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Abstract

Associations between exposures and outcomes reported in epidemiological studies are typi-

cally unadjusted for genetic confounding. We propose a two-stage approach for estimating

the degree to which such observed associations can be explained by genetic confounding.

First, we assess attenuation of exposure effects in regressions controlling for increasingly

powerful polygenic scores. Second, we use structural equation models to estimate genetic

confounding using heritability estimates derived from both SNP-based and twin-based

studies. We examine associations between maternal education and three developmental

outcomes – child educational achievement, Body Mass Index, and Attention Deficit Hyper-

activity Disorder. Polygenic scores explain between 14.3% and 23.0% of the original associ-

ations, while analyses under SNP- and twin-based heritability scenarios indicate that

observed associations could be almost entirely explained by genetic confounding. Thus,

caution is needed when interpreting associations from non-genetically informed epidemiol-

ogy studies. Our approach, akin to a genetically informed sensitivity analysis can be applied

widely.

Author summary

An objective shared across the life, behavioural, and social sciences is to identify factors

that increase risk for a particular disease or trait. However, identifying true risk factors is

challenging. Often, a risk factor is statistically associated with a disease even if it is not

really relevant, meaning that even successfully improving the risk factor will not impact

the disease. One reason for the existence of such misleading associations stems from

genetic confounding. This is when genetic factors influence directly both the risk factor

and the disease, which generates a statistical association even in the absence of a true effect

of the risk factor. Here, we propose a method to estimate genetic confounding and quan-

tify its effect on observed associations. We show that a large part of the associations
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between maternal education and three child outcomes—educational achievement, body

mass index and Attention-Deficit Hyperactivity Disorder—is explained by genetic con-

founding. Our findings can be applied to better understand the role of genetics in explain-

ing associations of key risk factors with diseases and traits.

Introduction

Associations between exposures and outcomes are commonly reported in epidemiological

research, but often without estimating or accounting for the contribution from genetics. How-

ever, most exposures and outcomes are substantially heritable, and genetics can confound

these associations. Here, we propose a new genetic sensitivity analysis, which we call Gsens, to

assess to what extent genetic confounding can account for observed associations.

Genetic confounding and sensitivity analysis

Identifying exposures that can be targeted in effective interventions is a fundamental objective

shared across the life, behavioural and social sciences. To this end, identifying causal exposures

is essential as interventions that target non-causal exposures will likely fail. To establish causa-

tion, it is necessary to account for confounding, which happens when a third variable causally

influences both the exposure and the outcome, thereby generating a non-causal association

between them. Genetic confounding is a special case when genetic factors play the role of the

third variable. The concept of genetic confounding was introduced during the controversy

regarding the effect of cigarette smoking on lung cancer. In a letter entitled ’alleged dangers of

cigarette-smoking’, Ronald Fisher qualified ‘the mild and soothing weed’ as ‘possibly an

entirely imaginary cause’ for lung cancer [1]. He argued that genetic factors could directly

influence both smoking and lung cancer, generating a non-causal association between them.

Although Fisher was mistaken in this particular instance, the notion of genetic confounding

remains relevant, in his words ‘a common cause, in this case the individual genotype’. During

this controversy, Jerome Cornfield argued against this ‘constitutional hypothesis’ [2,3]. He

contended that implausibly large genetic effects (or other unobserved confounders) would be

required to explain away all of the observed association. This led to the birth of the approach

now called sensitivity analysis, which consists of estimating how strong an unknown con-

founder needs to be in order to explain away an observed association, providing insights into

the robustness of that association (i.e. how sensitive it is to confounding and whether it is likely

causal or not) [2]. Since then, sensitivity analyses have become common epidemiological tools

to probe the robustness of findings under alternative scenarios. However, sensitivity analysis

using genetic data has not progressed. We recently [4] proposed to use polygenic scores–indi-

vidual-level scores that summarize genetic risk (or protection) for a given phenotype–to esti-

mate the proportion of observed associations explained by genetic confounding. However,

because polygenic scores capture only a small part of heritability, controlling for polygenic

scores cannot entirely capture genetic confounding. We therefore propose a sensitivity analysis

using polygenic scores to gauge how likely it is that genetic confounding accounts, in part or

entirely, for a given exposure-outcome association. Here, we develop this proposition in two

stages. First, we test to what extent associations of interest are accounted for by observed poly-

genic scores. Second, in the sensitivity analysis per se, we use structural equation models to

examine how an increase in the predictive accuracy of polygenic scores based on heritability

estimates would affect association estimates. This can be thought of as adjusting for latent

polygenic scores that capture as much of the variance in the exposure and outcome as
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suggested by available heritability estimates. We note that recent studies have adjusted for

polygenic scores to account, to some extent, for genetic confounding (e.g. [5]). However, this

approach is fraught with two issues: as mentioned above, polygenic scores only capture a small

fraction of trait heritability and, thus, of the confounding arising from genetic factors; adjust-

ment can sometimes amplify rather than reduce bias [6]. Gsens addresses these issues.

Maternal education and child developmental outcomes

To illustrate our approach, we focus on maternal educational attainment (termed maternal

education) as the exposure of interest. Greater maternal education is associated with child

developmental outcomes in several key domains: social development (e.g. better educational

outcomes), physical health (e.g. lower Body Mass Index, BMI), and mental health (e.g. lower

levels of Attention-Deficit Hyperactivity Disorder (ADHD) symptoms) [7–10]. However,

observed associations between maternal education and developmental outcomes are not free

from confounding, in particular genetic confounding as both maternal education and develop-

mental outcomes are heritable, and mother and child share half their genomes identical by

descent [7,11–15].

Here, we illustrate the use of Gsens to estimate the role of genetic confounding in explaining

the associations between maternal educational and three developmental outcomes in the child:

educational achievement operationalized by the General Certificate of Secondary Education

(GCSE), BMI, and ADHD. Importantly, Gsens has a wide scope of applications as it only

requires genome-wide data on large samples and a focus on outcomes for which polygenic

scores are available. Its applicability will further expand with the steady increase in the number

and the accuracy of available polygenic scores [16].

Results

Method overview

Participants were drawn from the Twins Early Development Study (TEDS), with sample sizes

between 3,663 and 4,693 individuals with data for maternal education and child educational

achievement, BMI, and ADHD. Polygenic scores were estimated in the child using PRSice soft-

ware [17] at different p-value thresholds, explaining increasing amounts of variance in the cor-

responding phenotype. In the first stage, we estimated the proportion of the observed

phenotypic association between the exposure and the outcome that was explained by polygenic

scores at different p-value thresholds; we call these the observed scenarios. However, even the

best-fitting polygenic scores only captured a fraction of the heritability of their corresponding

phenotypes, thus underestimating the magnitude of genetic confounding. In the second stage,

the sensitivity analysis therefore aimed to answer the following question: to what extent is the

exposure X associated with the outcome Y after controlling for all genetic confounding? In

other words, if βXY is the coefficient of regression of Y on X, to what extent would it attenuate

if we were to control for ‘perfect’ polygenic scores capturing all genetic influences on X and Y

rather than the small fraction accounted for by available polygenic scores? To this end, we esti-

mated βXY under plausible scenarios combining information on current polygenic scores and

heritability estimates. The estimation of βXY is based on the matrix of observed correlations

between polygenic scores, exposure and outcomes. We then fit a Structural Equation Model to

this matrix of correlations that aims to reflect the true extent of genetic confounding (see

Methods). Approaches using one polygenic score (for the exposure or for the outcome) or two

polygenic scores (for the exposure and the outcome) were used. Three functions are provided

that adjust the association of interest based on the polygenic score for the exposure (GsensX),

for the outcome (GsensY) or both exposure and outcome (GsensXY). We conducted
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simulations to assess the relative accuracy of these functions and to assess the effect of unob-

served non-genetic confounding on the estimates obtained from Gsens. We provide a package

and a tutorial at https://github.com/JBPG/Gsens.

Observed and heritability-based scenarios

As shown in Table 1, the best-fitting polygenic scores derived from GWAS of years of educa-

tion, BMI and ADHD explained a substantial amount of the variance of, respectively, child

educational achievement (threshold of p = .158), BMI (threshold: p = .20) and ADHD symp-

toms (threshold: p = 0.358) in TEDS. All three were highly significant (largest p value = 1.6e-

20 for ADHD). Table 1 shows parameters for two main heritability-based scenarios: SNP-

based and Twin-based heritability. SNP-based heritability estimates were obtained through

LD score regression [18,19], based on LD Hub [20] for years of education and BMI and the

most recent ADHD GWAS for ADHD [15]. Twin-based estimates were derived from TEDS

and from the literature (see Table 1 note).

