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ABSTRACT
To pursue high accuracy, most image semantic segmentation

methods are computationally costly and thus not suitable to

real-time applications. Existing lightweight methods either

adopt a single branch without feature fusion, which dam-

ages accuracy, or introduce extra branches for feature fu-

sion, which harms efficiency. In this paper, we propose a

lightweight network named EFRNet, with feature fusion and

refinement in a single branch to achieve better balance be-

tween accuracy and efficiency in real-time semantic segmen-

tation. Specifically, in EFRNet, we design a novel Feature

Fusion Module to fuse multi-stage features in a single CNN

efficiently, and we propose a lightweight Channel Attention

Refinement Module to refine features with few extra param-

eters. Extensive experiments show that our EFRNet achieves

decent accuracy with an extremely small model size and high

inference speed. It achieves the best accuracy of 70.02%
mIoU compared with state-of-the-art lightweight methods on

CamVid with only 0.48M parameters.

Index Terms— Real-time, semantic segmentation, deep

convolutional neural network, deep learning

1. INTRODUCTION

Image semantic segmentation aims at assigning a category la-

bel to each pixel. It is an important task in many applications,

such as autonomous driving and augmented reality. Recently,

semantic segmentation methods [1–7] based on fully convolu-

tional networks (FCN) have achieved state-of-the-art perfor-

mance. However, most of these methods are computationally

costly and thus unsatisfactory in real-time applications.

To address this issue, on the one hand, some methods

adopt multi-branch strategies to use several lightweight back-

bones to extract context and spatial information separately

(Fig. 1(b)). For example, ICNet [8] employs three shal-

low CNN branches to collect multi-level semantic informa-

tion and finally achieves real-time performance. BiSeNet [9]

leverages ResNet18 and a shallow CNN to gather high-level

contextual and fine spatial information simultaneously. These

(b)(a) (c)

Fig. 1. Three structures used for efficient semantic segmen-

tation: (a) [10–12] use a single-branch structure but without

feature fusion; (b) [9, 13, 14] uses multiple branches; (c) we

adopt the structure used by [5, 6, 15] to improve accuracy,

which has not yet been exploited in real-time semantic seg-

mentation to pursue both effectiveness and efficiency.

methods introduce extra branches, which involve consider-

able extra parameters and thus are not computationally ef-

ficient. On the other hand, some methods [10–12] adopt a

single CNN to achieve efficiency (Fig. 1(a)). However, they

lack the advantage of feature fusion of the multi-branch meth-

ods, thus often with lower accuracy. Different from these ap-

proaches, in this paper, to enhance accuracy while maintain-

ing efficiency, we propose a new method to exploit a structure

that enables the exploration of feature fusion within a single

branch (Fig. 1(c)). This structure has not yet been exploited

in real-time semantic segmentation.

As illustrated in Fig. 1(a), [10–12] produce the final pre-

diction through a single path, which is straightforward and

fast but without feature fusion and thus damages accuracy. In

contrast, as shown in Fig. 1(b), [9,13,14] fuses features from

multi-branches, but extra branches introduce extra parameters

and thus harm efficiency. Therefore, rather than resorting to

extra branches, we adopt the structure in Fig. 1(c), which was

used by [5, 6, 15] to improve accuracy, but it has not yet been

exploited in real-time semantic segmentation, which demands

both effectiveness and efficiency.

Therefore, considering the requirement of real-time se-

mantic segmentation, to fuse spatial and context features both

effectively and efficiently, we first propose a new Feature Fu-

sion Module (FFM). Secondly, to enhance the accuracy with
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Fig. 2. The overall architecture of our EFRNet. The encoder contains three stages: Down-Sampling, Encoding with Refining,

and Encoding. The decoder consists of two stages of Fusion with Refinement. The input image is down-sampled three times

in the down-sampling stage to substantially reduce computation. Features of different stages are fused by the Feature Fusion

Module (FFM). The Channel Attention Refinement Module (CARM) is designed to refine the results.

a small number of extra parameters, we design an efficient

Channel Attention Refinement Module (CARM), which con-

tains only 0.01M parameters, to focus on important channels.

Finally, based on FFM, CARM and a specially designed con-

volution block, we build a new efficient network named EFR-

Net for real-time semantic segmentation. Extensive experi-

ments show that our EFRNet can achieve both high accuracy

and high inference speed with a compact model.

Our contributions can be summarized in three folds.

1) We propose EFRNet, a new lightweight network at 50

fps inference speed for real-time semantic segmentation.

2) We propose a Feature Fusion Module and a Channel

Attention Refinement Module to effectively and efficiently

reuse and refine features within a single CNN, to enhance the

segmentation performance with few extra parameters.

