shing grounds and tourism. In addition, there are two major shipping

routes becoming navigable, the Northwest Passage (NWP) and the North Sea Route

(NSR), which can be used as alternatives to the Panama and Suez canals to con-

nect Europe, Asia and America [2], as illustrated in Figure 1-2. Compared to their

current counterparts, both new routes can reduce the travel distance by up to 40%,

signifying substantial time, cost, fuel and emissions savings [31].

There are formidable challenges coming hand-in-hand with the bene�ts of Arctic

shipping. One of the most obvious is to understand the potential navigation envi-

ronment for ships. The effects of ice reduction on the navigability of the Arctic

can be more complex than anticipated. Rather than providing a pure open-ocean
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environment, the melting ice cover also evolves into numerous ice �oes �oating on

the sea surface, as shown in Figure 1-3. Such ice-�oe �elds have been predicted to

be the most ubiquitous ice condition of future Arctic [14], but its in�uence on ships

has yet to be fully understood.

Figure 1-1: Average monthly sea ice extent in March 2016 (left) and September 2016
(right): illustrates the respective winter maximum and summer minimum extents. The

coloured line indicates the median ice extent during the period 1981-2010, from which a
distinct ice reduction is present [1]

Figure 1-2: Comparison between the Arctic shipping routes (red dashed line) and their
current counterparts (black solid line) [2]
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