Genetic confounding and sensitivity analyses

Single polygenic score: child educational achievement. Table A in S1 Text shows corre-

lations between study variables. The observational estimate of the relationship between mater-

nal educational attainment and child GCSE was 0.398 (95% CI: 0.368, 0.427). Using the best

fitting polygenic score for years of education, the effect explained by genetic confounding was

estimated at 0.073 (0.067, 0.080), corresponding to 18.2% of the total effect. After taking this

genetic confounding effect (as captured by the polygenic score) into account, the relationship

between maternal education and child GCSE was reduced to 0.324 (0.291, 0.357).

The sensitivity analysis is represented in Fig 1, where standardized estimates of the effect of

maternal education on child GCSE are plotted as a function of the variance explained in the

latter. We first re-estimated the effect of maternal education on child GCSE by adjusting for

observed polygenic scores at different p value thresholds, explaining different amounts of vari-

ance in GCSE scores. We then estimated the effect of maternal education on child GCSE

under scenarios in which polygenic scores could capture additional variance in educational

outcomes (see Methods). The SNP-heritability scenario is based on the SNP-heritability of

GCSE scores, which was previously estimated in TEDS to be 31% [12]. Under this scenario the

effect of maternal education on child achievement further decreased to 0.175 (0.129, 0.222).

The effect estimate was null under the twin-heritability scenario.

We define k as the ratio of the standardized path from the polygenic score to the exposure

divided by the standardized path from the polygenic score to the outcome (see Methods). The

Table 1. Heritability and genetic correlation under different scenarios.

Heritability (% variance) Exposure-outcome genetic correlation

Education BMI ADHD Education~BMI Education~ADHD

Best-Fitting Polygenic score 11.9 6.3 1.3 -0.185 -0.184

SNP-based scenario 31.0 18.6 21.6 -0.279 -0.535

Twin scenario 63.01 64.0 62.02 -0.0453 -0.4443

1Heritability of the GCSE score estimated in TEDS was used.
2Twin estimates for ADHD in TEDS are superior to > .80 [7]. However, a twin meta-analysis has argued that commonly reported heritability estimates for ADHD may

be biased, and estimated broad-sense heritability to be 62%, which is used here [21].
3As maternal education attainment does not vary within family, it is not possible to directly estimate the twin-based genetic correlation between maternal educational

and child BMI and ADHD in TEDS, so child GCSE was used as a proxy of educational attainment.

https://doi.org/10.1371/journal.pgen.1009590.t001
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estimated k was 0.84. This is higher than the value of 0.5 expected when X and Y are the same

trait measured in parents and children (meaning that the standardized association between the

child polygenic score and maternal education should be, at most, half of the standardized asso-

ciation between the child polygenic score and the child educational outcome). In addition to

sample-specific findings, this could be because the polygenic score for child educational

achievement was derived from a GWAS of years of education in adults, which is closer to the

maternal education phenotype (X) than the child GCSE phenotype (Y). A similar finding was

observed by Bates et al. [22]. When setting k = 0.5 under the twin-heritability scenario, the esti-

mate of b̂XY is still considerably reduced compared to the observed correlation but remains

positive at 0.098 (0.066, 0.129).

Two polygenic scores: BMI and ADHD. The observational estimate of the relationship

between maternal education and child BMI was βXY = -0.089 (-0.122, -0.057). Using the best

fitting polygenic scores for years of education and BMI, the genetic confounding effect was

estimated at -0.021 (-0.028, -0.013), corresponding to 23.0% of the total effect. After taking this

genetic confounding effect into account, the relationship between maternal education and

child BMI was -0.069 (-0.100, -0.037). The first scenario used SNP-based heritability estimates

for years of education and BMI (see Table 1). In that scenario, the relationship between mater-

nal education and child BMI further attenuated to -0.043 (-0.077,-0.009). In the twin heritabil-

ity scenario, the estimate was null, meaning that, under this scenario, the entire association

between maternal education and child BMI is accounted for by genetic confounding. Table 2

presents sensitivity analyses for BMI adjusting for both polygenic scores for the exposure and

the outcome (GsensXY), only the outcome (GsensY), or only the exposure (GsensX). Esti-

mates in bold are estimates from GsensXY reported in the text; other results presented in

Table 2 are further explained in the next sections.

Fig 1. Gsens analysis of the effect of maternal educational attainment on child educational achievement.

Estimated standardized effect of maternal education on child educational achievement (Y axis) after accounting for

genetic confounding using observed polygenic scores and heritability-based scenarios explaining an increasing

percentage of variance (X axis). Point estimates and confidence intervals in black represent main estimates of interest,

after accounting for (from left to right): 1: the best-fitting polygenic score; 2: SNP-heritability of educational

achievement as assessed by GCSE scores in TEDS; 3: twin-heritability of educational achievement. A lower bound of 0

was imposed on the estimate, which is reached for the twin estimate of heritability (63%). The line “k = Observed”

corresponds to heritability-based scenarios using values of model parameter k derived from observed polygenic scores

(see Methods). “k = theoretical” corresponds to the value of k when the same trait is in parents and children and the

heritability is the same in parents and children. In this case k = 0.5 (see Methods).

https://doi.org/10.1371/journal.pgen.1009590.g001
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The observational estimate of the relationship between maternal education and child

ADHD was-0.124 (-0.152, -0.096). Using the best fitting polygenic scores for years of educa-

tion and ADHD, the genetic confounding effect was estimated to be -0.018 (-0.027, -0.009),

corresponding to 14.3% of the total effect. After taking genetic confounding as captured by the

polygenic scores into account, the relationship between maternal education and child ADHD

attenuated to -0.106 (-0.135; -0.076). Table 3 shows results under different scenarios. In herita-

bility-based scenarios, the relationship between maternal education and child ADHD was fur-

ther attenuated, reducing to null in the twin-based scenario.

Table 2. Sensitivity analysis for BMI.

GsensXY GsensY GsensX

Best Fitting PS3 Unconstrained Residual1 -0.081 (-0.114;-0.048) -0.069 (-0.101;-0.037) -0.089 (-0.123;-0.055)

G confound2 -0.009 (-0.021;0.004) -0.021 (-0.029;-0.013) 0.000 (-0.010;0.010)

Constrained Residual -0.069 (-0.100;-0.037) -0.069 (-0.100;-0.037) -0.089 (-0.123;-0.055)

G confound -0.021 (-0.028;-0.013) -0.021 (-0.028;-0.013) 0.000 (-0.010;0.010)

SNP heritability Unconstrained Residual -0.060 (-0.097;-0.022) -0.028 (-0.065;0.009) -0.089 (-0.123;-0.056)

G confound -0.030 (-0.057;-0.002) -0.061 (-0.086;-0.037) 0.000 (-0.009;0.009)

Constrained Residual -0.043 (-0.077;-0.009) -0.028 (-0.065;0.009) -0.089 (-0.123;-0.055)

G confound -0.052 (-0.072;-0.033) -0.061 (-0.086;-0.037) 0.000 (-0.010;0.009)

Twin heritability Unconstrained Residual - 0.132 (0.036;0.230) -0.089 (-0.127;-0.051)

G confound - -0.222 (-0.320;-0.124) -0.001 (-0.020;0.019)

Constrained Residual 0.00 (0;0) 0 (0;0) -0.089 (-0.127;-0.051)

G confound -0.099 (-0.130;-0.067) -0.098 (-0.130;-0.065) -0.001 (-0.020;0.019)

Note. Estimates and 95% CI are provided for each scenario.
1Residual association after adjusting for genetic confounding.
2Genetic Confounding.
3Polygenic Score.

https://doi.org/10.1371/journal.pgen.1009590.t002

Table 3. Sensitivity analysis for ADHD.

