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ABSTRACT
Cost volume plays a pivotal role in stereo matching. Most
recent works focused on deep feature extraction and cost re-
finement for a more accurate cost volume. Unlike them, we
probe from a different perspective: feature wrangling. We
find that simple wrangling of deep features can effectively
improve the construction of cost volume and thus the per-
formance of stereo matching. Specifically, we develop two
simple yet effective wrangling techniques of deep features,
spatially a differentiable feature transformation and channel-
wise a memory-economical feature expansion, for better cost
construction. Exploiting the local ordering information pro-
vided by a differentiable rank transform, we achieve an en-
hancement of the search for correspondence; with the help
of disparity division, our feature expansion allows for more
features into the cost volume with no extra memory required.
Equipped with these two feature wrangling techniques, our
simple network can perform outstandingly on the widely used
KITTI and Sceneflow datasets.

Index Terms— Stereo matching, deep learning, feature
wrangling, cost construction

1. INTRODUCTION

Stereo matching is a popular task in computer vision. It aims
to find the horizontal offset, namely disparity d, between cor-
responding points in rectified stereo pairs. With the disparity
d, baseline distance B and focal length f , the depth Z can
be derived via Z = fB/d. This ability, obtaining 3D depth
data from 2D images, enables stereo matching to enjoy wide
applications, such as 3D reconstruction, autonomous driving
and robotics navigation.

Traditionally, stereo matching can be accomplished
through four steps [1]: matching cost computation, cost ag-
gregation, disparity computation and disparity refinement.

∗Corresponding Author. This work was supported by the Special Foun-
dation for the Development of Strategic Emerging Industries of Shenzhen
(JCYJ20170817161056260).

The first two steps are most crucial, constructing and then re-
fining a pivotal object - cost volume. Cost volume describes
the similarity between each pixel in the left view and its right-
view corresponding points determined by a range of dispari-
ties. Many studies have been devoted to generating an optimal
cost volume and achieved remarkable results [2–5].

With the arising of deep learning, powerful stereo fea-
ture descriptors can be leveraged to compute the matching
cost [4, 6]. Given stereo feature pairs fl, fr ∈ Rc×h×w, with
w, h and c are the width, height and number of channels of
feature maps, the cost construction can be divided into two
types: correlation volume and 4D feature volume. The cor-
relation operation proposed in [7] generated the cost volume
by conducting the inner product of fl and the shifted fr. Un-
like it, others [5, 8, 9] directly concatenated fl and the shifted
fr along the feature dimension and constructed a 4D feature
volume (short as feature volume hereafter). GwcNet [9] and
AMNet [10] explored the combination of both types; [11, 12]
managed to reduce the feasible disparity range required for
the cost construction.

Different from the above schemes and following the
“garbage in, garbage out” principle, our focus is on a dif-
ferent perspective: how about making some feasible adjust-
ments on the feature application, i.e. feature wrangling, to
boost the stereo matching performance. Specifically, we de-
velop two simple yet effective feature wrangling techniques:
spatially a differentiable feature transformation and channel-
wise a memory-economical feature expansion, as shown in
Figure 1. Feature transformation extracts the local ordering
information of pixels via a rank transform [2] and excludes
unreasonable candidate corresponding pixels, yielding a bet-
ter matching result. Feature expansion enables more feature
descriptors to contribute to the cost construction with no ex-
tra memory required, facilitating an effective and economical
construction.

We summarize our contributions as: 1) We make a new
differentiable rank transform of deep features, to fully lever-
age spatially local ordering information for better stereo
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Fig. 1. Diagram of our proposed network. Our network architecture consists of four modules: feature extraction, cost con-
struction, cost aggregation and disparity regression. In the cost construction, we propose two new feature wrangling ideas: (a)
spatially a differentiable feature transformation; (b) channel-wise a memory-economical feature expansion. Moreover, in the
cost aggregation, we also revamp the connections between 3D convolutions.

matching; 2) We propose a new channel-wise feature expan-
sion idea, to encode more feature maps into a more infor-
mative cost volume without requiring any extra memory; 3)
Equipped with the above two feature wrangling techniques,
our simple network can achieve the state-of-the-art perfor-
mance on the KITTI and Sceneflow datasets.