3) We achieve the best 70.02% mIoU among state-of-the-

art methods on CamVid with a tiny model size of 0.48M.

2. RELATED WORK

Most recent outstanding frameworks in semantic segmenta-

tion are based on FCN and can be broadly divided into two

groups: accuracy-focused and efficiency-focused.

The accuracy-focused methods aim at enhancing the ac-

curacy of semantic segmentation networks. DeepLab [1] em-

ploys dilated convolution to enlarges the receptive field of

CNN without adding extra parameters. DeepLabV2 [2] de-

signs the Atrous Spatial Pyramid Pooling (ASPP) to gather

richer context. U-Net [5] leverages the encoder-decoder ar-

chitecture to recover the resolution of feature maps step by

step. RefineNet [6] processes multi-path inputs at different

resolutions and exploits feature fusion to obtain the final pre-

diction. CCNet [7] employs recurrent criss-cross attention

mechanism to capture global dependency. These methods

achieve high accuracy but have high computational complex-

ity due to their complicated backbones (e.g., VGG16 [16] or

ResNet101 [17]), which limits their real-time applications.

The efficiency-focused methods aim to reduce the pa-

rameters and inference time while maintaining relatively

high accuracy. Factorized convolution, quick down-sampling

and channel reducing are popular strategies adopted in

lightweight networks for semantic segmentation. SegNet [18]

employs the pooling indices saved at encoder stage to elim-

inate the need of learning deconvolution. ENet [10] pro-

posed an asymmetry encoder-decoder architecture along with

factorized convolution and quick down-sampling. ENet is a

highly efficient architecture, however, its accuracy is not sat-

isfactory due to the loss of spatial information in the down-

sampling stage. LEDNet [12] also employs an asymmetry

encoder-decoder architecture, and channel split and shuffle

are adopted in its basic residual block. In ERFNet [11], a non-

bottleneck block stacked by two factorized convolution layers

is adopted as its basic unit to balance efficiency and accuracy.

These methods adopt a straightforward structure where only

high-level context information is used. To further improve

performance, methods using multiple branches are proposed

to gather multi-level information. In [14], a new architecture

consisting of two pre-trained branches is designed to gener-

ate highly accurate results. BiSeNet [9] uses a two-branch

network that contains a shallow spatial path and a deep con-

text path to gather low-level and high-level features. BiSeNet

achieved relatively high accuracy but it has a large amount of

parameters due to its deep context path.

Different from [9–14], we extract spatial and context in-

formation from multi-stages of a single CNN and fuse them to

improve accuracy. Meanwhile, for efficiency, our EFRNet ex-

ploits the basic convolution block of ENet, which is efficient

and small in parameter amount.



3. PROPOSED METHOD: EFRNET

3.1. Overall Network Architecture of EFRNet

The diagram of our EFRNet is illustrated in Fig. 2. Firstly,

we down-sample the input image three times in the Down-

Sampling stage and feed the outputs into the Encoding with

Refining stage where features are encoded and refined by

CARM. After further encoding context information in the En-

coding stage, we apply two Fusion with Refinement stages

to fuse multi-level features using two FFMs and finally out-

put the refined predictions. We shall detail Conv, FFM, and

CARM of EFRNet in Sections 3.2, 3.3 and 3.4, respectively.

3.2. Basic Convolution Block of EFRNet

Inspired by [10], we design a bottleneck structure as our ba-

sic convolution block to learn features efficiently. As shown

in Fig. 3, it differs from the ordinary residual block in two as-

pects: 1) the middle layer can be asymmetric or dilated con-

volution; 2) the residual branch is pooling and padding rather

than convolution with stride in down-sampling.

Ordinary convolution requires k2 parameters with the ker-

nel size k, while asymmetric 1-D convolution only needs 2k
parameters, which is advantageous in terms of model size.

Moreover, dilated convolution enlarges the receptive field for

effective feature extraction without extra parameters. We re-

peat this basic convolution block in all of the five stages.

1x1 Conv+BN+ReLu

(Asy or Dila) Conv+BN+ReLu

1x1 Conv+BN+ReLu

add
drop out

pooling+padding
or identity

Fig. 3. Basic convolution block of our EFRNet.

3.3. Feature Fusion Module (FFM)

In the early stage, spatial information is learned by the shal-

low structure of CNN, while the context information is gradu-

ally encoded by the convolution and pooling operations. Both

context information and spatial information are crucial for

high-quality semantic segmentation [9]. FCN [15] and U-

net [5] employ skip-connections to fuse multi-stage features.