GsensXY GsensY GsensX

Best Fitting PS3 Unconstrained Residual1 -0.106 (-0.135;-0.076) -0.117 (-0.145;-0.089) -0.107 (-0.137;-0.077)

G confound2 -0.018 (-0.027;-0.009) -0.007 (-0.010;-0.004) -0.017 (-0.026;-0.008)

Constrained Residual -0.106 (-0.135;-0.076) -0.117 (-0.145;-0.089) -0.107 (-0.136;-0.077)

G confound -0.018 (-0.027;-0.009) -0.007 (-0.010;-0.004) -0.017 (-0.026;-0.008)

SNP heritability Unconstrained Residual -0.063 (-0.158;0.031) -0.01 (-0.074;0.054) -0.108 (-0.138;-0.079)

G confound -0.061 (-0.153;0.032) -0.114 (-0.173;-0.055) -0.016 (-0.024;-0.008)

Constrained Residual -0.052 (-0.096;-0.008) -0.01 (-0.074;0.054) -0.107 (-0.136;-0.077)

G confound -0.078 (-0.113;-0.043) -0.114 (-0.173;-0.055) -0.016 (-0.025;-0.008)

Twin heritability Unconstrained Residual - - -0.089 (-0.123;-0.055)

G confound - - -0.035 (-0.053;-0.017)

Constrained Residual 0 (0;0) 0 (0;0) -0.089 (-0.123;-0.055)

G confound -0.129 (-0.158;-0.1) -0.127 (-0.156;-0.099) -0.035 (-0.053;-0.017)

Note. Estimates and 95% CI are provided for each scenario.
1Residual association after adjusting for genetic confounding.
2Genetic Confounding.
3Polygenic Score.

https://doi.org/10.1371/journal.pgen.1009590.t003
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Model constraints. Tables 2 and 3 present constrained and unconstrained models.

Unconstrained models, while closely fitting the data, can yield manifestly impossible values

such as heritabilities above 100%, standardized paths above 1, or negative variances, in which

case estimates are unreliable (which was the case for empty cells in Tables 2 and 3). Implausible

values are also observed. For example, in Table 2, the unconstrained GsensY estimate in the

twin heritability scenario is positive, which would correspond to higher maternal education

being linked to higher rather than lower BMI in children. This is understandable given that

the best fitting polygenic score, which explains only 6.3% of variance in child BMI already

explains 23% of the negative association between maternal education and child BMI. Under

the twin heritability scenario, with BMI heritability of 64%, the association is likely to flip to a

positive sign. This may be due to sampling. For example, if the cross path from BMI polygenic

score to maternal education is, by chance, overestimated in TEDS, this will overestimate

genetic confounding as captured by the polygenic score and impact estimation under the twin

heritability scenario. It may also be because the true heritability of BMI is overestimated by the

twin design. The constrained models therefore impose constraints on parameters to avoid

impossible values (standardized paths above one and negative variances) and implausible val-

ues (cross-paths and residual associations flipping sign). While these models fit the observed

data less well than the unconstrained models, they accommodate our prior beliefs about the

plausible range of parameter values.

Collider bias and simulations. Gsens uses estimates of heritability that provide useful

benchmarks to estimate the extent of genetic confounding. It provides estimates of the

strength of genetic confounding as well as of the residual association, which comprises the

causal effect plus the association through non-genetic confounders. However, these estimates

are biased by the association between genetic and non-genetic confounders induced by condi-

tioning on the exposure X, an instance of collider bias (see Methods). The bias is most pro-

nounced when adjusting for polygenic scores that explain more variation in X than in Y, and

may lead to estimates of residual association that are more biased than the observational asso-

ciation, a phenomenon termed bias amplification [6]. We therefore expect more bias for

GsensX compared to GsensY.

We conducted four sets of simulations based on the underlying causal model presented in

Methods. In the first, we simulated polygenic scores capturing all genetic influences to exam-

ine the effect of collider bias independent of measurement error. We compared estimates from

the three Gsens functions to the true residual association net of genetic confounding (compris-

ing the causal effect and non-genetic confounding). As shown in Fig 2, the effect of collider

bias can be particularly severe when there is no genetic confounding (top left panel, Fig 2), and

when the heritability of X is high (bottom left panel, Fig 2). In such cases, adjusted estimates

can indeed be higher than the observational association, i.e. lead to bias amplification. In the

presence of genetic confounding, the adjusted estimates are always closer to the true residual

association than to the observational association (top and bottom right panels, Fig 2). How-

ever, bias is still present. Bias is greatest for GsensXY and GsensX. However, in all cases, esti-

mates from GsensY have little or no bias, even when the heritability of X and the genetic

correlation are high (bottom right panel, Fig 2). When there is no non-genetic confounding (0

on the X-axis), collider bias does not occur and all Gsens estimators recover the causal effect.

In the second set, we simulated polygenic scores that captured only a fraction of heritability.

We simulated scenarios under which the polygenic score for X captures more of the variance

of Y than the polygenic score for Y itself. This may happen with differentially powered GWAS.

In our empirical example, the polygenic score for education captures almost as much variance

in ADHD as the polygenic score for ADHD itself. Conceivably under such scenarios, using

GsensX or GsensXY may better account for genetic confounding than GsensY. In our
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example, both GsensX and GsensXY using the polygenic score for education found a larger

genetic confounding effect than when using the polygenic score for ADHD in GsensY alone.

However, our simulations showed that, even under such circumstances, the effect of collider

bias under twin heritability scenarios remains larger for GsensX and GsensXY than for

GsensY. Numerical results for all simulations are provided in S1 Data.

The third and fourth sets were based on simulating individual SNP effects rather than poly-

genic scores, while replicating parameters in the first and second set respectively (i.e. sample

size, causal effect, heritability, and correlation between direct genetic and non-genetic factors).

In both the third and fourth sets, the true residual association was also closely estimated by

GsensY but not as closely by GsensX and GsensXY due to collider bias. In the third set, results

closely match those of the first set, showing that generating true polygenic scores based on a

mixture of SNP with different patterns did not substantially affect results compared to directly

generating polygenic scores. In the fourth set, a small but consistent downward bias in GsensY

estimates was observed compared to the second set. Across all simulation scenarios, the

median discrepancy between the true residual association and the GsensY estimate was 0.001

in the second set of simulations but -0.014 in the SNP-based fourth set (e.g. a true residual

association of 0.254 is estimated to be 0.240). This downward bias may be due to overfitting

Fig 2. Collider bias: simulation results. The standardized association between X and Y (Y-axis) is plotted as a function of

the correlation between the non-genetic factors for X and Y that generates non-genetic confounding (X-axis). The figure is

faceted left to right according to the genetic correlation between direct effects that generates genetic confounding (gen cor),

and top to bottom according to the heritability of X (hx). A subset of results is plotted with causal effect = 0.20, N = 10,000,

heritability of Y = 70% and the full set of results is provided in S1 Data. Note that estimates from GsensX and GsensXY are

very similar in this first set of simulations but can differ in the second when polygenic scores are set to capture varying levels

of the heritability of X and Y.

https://doi.org/10.1371/journal.pgen.1009590.g002
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(arising from selecting the best-fitting polygenic score), which overestimates genetic con-

founding and thus underestimates the true residual association. However, this downward bias

remained small. In the SNP-based simulation, the SE accurately estimates the empirical SD

and by extension we can infer that confidence intervals have appropriate coverage. Type-1

error was close to 0.05 for GsensY, sometimes a bit conservative when polygenic scores cap-

tured only 1% of the variance. Numerical results for all simulations are provided in S1 Data.

In simulations, constraints imposed on the model to avoid impossible or implausible results

often removed part or all bias. However, we caution against systematically applying constraints

as they do not necessarily remove bias and may artificially reduce standard errors. Results of

constrained models, as well as standard errors for all models, are reported in S1 Data. Of note,

standard errors for GsensY were systematically lower than for GsensX and GsensXY.

These results suggest that GsensY should be preferred in all situations and that Gsens is best

adapted when the outcome of interest is strongly predicted by its polygenic score. When the

polygenic score for the exposure is more predictive, GsensXY can be used, particularly to esti-

mate genetic confounding with observed polygenic scores, but should be interpreted with cau-

tion under heritability scenarios.

In addition, although GsensY closely recovered the expected estimates, the range of esti-

mates across simulations was wider with polygenic scores capturing 1% of the variance, in par-

ticular for the smaller sample size of 3000. This means that estimates in a particular sample can

be more unstable. In practice, when applying the method, users should be able to detect some

of this instability by examining standard errors.

Discussion

In the present study, we combined polygenic scores with heritability estimates in a genetic sen-

sitivity analysis–Gsens–aiming to gauge to what extent genetic confounding can account for

observed epidemiological associations. The genetic sensitivity analysis we propose adds a new

tool to probe the robustness of associations between exposures and outcomes. This approach

requires a genotyped cohort with relevant phenotypic measurements, which is increasingly the

rule for epidemiological cohorts rather than the exception. It is therefore possible to envisage

Gsens analysis becoming routine. Below, we first discuss our empirical findings regarding the

associations between maternal education and child educational attainment, BMI, and ADHD.