2. METHOD

2.1. Feature Transformation

Although deep neural networks often extract powerful fea-
tures, [13] indicates that performing appropriate spatial trans-
formation on features can help the network learn a more effec-
tive data pattern. Inspired by this, we propose a differentiable
rank transform to wrangle stereo feature pairs into a more ef-
fective data pattern for stereo matching, as detailed below.

Unlike other visual tasks, stereo matching relies not only
on the learning of the scene, but also on the stereo consistency
between the two views. Therefore, a feature transform facili-
tating the stereo correspondence search is desired, for exam-
ple, by alleviating inconsistent candidate pairs. Following this
intuition, we partition the pixels into multiple subsets in each
view, and conduct the correspondence search only in corre-
sponding pairs of subsets, to effectively reduce the match-
ing errors. That is, to boost the matching performance, we
spatially decompose the matching task into multiple smaller,
simpler and more accurate sub-tasks.

As for the partition strategy, in order to satisfy the lo-
cal consistency between the transforms on the left and right
views, we resort to a classical local feature transform - rank
transform. Rank transform can extract the local ordering in-
formation from the data for stereo matching and achieve more
robust results.

For a pixel I(i, j), we take an r× r window centered at it
as its local region. Then the rank transform of I(i, j) can be
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Fig. 2. The process of feature transformation. We illustrate
the feature transformation with the window size 3 × 3 and
threshold t = 4 for example.

written as

RT (i, j) =
∑

(∆i,∆j)

H(I(i+ ∆i, j + ∆j)− I(i, j)), (1)

where I(i+ ∆i, j + ∆j) is a pixel within the r× r neighbor-
hood of I(i, j) and H(·) is the 0-1 Heaviside function. In our
implementation, we take a differentiable approximation ofH ,
denoted by Hε, as follows:

Hε(x) =
1

1 + e−εx
. (2)

With ε in (2) large enough, the result of (1) is close to the
actual local ranking of I(i, j). In this way, the rank transform
can be modeled into our end-to-end network.

For a feature map F , rank transform, as shown in the
green/blue box of Figure 2, transfers the pixel intensity into
their local ranking. Comparing the ranking map with a given
threshold t produces two mask maps, which can be then used
to divide the pixels of original feature map into two feature
maps, namely high-ranking and low-ranking feature maps, as
illustrated in Figures 2 and 3. For example, our expressions
to derive the high-ranking mask and map are

Mh(i, j) = max

(
− RT (i, j)− t
|RT (i, j)− t|

, 0

)
, (3)
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Fig. 3. From left to right: stereo image pairs (upper: left
view; lower: right view), high-ranking and low-ranking fea-
ture pairs. For better view, we scaled the high-ranking and
low-ranking feature maps differently.

Fh(i, j) = F (i, j) ·Mh(i, j). (4)

High- and low-ranking feature maps can be regarded as
attention maps focusing on specific pixel subsets. And the
mask maps is regulated by the gradient back-propagation to
achieve better pixel partition. This ”attention” mechanism is
locally adaptive and simpler to implement.

The threshold t can regulate the proportion of valid pixels
in the high- and low-ranking feature maps. We found that, for
the feature transform using the r × r window, the proportion
in high- and low-ranking feature map are close to t : r×r and
r × r − t : r × r, respectively. In Figure 3, we visualize the
high- and low-ranking feature pairs, where the window size
of rank transform is 5× 5 1 and t = 18.

2.2. Feature Expansion

In deep stereo matching, better performance can be expected
by incorporating more features, but at the price of dramati-
cally increasing cache requirement. To tackle this problem,
we propose a feature expansion scheme that can effective
plant more feature maps into the cost volume without requir-
ing extra memory.
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Fig. 4. (a) Conventional feature volume construction by
concatenating cubes of c features from the left (green) and
shifted right (yellow) views. (b) (lower) Our feature expan-
sion vs. (upper) concatenation of cubes of kc features (divided
into k subsets of c features) for feature volume construction.
k = 2 and dmax = 4 are used in illustration.