However, existing real-time networks only fuse features from

multi-branches which introduce considerable extra parame-

ters. Hence, under the lightweight condition, we design a

new Feature Fusion Module (FFM) to fuse features in a single

CNN, to achieve two goals: 1) to leverage both fine spatial in-

formation and abstract context information efficiently; and 2)

to attain a larger receptive field by adopting dilated convolu-

tion without extra parameters.

As demonstrated in Fig. 4, we employ a bottleneck struc-

ture and two 1-D dilated convolutions to encode rich context

information. Bottleneck reduces channels and 1-D convolu-

tion is computationally efficient. Performing convolution op-

erations before upsampling further limits computational costs

of our FFM. Features from low and high stages are then up-

sampled and concatenated. Finally, a 1×1 and another dilated

convolution are applied to the concatenated features.
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Fig. 4. The diagram of our Feature Fusion Module (FFM).

3.4. Channel Attention Refinement Module (CARM)

The attention mechanism [7, 19, 20] guides network to learn

where is important and has been shown beneficial to im-

prove semantic segmentation. Under the lightweight condi-

tion, channel attention can model the importance of channels

with limited computation. Inspired by this, we design a Chan-

nel Attention Refinement Module (CARM) with global pool-

ing and 1×1 convolution to refine features efficiently.

The proposed CARM is illustrated in Fig. 5. Firstly,

global pooling is applied to generate a raw weight vector,

which is further processed with 1×1 convolution, Batch Nor-

malization (BN) and Sigmoid to obtain the final weight vec-

tor. After a channel-wise multiplication of the weight vector

and input features, an identity connection is used to refine the

features.

Global pooling reduces the dimensions of features and

only requires a small amount of computation. Different from

previous works [21, 22] that only use attention at the top of

networks, we apply the CARM to both low and high stages.

Features in the encoder are also refined to improve accuracy.
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Fig. 5. The diagram of our Channel Attention Refinement

Module (CARM).

4. EXPERIMENTS

4.1. Implementation Details

Our model is tested on the Cityscapes [23] and CamVid [24]

datasets without any pre-training. Cityscapes is a challeng-

ing dataset of 5,000 images with fine annotation and 20,000

images with coarse annotation. The 5,000 fine annotated im-

ages are divided into 2,975, 500 and 1,525 images for train-

ing, validation and testing, respectively. All images have a

1024×2048 resolution and 19 categories. Only the fine anno-

tated images are used in experiments. CamVid is a street

scene dataset of 701 images, in which 367 images are for

training, 101 for validation and 233 for testing. All the im-

ages have a 720×960 resolution and 11 categories.

We choose stochastic gradient descent (SGD) optimizer

and the cross-entropy loss function to train the network with

batch size 10, momentum 0.9 and weight decay 5e−4. The

‘poly’ learning rate policy is employed where the initial learn-

ing rate is 1e−2 and power is 0.9. We train our model on

two GTX 1080TI GPUs. Images are randomly rescaled and

cropped to enhance the generalization ability of our model.

Table 1. Ablation studies of the effect of FFM and CARM on

the Cityscapes validation set. Input images: 1024×2048.

mIoU(%)

Baseline 58.3

Baseline+FFM1 61.8

Baseline+FFM1+FFM2 65.0

Baseline+FFM1+FFM2+CARM 67.7

4.2. Ablation Studies

We use ENet as the baseline to verify the effectiveness of

FFM and CARM. As shown in Fig. 2, there are two FFMs:

FFM1 is to fuse features from the earliest stages of encoder

and decoder; FFM2 is to fuse features from the middle and

last stages of the encoder. We first insert FFM1 and FFM2,

one by one, to verify the effectiveness of FFM, and then insert

CARM, at the places indicated in Fig. 2.

The results on the Cityscapes validation set are listed in

Table 1. After adding FFM1 to fuse the features, the mean in-

tersection over union (mIoU) increases from 58.3%to 61.8%
and adding FFM2 further increases mIoU to 65.0%. The fi-

nal result obtained by using both FFM and CARM is 67.7%,

which is much better than the baseline, verifying the effec-

tiveness of our new modules FFM and CARM. Semantic seg-

mentation results visualized in Fig. 6 also demonstrate the

improvements, particularly at boundaries and large targets.

Table 2. Results of our method and other state-of-the-art

methods on the Cityscapes test set. For all methods, the reso-

lution for testing GFlops and mIoU is 640×360, 1024×2048

respectively. The best results are in bold; the second best re-

sults are underlined.
Params GFlops mIoU(%)

SegNet [18] 29.50 286.00 57.0

ENet [10] 0.36 1.91 58.3

CGNet [13] 0.50 6.00 64.8

BiSeNet [9] 49.00 10.80 68.4

ICNet [8] 12.29 15.05 70.6
Ours 0.48 3.01 65.7

4.3. Comparison with State-of-the-art

In real-time semantic segmentation, accuracy, parameter

amount, floating point operations and inference speed are all

crucial measures. To show the superiority of our EFRNet, we

report the results on the test sets of Cityscapes and CamVid.