We then discuss the interpretation and applicability of Gsens.

Maternal education and developmental outcomes

Our findings show that the association between maternal education and child developmental

outcomes were still present under a SNP-heritability scenario but were null under a twin-heri-

tability scenario. Overall, the observed association between maternal education and these three

developmental outcomes may largely be due to genetic confounding.

Relevant to our findings is previous research using causal inference designs to investigate

the effect of parental educational attainment on child educational attainment. In particular, a

systematic review on the topic has summarized evidence from twin and adoption designs, as

well as non-genetic instrumental variable estimations [23]. The systematic review suggested

that intergenerational associations between parent and child educational attainment are largely

driven by selection effects, including genetic confounding; it suggests only small but still signif-

icant causal effects. A new method–the ‘virtual-parent design’–has recently emerged, which

consists of splitting parental genetic variants associated with a parental exposure into variants

transmitted and nontransmitted to the child [22,24,25]. Parental polygenic scores including

only nontransmitted variants are free from genetic confounding and index plausible causal
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effects of the parental exposure on the child outcome. Empirical findings implementing this

method in education research suggest substantial genetic confounding and small but still sig-

nificant causal effects of parental attainment on child attainment. Our findings on educational

attainment are consistent overall with this literature. Although genetic confounding accounted

entirely for the association between parental education attainment and child achievement, we

detected a small but significant effect when using the upper theoretical limit of the k parameter,

consistent with previous findings. In addition, scenarios based on lower heritability estimates

also yielded small but significant effects, raising the possibility that null findings resulted from

overestimated twin heritability estimates, a possibility further discussed below. Taken together,

this set of findings represents a clear call for caution when interpreting non-genetically

informed epidemiological studies on the role of maternal education.

Interpreting the sensitivity to genetic confounding analysis

Two key points regarding the interpretation of Gsens findings must be highlighted. First, the

reliability of findings depends on the accuracy of heritability estimates. Overestimating herita-

bility would lead to overestimating genetic confounding and thus underestimating the residual

association between exposure and outcome. For example, a recent study of 193,518 twins

across 16 countries showed that educational attainment is 43% heritable [26]. As can be seen

in Fig 1, this lower estimate would lead to a substantially larger adjusted association. Improved

estimates of heritability that better reflect true genetic effects can be plugged into our method

as they become available. In addition, power increase in GWAS will improve the reliability of

Gsens in the following ways: (i) by increasing the predictive power of polygenic scores and

therefore the accuracy of observed scenarios; (ii) by improving the accuracy of parameter esti-

mates for the sensitivity analysis.

Second, Gsens aims to estimate genetic confounding and the residual association net of

genetic confounding. This is distinct from genetic overlap, as estimated by bivariate twin or

mixed-model methods, which decomposes the phenotypic association into genetic and envi-

ronmental components (the percentage of the phenotypic correlation that is due to genetic

overlap is called bivariate heritability). This is because a genetic correlation can arise from

genetic effects on the outcome mediated via the exposure and the causal path (i.e. mediated

pleiotropy) or by direct genetic effects on the outcome (i.e. unmediated pleiotropy). In twin-

based methods, the corresponding residual association is an environmental association in that

it excludes all genetic components from the observed association, including those mediated by

the causal effect. In contrast, Gsens aims to remove only the genetic confounding or unmedi-

ated pleiotropy. In the absence of nongenetic confounding, the Gsens residual association

would correspond to the causal effect, while the environmental association would be lower

than the causal effect. Further clarifications regarding these conceptual differences can be

found in Annex A in S1 Text.

Assumptions and limitations

A number of key assumptions of Gsens should be noted. Gsens assumes that the polygenic

score reflects the true genetic value plus classical measurement error. This assumption would

hold under an additive model but not necessarily under interactions (epistasis or gene-environ-

ment interactions). Note that SNP-heritability estimates and narrow-sense twin-heritability esti-

mates used in Gsens also assume additivity. SNP-heritability estimates the variance explained

by common SNPs and is thus the ceiling for polygenic scores estimated from the same common

SNPs. Extrapolation to the twin-heritability estimates therefore assumes that additive genetic

effects captured in twin heritability have the same confounding structure (i.e. that polygenic
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scores still reflect the true genetic value). In addition to true genetic effects, polygenic scores

may capture the effects of residual population stratification, assortative mating, and dynastic

effects. Although not reflecting true genetic effects, these effects do represent additional sources

of confounding of the association between X and Y. Gsens thus adjusts for the confounding

associated with empirical polygenic scores, which include broader genetically related confound-

ing rather than genetic confounding arising from direct genetic effects alone (details in Annex

B in S1 Text). Importantly, methods using family-based designs can remove these sources of

confounding. When appropriate family-based GWAS become available, Gsens can be imple-

mented with polygenic scores and heritability estimate free from these sources of confounding.

Gsens also assumes that the adjustment for the polygenic score is equivalent to the adjust-

ment for all individual SNPs. This assumption is unlikely to fully hold as the polygenic score

should comprise a mixture of SNPs with different confounding structure. However, the com-

parison between the second set of simulation (simulating a polygenic score directly) and the

fourth set (using individual SNP effects with different confounding structures) did not result

in a substantial change in the estimation of the residual association.

Gsens does not directly address the question of reverse causation. As in typical epidemio-

logical studies, reverse causation can be, entirely or partly, ruled out based on the temporal

sequence between exposure and outcome (e.g. prenatal risk factors cannot be caused by child

psychopathology, or maternal education is unlikely to largely result from child psychopathol-

ogy as education is often completed before childbirth).

In addition to the limitations addressed above, it is worth noting that large-scale GWAS are

still largely restricted to people of European descent, thereby limiting the generalizability of

polygenic score analyses and derived applications such as Gsens. We note that polygenic scores

derived from European samples can still be associated (albeit more weakly) with non-Euro-

pean populations, and so Gsens can, in principle, still be applied as long as realistic heritability

estimates are available for those populations. Current efforts towards more inclusive GWAS

should also help in progressively overcoming this limitation. Furthermore, providing the sam-

pling populations are exchangeable, it is not necessary for the genetic and observational associ-

ations, nor the heritabilities, to be estimated in the same datasets.

We note that a conceptually similar approach to ours is taken in the latent causal variable

(LCV) model [27], which also estimates genetic confounding parameters without identifying

the causal effect of the exposure. The emphasis of LCV is however on comparing the genetic

confounder effects on the risk factor to those on the outcome. Mendelian Randomization (MR)

methods impose stronger assumptions on the genetic confounding effects to explicitly identify

the causal effects [28]. In comparison with MR and LCV methods, our approach retains much

of the precision of the observational association. However we cannot identify the causal effect

from the residual association, unless we assume no non-genetic confounding. We contend that

where there is substantial genetic confounding, our approach provides insights into the likely

existence and magnitude of a causal effect. Indeed, our approach recreates a standard regression

adjustment for a polygenic score explaining the entire heritability, should such a score be avail-

able. In this respect we follow traditional lines of sensitivity analysis in epidemiological studies,

accepting that bias may still remain from residual confounding. We note that Gsens may be

extended in future to explicitly consider measured confounders, which may further reduce

residual confounding as well as the effect of collider bias due to nongenetic confounding.

Conclusions

We propose a genetic sensitivity analysis aiming to adjust for genetic confounding in epidemi-

ological associations. Gsens implements structural equation models to adjust for genetic
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confounding based on polygenic scores and heritability estimates. Gsens can be applied as

long as a suitable GWAS for the outcome is available, even when a GWAS for the exposure is

not available or does not provide adequate instruments for MR analyses. For example, Gsens

can be applied to test whether the association between urbanicity and schizophrenia is suscep-

tible to genetic confounding based on the polygenic score and heritability estimates for schizo-

phrenia. We therefore propose that Gsens can be conceived as a complementary method,

suited for complex environmental exposures that are of interest for health, behavioural and

social sciences.

Methods

Ethics statement

Ethical approval for TEDS has been provided by the King’s College London Ethics Committee

(reference: PNM/09/10–104). Written parental consent was obtained before data collection.

Participants

Participants were drawn from the Twins Early Development Study (TEDS), a longitudinal study

of twin pairs born in England and Wales, between 1994 and 1996. Detail regarding TEDS, the

recruitment process, and representativeness can be found elsewhere [29]. A total of 7,026 unre-

lated individuals have been genotyped in TEDS. For each individual analysis, sample size com-

prised between 3,663 to 4,693 individuals with data for maternal education and each outcome.