We compare our EFRNet with five state-of-the-art methods:

SegNet [18], ENet [10], CGNet [13], BiSeNet [9] and IC-

Net [8]. SegNet [18] is the first method trying to achieve real-

time speed. ENet and CGNet are both single-branch methods

with similar model size, while BiSeNet and ICNet belong to

multi-branches methods. These methods are the state-of-the-

art in terms of model size or accuracy.

From Table 2, we can find the following pattern. Our

EFRNet achieves 65.7% mIoU with only 0.48M parameters

and 3.01 GFlops, which outperforms SegNet and CGNet in

all aspects. ENet has similar model size and computational

costs with our EFRNet, but it delivers more than 7% drop in

accuracy. BiSeNet and ICNet achieve an less than 5% accu-

racy gain at the expense of more than 20× parameters and 3×
floating point operations. That is, compared with the methods

with similar model sizes, our EFRNet achieves 7% higher ac-

curacy than ENet and 0.9% higher than CGNet. Compared

to BiSeNet and ICNet, our EFRNet is 20× smaller in model

size and 3× smaller in GFlops, while the accuracy decay is



Fig. 6. Semantic segmentation results on the Cityscapes validation set. From left to right: input images, ground truth, outputs of

ENet and our EFRNet. EFRNet produces better boundaries and segmentation on large targets, e.g., indicated by the red circles.

less than 5%. Taking both model size and accuracy into con-

sideration, our EFRNet offers a better trade-off than others.

Table 3. Comparison of inference speed between our method

and other state-of-the-art methods on Cityscapes. The resolu-

tion of input images is 640×360 for all methods.

Method FPS

SegNet [18] 34.5

ENet [10] 76.9
ERFNet [11] 41.1

ICNet [8] 48.4

Ours 50.2

4.4. Inference Speed Comparison

Inference speed is another important measure to evaluate real-

time methods. However, speed varies across different hard-

ware platforms and deep learning frameworks. Here we mea-

sure several methods under the same conditions with regards

to hardware and software. We implement the methods on Py-

Torch with a single GTX1080 TI GPU working as the main

computation resource. Our EFRNet achieves 50.2 fps, which

is faster than most methods listed in Table 3. ENet obtains

76.9 fps but its accuracy is much lower than ours.

4.5. Results on the CamVid Dataset

To further show the superiority of our method, we also re-

port the experimental results on CamVid, another challeng-

ing traffic scene dataset. The results displayed in Table 4

show that our network achieves the best accuracy on the gen-

eral classes (car, pedestrian, bicyclist). Recall that CamVid

is a much smaller dataset than Cityscapes and its training set

contains only hundreds of images, making it hard for mod-

els to learn enough knowledge about data distribution. Our

EFRNet achieves the best 70.2% mIoU on CamVid com-

pared with other state-of-the-art lightweight methods, which

demonstrates the strong generalization ability of our model.

5. CONCLUSIONS

In this paper, a lightweight network, namely EFRNet, is pro-

posed for real-time semantic segmentation in traffic scenes.

Different from most existing methods, we extract both context

and spatial information from a single CNN, by using novel

Feature Fusion Module and Channel Attention Refinement

Module, rather than using complex backbone networks with

large amounts of parameters. Our EFRNet achieves 70.2%
mIoU on the CamVid dataset with a compact model size of

0.48M and runs real-time inference speed at 50fps. Experi-

ments show that our EFRNet offers a better trade-off between

accuracy and efficiency than other approaches.



Table 4. Comparison of our method and other fast networks in per-class IoU (%) on the CamVid test set. The best results are

in bold; the second best results are underlined.
Method Bui Tre Sky Car Sig Roa Ped Fen Pol Sid Bic Cla

SegNet [18] 88.8 87.3 92.4 82.1 20.5 97.2 57.1 49.3 27.5 84.4 30.7 55.6

ENet [10] 74.4 77.8 95.1 82.4 51.0 95.1 67.2 51.7 35.4 86.7 34.1 51.3

BiSeNet [9] 82.2 74.4 91.9 80.8 42.8 93.3 53.8 49.7 25.4 77.3 50.0 65.6

RTHPNet [14] 83.2 70.5 92.5 81.7 51.6 93.0 55.6 53.2 36.3 82.1 47.9 68.0

Ours 88.2 78.2 93.6 92.4 6.3 95.6 68.1 56.2 42.8 87.7 63.1 70.2
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