Measures

Maternal educational attainment was reported by mothers at first contact, when children were

on average 18 months old, with 8 levels: 1 = no qualifications; 2 = CSE grade 2–5 or O-level/

GCSE grade D-G; 3 = CSE grade 1 or O-level/GCSE grade A-C; 4 = A-level or S-level;

5 = HNC; 6 = HND; 7 = undergraduate degree; 8 = postgraduate qualification.

Child educational achievement was operationalized as performance on the standardized

UK-wide examination, the General Certificate of Secondary Education (GCSE), at 16 years.

We computed a mean of the three compulsory core subjects, mathematics, English, and sci-

ence (further details in [12]). A total of 3,785 genotyped individuals had data on both maternal

education and child GCSE.

Body Mass Index (BMI) was derived from parent reported (ages 11 and 14 years) and self-

reported weight and height (age 16 years). Extreme BMI values (<1% and>99% quantiles)

were winsorized and resulting values were averaged across ages 11 to 16 years. A total of 3,663

genotyped individuals had data on maternal education and the resulting BMI score.

The DSM-IV ADHD symptom subscale, taken from the Conners’ Parent Rating Scales–

Revised [30] was completed by mothers to assess inattentive and hyperactive/impulsive symptoms

(9 for hyperactivity/impulsivity and 9 for inattention). Each item was rated on a 4-point Likert

scale ranging from 0 (not at all true) to 3 (very much true). A total ADHD score was created by

averaging scores across the following mean ages of participants at assessments: 8, 11, 14, and 16

years. The score measures population symptoms dimensionally and not the clinical disorder. A

total of 4,693 genotyped individuals had data on maternal education and the ADHD score.

Analyses

Genotyping, quality control procedures and principal component analysis are detailed in Sec-

tion A in S1 Text. A total sample of 7,026 participants with European ancestry remained after

quality control. Single Nucleotide Polymorphisms (SNPs) were excluded if the minor allele
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frequency was <5%, if more than 1% of genotype data were missing, or if the Hardy Weinberg

p-value was lower than 10−5. Non-autosomal markers and indels were removed.

We computed genome-wide polygenic scores based on summary statistics from the follow-

ing genome-wide association studies (GWAS): (i) years of education [31]; (ii) ADHD [15];

and (iii) BMI [13]. In some cases, like ADHD, the GWAS phenotypes do not match our mea-

sures exactly; however they still explain substantial variation and can be extrapolated up to the

heritability of our measure. Polygenic scores for all TEDS participants and all traits were com-

puted using PRSice software [17], with prior clumping to remove SNPs in linkage disequilib-

rium (r2 > 0.10). PRSice allowed us to select the best-fitting polygenic score for each trait, e.g.

maximizing the amount of variance explained by the polygenic score for BMI in TEDS partici-

pants’ BMI. To this end, we computed a series of polygenic scores including an increasing

number of SNPs corresponding to increasing p-value thresholds (e.g. all SNPs associated to

BMI at p< .0001 and p< .10) as illustrated in Figs A, B and C in S1 Text. Using linear regres-

sion analyses, we estimated the proportion of variance explained by each generated polygenic

score in the corresponding trait in TEDS. Notably, the key parameter derived from the poly-

genic score for Gsens is how much variance it explains in the outcome and the exposure.

Therefore, other methods to generate polygenic scores can be used besides PRSice. Emerging

or future methods providing more precise polygenic scores should improve Gsens estimates.

The following covariates were included in regression analyses: sex, age (for GCSE), and 10

principal components of ancestry.

Genetic confounding

We assume a linear structural equation model framework [32]. Akin to third variable confound-

ing, genetic confounding is represented in Fig 3A: genetic factors (G)–here measured by polygenic

score(s)–influence both the exposure (X) and the outcome (Y). MacKinnon et al. demonstrated

that mediation and confounding are statistically identical in linear structural equation modelling

[33]. Therefore, genetic confounding can be estimated by treating the confounder–here the poly-

genic score G–as a mediator of the effect of X and Y (Fig 3B). The confounding effect is the indi-

rect effect of X on Y through G: βXGβGY. We also calculated the proportion of the observed effect

of X on Y that is accounted for by genetic confounding, i.e.
b̂XG b̂GY

bXGbGYþbXY
.

When the polygenic score for the predictor (G1) is different from the polygenic score for

the outcome (G2), the confounding effect is estimated in a similar fashion as the sum of all the

indirect effects from X to Y through G1 and/or G2 (Fig 4A and 4B).

Genetic confounding effects were calculated for all three developmental outcomes:

• Maternal education to child educational achievement using the best-fitting polygenic score

for years of education (as in Fig 3);

• Maternal education to child BMI using best-fitting polygenic scores for years of education

(G1) and BMI (G2) (as in Fig 4);

• Maternal education to child ADHD symptoms using best-fitting polygenic scores for years

of education (G1) and ADHD symptoms (G2) (as in Fig 4).

In these analyses, the effect size of X on Y decreases as a function of the strength of genetic

confounding. However, this approach does not account for all genetic confounding. This is

because polygenic scores based on current GWAS capture a relatively small amount of all

genetic influences. For example, the current polygenic score for BMI explains around 6% of

the variance in BMI in TEDS, far less than SNP-based and twin-based estimates of BMI herita-

bility. The sensitivity analysis we propose aims to address this issue.
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Fig 3. Genetic confounding, one polygenic score case. Fig 3A represents the underlying model. Fig 3B represents the

model to calculate the confounding effect by treating G as a ’mediator’. Of note is that the commonly used terminology

‘genetically mediated’ can be confusing. Although ‘genetically mediated’ makes sense statistically, conceptually, a

mediator is on the causal pathway from the predictor to the outcome. However, because germline genetic variants are

set at conception and do not change throughout the lifespan, posterior exposures (e.g. individual alcohol intake)

cannot influence health outcomes (e.g. depression) through modifying germline genetic variants [34]. Although

statistically treated as a mediator here to estimate confounding, conceptually G does not qualify as a mediator.

Variances not represented for simplicity.

https://doi.org/10.1371/journal.pgen.1009590.g003

Fig 4. Genetic confounding, two polygenic scores. Fig 4A represents the underlying causal model. Fig 4B represents

the model to calculate the confounding effect, which is equal to: bXG1
bG1Y
þ bXG2

bG2Y
. Note that when model variables

are standardized, the genetic confounding effect can also be obtained based on 4a by bG1X
bG1Y
þ bG2X

bG2Y
þ

bG1X
bG1G2

bG2Y
þ bG2X

bG1G2
bG1Y

Variances not represented for simplicity.

https://doi.org/10.1371/journal.pgen.1009590.g004
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Sensitivity analysis

The sensitivity analysis aims to answer the following question: is X associated with Y after we

control for all genetic confounding? In other words, to what extent would βXY decrease if we

were to control for ‘perfect’ polygenic scores capturing all genetic influences on X and Y rather

than a small fraction. This is done by estimating βXY under plausible scenarios that combine

information on existing polygenic scores and heritability estimates.

Single polygenic score. For maternal education and child educational achievement, we

used a polygenic score for the child, derived from the GWAS of years of education, which pre-

dicts a substantial amount of variance both in child GCSE but also in maternal education. The

effect of maternal education on child educational attainment can be first adjusted for the

observed best-fitting polygenic score. However, this polygenic score does not capture all the

heritability of the outcome and therefore incompletely adjusts for genetic confounding. The

sensitivity analysis consists in re-examining the effect of maternal education under scenarios

where the polygenic score could capture additional variance in child GCSE up to SNP-based

and twin-based estimates of heritability.

Fig 3A shows the underlying model of relationships between the polygenic score (G), the

predictor (X) and the outcome (Y). We can obtain an adjusted effect of X on Y based on the

observed associations available with the following expression:

bXY ¼ ðrXY � rGXrGYÞ=ð1 � r2

GXÞ ð1Þ

where βXY is the adjusted effect and r denotes observed standardized associations. Details are

presented in Section B in S1 Text. Importantly, βXY corresponds to the standardized associa-

tion between X and Y minus genetic confounding, i.e. the residual association between X and

Y net of genetic confounding. In other words, Gsens removes only genetic confounding and

not all genetic effects shared between X and Y, which comprise both genetic confounding and

genetic effects on Y mediated by X via a causal pathway. When subtracting all shared genetic

effects, including those arising from the causal effect, the residual association becomes the

’environmental association’. This is similar to what happens in bivariate decomposition of the

phenotypic correlation in twin and mixed model designs and is distinct from Gsens estimates.

This distinction is further clarified in Annex A in S1 Text.

When using the best-fitting polygenic score, βXY can be estimated using standardized asso-

ciations between the observed polygenic score, X and Y, as in expression (1). In the sensitivity

analysis, a structural equation model is fitted with a latent variable G� representing heritability,

as presented in Fig 5. This can be understood as correcting for measurement error, i.e. G being

an imperfect measure of G�. Genetic confounding estimated under this model reflects herita-

bility under the chosen scenario rather than only what is captured by the polygenic score. We

fitted structural equation models using the R package ‘lavaan’ [35].

Complete genetic confounding. In Eq (1), the association between X and Y is completely

genetically confounded when the adjusted effect βXY = 0. We can then express the observed

standardized association as a function of the heritabilities of X and Y under complete genetic

confounding as:

rXY ¼ rGXrGY ¼
ffiffiffiffiffiffiffiffi

ðh2
xÞ

q ffiffiffiffiffiffiffiffi
ðh2

yÞ
q

ð2Þ

When the adjusted effect of X on Y is null, then rXY is equal to genetic effects through G. In

the special case where X and Y are the same trait in parent and child and assuming constant
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heritability across generations, we thus obtain:

rXY ¼ 0:5 �
ffiffiffiffiffiffiffiffi
ðh2

yÞ
q ffiffiffiffiffiffiffiffi

ðh2
yÞ

q
¼ 0:5h2

y ð3Þ

This means that the adjusted effect of X on Y is likely to be null whenever the observed asso-

ciation does not exceed half of the trait heritability. As such, a given association between

parental and child traits can be assessed against Fig 6 and if it lies in the shaded area, it is con-

sistent with complete genetic confounding. Importantly, associations not in the shaded area

Fig 5. Sensitivity analysis, one polygenic score. The latent variable is set to capture the heritability of Y under the

sensitivity analysis scenario (e.g. twin-heritability). The following constraint is applied: bG�Y þ bG�XbXY ¼
ffiffiffiffiffiffiffiffi
ðh2

yÞ
q

.

Variances not represented for simplicity.

https://doi.org/10.1371/journal.pgen.1009590.g005

Fig 6. The role of genetics in explaining phenotypic associations between parent and child. Standardized observed

associations between the same traits in the mother (or father) and the child are represented as a function of trait

heritability. An observed association of 0.20 with trait heritability of 0.60 is consistent with complete genetic

confounding. Conversely, an association of 0.40 with heritability of 0.40 is not consistent with complete genetic

confounding.

https://doi.org/10.1371/journal.pgen.1009590.g006
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can still be confounded by environmental exposures. See Section C in S1 Text for additional

details on Eqs (2) and (3).

The two polygenic scores case

When predictor and outcome are different variables–for example maternal education and

child BMI–two polygenic scores can be used in the sensitivity analysis, as shown in Fig 4. In

theory, if we had a polygenic score capturing all genetic influences for Y, this score would also

capture all the genetic overlap between X and Y, and we could use the one polygenic score case

above. In practice, polygenic scores do not capture all genetic influences on their respective

phenotypes and are differentially powered, which is why we examine the utility of a two poly-

genic scores solution. In the two polygenic scores case, new parameters are introduced includ-

ing the cross paths from each polygenic score to the other phenotype (bG1Y
and bG2X

). Due to

these new parameters, the derivation of βXY becomes more complex than for the single case

polygenic score. We thus generalize the structural equation model to two latent variables and

polygenic scores as in Fig 7. Further details in Section D in S1 Text.

Model assumptions

Latent models represented in Figs 5 and 7 require the standard assumptions of structural equa-

tion modelling, including normality of the observed and latent variables and no unmodelled

confounding or interaction effects. For polygenic traits the normality assumptions are reason-

able. Note that although polygenic scores are constructed from additive models, we make no

such assumption for the true latent genetic value, only that it has a linear relationship with the

polygenic score. Unmodelled confounders can create bias amplification, as we show in our

simulations. However note that all heritable confounders would be included in the latent

genetic values under the heritability scenarios, and so only the non-genetic components of

unmodelled confounders would create bias. We elaborate further on assumptions and inter-

pretation of results in the Discussion.

Fig 7. Sensitivity analysis, two polygenic scores. The following constraints are imposed on the model: bG1�X þ

bG�1G�2bG�2X ¼
ffiffiffiffiffiffiffiffi
ðh2

xÞ
p

and bG�2Y þ ðbG�2X þ bG�1G�2bG�1XÞbXY þ bG�1G�2bG�1Y ¼
ffiffiffiffiffiffiffiffi
ðh2

yÞ
q

: Variances not represented for

simplicity.

https://doi.org/10.1371/journal.pgen.1009590.g007
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Simulations

In order to verify the performance of Gsens under its own assumptions, and study the impact

of collider bias, we conducted simulations based on the underlying causal model presented in

Fig 8. Simulations were conducted with the SimulateData() function in package ’lavaan’

embedded within the wrapper simulation package SimDesign [36,37].

In the first set of simulations, loadings from G�
1

to G1 and G�
2

to G2 were fixed to unity

(thereby simulating polygenic scores capturing the whole heritability) in order to examine col-

lider bias independently of the latent structure of the model. We chose parameters based on

reasonable values, with the following combinations: X and Y were 30% or 70% heritable, and

influenced by respective non-genetic influences of 55% or 15% (leaving 15% of unexplained

variance); genetic and non-genetic correlations between direct effects of 0 or 0.40; a causal

effect of 0 or 0.2.

In the second set of simulations, we fixed the causal effect to 0.20 and heritabilities to 70%

but values of the loadings were set so that the resulting polygenic scores G1 and G2 would cap-

ture 1% or 10% of the variance of X and Y, respectively. This resulted in either (i) polygenic

scores with equal explanatory power or (ii) asymmetric situations where, e.g. one polygenic

score explained 10% of the variance in X and the other polygenic score explained only 1% of

the variance in Y. In this case, the resulting association between the first polygenic score and Y

may actually be greater than the association between the second and Y, which can result in

non-null cross-paths. Such a situation can stem from the differential accuracy of GWAS for X

and Y.

Fig 8. Simulation generative model. The figure represents the generative model for simulations.

https://doi.org/10.1371/journal.pgen.1009590.g008
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In the third and fourth sets of simulations, we simulated 100,000 independent SNPs with

Minor Allele Frequency drawn from a uniform distribution from 1% to 50%. Of all SNPs, 5%

were simulated to have effects on exposure and outcome, 5% to have effects on exposure only,

and 5% on outcome only. The effects of standardised genotypes were drawn from normal dis-

tributions. Estimated SNP effects from the training sample were obtained by adding Gaussian

error to the true effects with variance proportional to 1/(size of training sample). Genotypes in

the target sample were drawn from a binomial distribution under Hardy Weinberg Equilib-

rium. In the third set, a polygenic score was computed to reflect the true genetic effects. In the

fourth set, the best-fitting polygenic score was identified from the following p-value thresholds:

1e-3, 1e-2, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 1, which include thresholds close to those

found in our empirical example. To facilitate comparisons, simulation scenarios were set to

match the first and second sets (i.e. third set matching first set and fourth set matching second

set), with the following parameters: causal effect of 0 or 0.20, genetic and nongenetic correla-

tions between direct effects of 0 and 0.4, heritability of X and Y of either 0.30 or 0.70, and target

sample size of 3,000 or 10,000. In addition, in the fourth set, polygenic scores were set to

explain 1% or 10% of the variance of their respective traits. The training sample size to obtain

the desired R2 was calculated using AVENGEME[38] and was Ntraining = 2,070 for 1% and

19,306 for 10%. For each scenario, 1,000 replicates were simulated. Genotype data and poly-

genic scores were generated using PLINK 1.9 [39].

Supporting information

S1 Text. Section A. Genotyping protocol and quality control. Fig A. Predictive accuracy of the

polygenic score for years of education predicting child GCSE in TEDS for different P-value

thresholds. Fig B. Predictive accuracy of the polygenic score for BMI predicting child BMI in

TEDS for different P-value thresholds. Fig C. Predictive accuracy of the polygenic score for

binary ADHD predicting ADHD symptoms in TEDS for different P-value thresholds.

Table A. Correlations between study variables. Section B. Estimating the effect of X on Y in the

single polygenic score case, based on observed associations. Section C. Complete genetic con-

founding in the single polygenic score case. Section D. Estimating the effect of X on Y in the

two polygenic scores case. Annex A. Genetic overlap versus genetic confounding. Annex B.

Residual confounding by ancestry, assortative mating and dynastic effects.

(DOCX)

S1 Data. Includes complete findings from simulations set 1–4.

(XLSX)

Acknowledgments

We gratefully acknowledge the ongoing contribution of the participants in the Twins Early

Development Study (TEDS) and their families. We are grateful to Dr. Jessie Baldwin for com-

ments on the manuscript and the tutorial.

Author Contributions

Conceptualization: Jean-Baptiste Pingault, Frühling Rijsdijk, Tabea Schoeler, Frank

Dudbridge.

Data curation: Jean-Baptiste Pingault, Tabea Schoeler, Saskia Selzam, Eva Krapohl.

Formal analysis: Jean-Baptiste Pingault, Frühling Rijsdijk, Frank Dudbridge.

Funding acquisition: Jean-Baptiste Pingault, Frank Dudbridge.

PLOS GENETICS Genetic sensitivity analysis

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009590 June 11, 2021 19 / 22

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009590.s001
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009590.s002
https://doi.org/10.1371/journal.pgen.1009590


Investigation: Jean-Baptiste Pingault.

Methodology: Jean-Baptiste Pingault, Frühling Rijsdijk, Shing Wan Choi, Paul F. O’Reilly,

Frank Dudbridge.

Software: Jean-Baptiste Pingault, Tabea Schoeler, Frank Dudbridge.

Supervision: Jean-Baptiste Pingault, Frank Dudbridge.

Visualization: Jean-Baptiste Pingault, Tabea Schoeler.

Writing – original draft: Jean-Baptiste Pingault, Frank Dudbridge.

Writing – review & editing: Jean-Baptiste Pingault, Frühling Rijsdijk, Tabea Schoeler, Shing

Wan Choi, Saskia Selzam, Eva Krapohl, Paul F. O’Reilly, Frank Dudbridge.

References
1. Fisher RA. Alleged dangers of cigarette-smoking. Br Med J. 1957; 2: 4 & 297–298.

2. Greenhouse JB. Commentary: Cornfield, Epidemiology and Causality. Int J Epidemiol. 2009; 38: 1199–

1201. https://doi.org/10.1093/ije/dyp299 PMID: 19773411

3. Cornfield J, Haenszel W, Hammond EC, Lilienfeld AM, Shimkin MB, Wynder EL. Smoking and lung can-

cer: recent evidence and a discussion of some questions. 1959. Int J Epidemiol. 2009; 38: 1175–1191.

https://doi.org/10.1093/ije/dyp289 PMID: 19773415

4. Pingault J-B, O’Reilly PF, Schoeler T, Ploubidis GB, Rijsdijk F, Dudbridge F. Using genetic data to

strengthen causal inference in observational research. Nat Rev Genet. 2018; 19: 566–580. https://doi.

org/10.1038/s41576-018-0020-3 PMID: 29872216

5. Lee SL, Pearce E, Ajnakina O, Johnson S, Lewis G, Mann F, et al. The association between loneliness

and depressive symptoms among adults aged 50 years and older: a 12-year population-based cohort

study. Lancet Psychiatry. 2021; 8: 48–57. https://doi.org/10.1016/S2215-0366(20)30383-7 PMID:

33181096

6. Myers JA, Rassen JA, Gagne JJ, Huybrechts KF, Schneeweiss S, Rothman KJ, et al. Effects of Adjust-

ing for Instrumental Variables on Bias and Precision of Effect Estimates. Am J Epidemiol. 2011; 174:

1213–1222. https://doi.org/10.1093/aje/kwr364 PMID: 22025356

7. Pingault J-B, Viding E, Galéra C, Greven CU, Zheng Y, Plomin R, et al. Genetic and environmental influ-

ences on the developmental course of attention-deficit/hyperactivity disorder symptoms from childhood

to adolescence. JAMA Psychiatry. 2015; 72: 651–658. https://doi.org/10.1001/jamapsychiatry.2015.

0469 PMID: 25945901

8. Magnuson K. Maternal education and children’s academic achievement during middle childhood. Dev

Psychol. 2007; 43: 1497–1512. https://doi.org/10.1037/0012-1649.43.6.1497 PMID: 18020827

9. Rydell A-M. Family factors and children’s disruptive behaviour: an investigation of links between demo-

graphic characteristics, negative life events and symptoms of ODD and ADHD. Soc Psychiatry Psy-

chiatr Epidemiol. 2010; 45: 233–244. https://doi.org/10.1007/s00127-009-0060-2 PMID: 19412562

10. Parizkova J. Impact of education on food behaviour, body composition and physical fitness in children.

Br J Nutr. 2008; 99 Suppl 1: S26–32. https://doi.org/10.1017/S0007114508892483 PMID: 18257949

11. Krapohl E, Rimfeld K, Shakeshaft NG, Trzaskowski M, McMillan A, Pingault J-B, et al. The high herita-

bility of educational achievement reflects many genetically influenced traits, not just intelligence. Proc

Natl Acad Sci U S A. 2014; 111: 15273–15278. https://doi.org/10.1073/pnas.1408777111 PMID:

25288728

12. Krapohl E, Plomin R. Genetic link between family socioeconomic status and children’s educational

achievement estimated from genome-wide SNPs. Mol Psychiatry. 2015 [cited 14 Nov 2015]. https://doi.

org/10.1038/mp.2015.2 PMID: 25754083

13. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index

yield new insights for obesity biology. Nature. 2015; 518: 197–206. https://doi.org/10.1038/nature14177

PMID: 25673413

14. Okbay A, Beauchamp JP, Fontana MA, Lee JJ, Pers TH, Rietveld CA, et al. Genome-wide association

study identifies 74 loci associated with educational attainment. Nature. 2016; 533: 539–542. https://doi.

org/10.1038/nature17671 PMID: 27225129

PLOS GENETICS Genetic sensitivity analysis

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009590 June 11, 2021 20 / 22

https://doi.org/10.1093/ije/dyp299
http://www.ncbi.nlm.nih.gov/pubmed/19773411
https://doi.org/10.1093/ije/dyp289
http://www.ncbi.nlm.nih.gov/pubmed/19773415
https://doi.org/10.1038/s41576-018-0020-3
https://doi.org/10.1038/s41576-018-0020-3
http://www.ncbi.nlm.nih.gov/pubmed/29872216
https://doi.org/10.1016/S2215-0366%2820%2930383-7
http://www.ncbi.nlm.nih.gov/pubmed/33181096
https://doi.org/10.1093/aje/kwr364
http://www.ncbi.nlm.nih.gov/pubmed/22025356
https://doi.org/10.1001/jamapsychiatry.2015.0469
https://doi.org/10.1001/jamapsychiatry.2015.0469
http://www.ncbi.nlm.nih.gov/pubmed/25945901
https://doi.org/10.1037/0012-1649.43.6.1497
http://www.ncbi.nlm.nih.gov/pubmed/18020827
https://doi.org/10.1007/s00127-009-0060-2
http://www.ncbi.nlm.nih.gov/pubmed/19412562
https://doi.org/10.1017/S0007114508892483
http://www.ncbi.nlm.nih.gov/pubmed/18257949
https://doi.org/10.1073/pnas.1408777111
http://www.ncbi.nlm.nih.gov/pubmed/25288728
https://doi.org/10.1038/mp.2015.2
https://doi.org/10.1038/mp.2015.2
http://www.ncbi.nlm.nih.gov/pubmed/25754083
https://doi.org/10.1038/nature14177
http://www.ncbi.nlm.nih.gov/pubmed/25673413
https://doi.org/10.1038/nature17671
https://doi.org/10.1038/nature17671
http://www.ncbi.nlm.nih.gov/pubmed/27225129
https://doi.org/10.1371/journal.pgen.1009590


15. Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E, et al. Discovery of the first

genome-wide significant risk loci for ADHD. bioRxiv. 2017; 145581. https://doi.org/10.1101/145581

16. Lambert SA, Gil L, Jupp S, Ritchie SC, Xu Y, Buniello A, et al. The Polygenic Score Catalog: an open

database for reproducibility and systematic evaluation. medRxiv. 2020; 2020.05.20.20108217. https://

doi.org/10.1101/2020.05.20.20108217

17. Euesden J, Lewis CM, O’Reilly PF. PRSice: Polygenic Risk Score software. Bioinforma Oxf Engl. 2015;

31: 1466–1468. https://doi.org/10.1093/bioinformatics/btu848 PMID: 25550326

18. Bulik-Sullivan BK, Loh P-R, Finucane HK, Ripke S, Yang J, Schizophrenia Working Group of the Psy-

chiatric Genomics Consortium, et al. LD Score regression distinguishes confounding from polygenicity

in genome-wide association studies. Nat Genet. 2015; 47: 291–295. https://doi.org/10.1038/ng.3211

PMID: 25642630

19. Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh P-R, et al. An atlas of genetic correla-

tions across human diseases and traits. Nat Genet. 2015; 47: 1236–1241. https://doi.org/10.1038/ng.

3406 PMID: 26414676

20. Zheng J, Erzurumluoglu AM, Elsworth BL, Kemp JP, Howe L, Haycock PC, et al. LD Hub: a centralized

database and web interface to perform LD score regression that maximizes the potential of summary

level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics. 2017; 33: 272–

279. https://doi.org/10.1093/bioinformatics/btw613 PMID: 27663502

21. Wood AC, Buitelaar J, Rijsdijk F, Asherson P, Kuntsi J. Rethinking Shared Environment as a Source of

Variance Underlying Attention-Deficit/Hyperactivity Disorder Symptoms: Comment on. Psychol Bull.

2010; 136: 331–340. https://doi.org/10.1037/a0019048 PMID: 20438137

22. Bates TC, Maher BS, Medland SE, McAloney K, Wright MJ, Hansell NK, et al. The nature of nurture:

Using a virtual-parent design to test parenting effects on children’s educational attainment in genotyped

families. Twin Res Hum Genet. 2018; 21: 73–83. https://doi.org/10.1017/thg.2018.11 PMID: 29530109

23. Holmlund H, Lindahl M, Plug E. The causal effect of parents’ schooling on children’s schooling: A com-

parison of estimation methods. J Econ Lit. 2011; 49: 615–651.

24. Kong A, Thorleifsson G, Frigge ML, Vilhjalmsson BJ, Young AI, Thorgeirsson TE, et al. The nature of

nurture: Effects of parental genotypes. Science. 2018; 359: 424–428. https://doi.org/10.1126/science.

aan6877 PMID: 29371463

25. Wang B, Baldwin JR, Schoeler T, Cheesman R, Barkhuizen W, Dudbridge F, et al. Genetic nurture

effects on education: a systematic review and meta-analysis. bioRxiv. 2021; 2021.01.15.426782.

https://doi.org/10.1101/2021.01.15.426782

26. Silventoinen K, Jelenkovic A, Sund R, Latvala A, Honda C, Inui F, et al. Genetic and environmental vari-

ation in educational attainment: an individual-based analysis of 28 twin cohorts. Sci Rep. 2020; 10:

12681. https://doi.org/10.1038/s41598-020-69526-6 PMID: 32728164

27. O’Connor LJ, Price AL. Distinguishing genetic correlation from causation across 52 diseases and com-

plex traits. Nat Genet. 2018; 50: 1728–1734. https://doi.org/10.1038/s41588-018-0255-0 PMID:

30374074

28. Dudbridge F. Polygenic Mendelian Randomization. Cold Spring Harb Perspect Med. 2020; a039586.

https://doi.org/10.1101/cshperspect.a039586 PMID: 32229610

29. Haworth CMA, Davis OSP, Plomin R. Twins Early Development Study (TEDS): a genetically sensitive

investigation of cognitive and behavioral development from childhood to young adulthood. Twin Res

Hum Genet. 2013; 16: 117–125. https://doi.org/10.1017/thg.2012.91 PMID: 23110994

30. Conners CK. Conners’ Rating Scales-Revised: Technical Manual. New York: Multi-Health System

Inc.; 2003.

31. Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O, Zacher M, et al. Gene discovery and polygenic pre-

diction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat

Genet. 2018; 50: 1112–1121. https://doi.org/10.1038/s41588-018-0147-3 PMID: 30038396

32. Kline RB. Principles and practice of structural equation modeling. New York: Guilford Press; 2011.

33. MacKinnon DP, Krull JL, Lockwood CM. Equivalence of the Mediation, Confounding and Suppression

Effect. Prev Sci Off J Soc Prev Res. 2000; 1: 173. https://doi.org/10.1023/a:1026595011371 PMID:

11523746

34. Smith GD. Mendelian Randomization for Strengthening Causal Inference in Observational Studies:

Application to Gene × Environment Interactions. Perspect Psychol Sci J Assoc Psychol Sci. 2010; 5:

527–545. https://doi.org/10.1177/1745691610383505 PMID: 26162196

35. Rosseel Y. lavaan: An R Package for Structural Equation Modeling. J Stat Softw. 2012; 48: 1–36.

36. Chalmers P, Sigal M, Oguzhan O. SimDesign: Structure for Organizing Monte Carlo Simulation

Designs. 2020. Available: https://CRAN.R-project.org/package=SimDesign

PLOS GENETICS Genetic sensitivity analysis

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009590 June 11, 2021 21 / 22

https://doi.org/10.1101/145581
https://doi.org/10.1101/2020.05.20.20108217
https://doi.org/10.1101/2020.05.20.20108217
https://doi.org/10.1093/bioinformatics/btu848
http://www.ncbi.nlm.nih.gov/pubmed/25550326
https://doi.org/10.1038/ng.3211
http://www.ncbi.nlm.nih.gov/pubmed/25642630
https://doi.org/10.1038/ng.3406
https://doi.org/10.1038/ng.3406
http://www.ncbi.nlm.nih.gov/pubmed/26414676
https://doi.org/10.1093/bioinformatics/btw613
http://www.ncbi.nlm.nih.gov/pubmed/27663502
https://doi.org/10.1037/a0019048
http://www.ncbi.nlm.nih.gov/pubmed/20438137
https://doi.org/10.1017/thg.2018.11
http://www.ncbi.nlm.nih.gov/pubmed/29530109
https://doi.org/10.1126/science.aan6877
https://doi.org/10.1126/science.aan6877
http://www.ncbi.nlm.nih.gov/pubmed/29371463
https://doi.org/10.1101/2021.01.15.426782
https://doi.org/10.1038/s41598-020-69526-6
http://www.ncbi.nlm.nih.gov/pubmed/32728164
https://doi.org/10.1038/s41588-018-0255-0
http://www.ncbi.nlm.nih.gov/pubmed/30374074
https://doi.org/10.1101/cshperspect.a039586
http://www.ncbi.nlm.nih.gov/pubmed/32229610
https://doi.org/10.1017/thg.2012.91
http://www.ncbi.nlm.nih.gov/pubmed/23110994
https://doi.org/10.1038/s41588-018-0147-3
http://www.ncbi.nlm.nih.gov/pubmed/30038396
https://doi.org/10.1023/a%3A1026595011371
http://www.ncbi.nlm.nih.gov/pubmed/11523746
https://doi.org/10.1177/1745691610383505
http://www.ncbi.nlm.nih.gov/pubmed/26162196
https://CRAN.R-project.org/package=SimDesign
https://doi.org/10.1371/journal.pgen.1009590


37. Sigal MJ, Chalmers RP. Play it again: teaching statistics with monte carlo simulation. J Stat Educ. 2016;

24: 136–156. https://doi.org/10.1080/10691898.2016.1246953

38. Dudbridge F. Power and Predictive Accuracy of Polygenic Risk Scores. PLOS Genet. 2013; 9:

e1003348. https://doi.org/10.1371/journal.pgen.1003348 PMID: 23555274

39. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to

the challenge of larger and richer datasets. GigaScience. 2015; 4: 7. https://doi.org/10.1186/s13742-

015-0047-8 PMID: 25722852

PLOS GENETICS Genetic sensitivity analysis

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009590 June 11, 2021 22 / 22

https://doi.org/10.1080/10691898.2016.1246953
https://doi.org/10.1371/journal.pgen.1003348
http://www.ncbi.nlm.nih.gov/pubmed/23555274
https://doi.org/10.1186/s13742-015-0047-8
https://doi.org/10.1186/s13742-015-0047-8
http://www.ncbi.nlm.nih.gov/pubmed/25722852
https://doi.org/10.1371/journal.pgen.1009590