As shown in Figure 4(a), given two c-channel feature pairs
fl, fr ∈ Rc×h×w, we can construct the feature volume (of
size c× dmax × h× w with dmax the disparity range) in the

1In no special case, we use r = 5 for feature transformation.

conventional way [5]. However, when c increases to kc, it
will require extra memory of (kc − c) × dmax × h × w (see
the upper branch of Figure 4(b)), plus higher computation in
subsequent networks as well. To circumvent this issue, as
illustrated in the lower branch of Figure 4(b), we propose a
simple feature expansion scheme. Specifically, for the stereo
feature pairs f′l, f′r with kc feature channels, we divide them
into k feature subsets ({f′l,0, . . . , f

′
l,k−1}, {f

′
r,0, . . . , f

′
r,k−1})

with each of c feature channels. Accordingly, the dis-
parity range [0, dmax − 1] is also divided into k intervals
[0, dmax−1

k ], . . . , [ (dmax−1)×(k−1)
k , dmax−1]. Then, each fea-

ture subset pair is responsible to construct the sub-volume in
its corresponding disparity interval, and during training, grad-
ually change from the equal initial states to the one most suit-
able for its corresponding disparity intervals. Finally, these
k sub-volumes are concatenated to form the final feature vol-
ume.

The advantages of our proposed scheme are: first, it plants
more feature maps into the final feature volume without re-
quiring extra memory (Figure 4(a) vs. 4(b)). Secondly, differ-
ent feature maps only need to be responsible for the match-
ing under different disparity intervals, which simplifies the
matching. Thirdly, it is very simple to implement, with only
k the expansion factor determining how many more features
to be planted.

2.3. Network Architecture

Our network architecture is illustrated in Figure 1, where the
modules of feature extraction, cost construction and cost ag-
gregation revamp the corresponding modules of PSMNet [8].
We remove spatial pyramid pooling from the feature extrac-
tion module, and add our proposed feature transformation and
feature expansion into the cost construction module.

Moreover, in PSMNet, the cost aggregation module in-
cludes a basic 3D convolution combination and three 3D
hourglasses [8]. We revamp the residual connection between
3D hourglasses and the identity connection within each 3D
hourglass, as shown in Figure 1. Note that our cost aggrega-
tion just has two 3D hourglasses. The outputs of the basic 3D
convolution combination and the two 3D hourglasses are used
to supervise the training of the network.

In our network, we adopt the disparity regression [5] to
estimate the disparity map. With cd for d = 0, . . . , dmax − 1
as the cost distribution, the disparity regression first performs
the softmax operation on cd to attain the probability distribu-
tion pd, and then uses pd to estimate the disparity d̂:

pd =
ecd∑dmax−1

i=0 eci
; d̂ =

dmax−1∑
d=0

pd × d . (5)

We apply the smooth L1 loss as the regression loss to train
the network. In order to balance the losses of the three out-
puts, we adopt the weighted average strategy, and the weights
are set to [0.5,0.7,1.0].
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Table 1. Ablation study of feature transformation on the
Sceneflow test set and the KITTI2015 validation set. EPE is
the main evaluation metric of Sceneflow, and D1 for KITTI,
as marked in bold. The best strategies are marked in red and
the most optimized schemes in each threshold are in blue.

model Sceneflow KITTI2015
EPE D1 EPE D1

original 1.0751 5.5209 0.6733 2.0089
ft6 1.0007 5.1540 0.6554 1.7873
fth6 1.0625 5.5100 0.6655 1.9521
ftl6 1.0125 5.2988 0.6595 1.7979
ft12 1.0152 5.2215 0.6697 1.8508
fth12 1.0319 5.3304 0.6742 1.8802
ftl12 1.0193 5.2862 0.6524 1.9030
ft18 0.9818 5.1075 0.6623 1.7633
fth18 1.0035 5.2588 0.6570 1.7788
ftl18 1.0449 5.4641 0.6693 1.9052

ft18&fe3 0.9388 5.0672 0.6485 1.7828

3. EXPERIMENTS

3.1. Implementation Details

Our network is implemented with PyTorch and trained with
Adam (β1 =0.9,β2 =0.999). The disparity range is set to
[0, D − 1], where D = 192.

DataSets. Sceneflow [7] is a large synthetic dataset with
three subsets, namely Flyingthings3D, Monkaa and Driv-
ing. We perform experiments on Flyingthings3D, which con-
tains 22,290 training image pairs and 4,370 test image pairs
with dense ground-truth disparity maps. KITTI2012 [14] and
KITTI2015 [15] are real scene datasets. KITTI2015 has 200
training image pairs with sparse ground truth and KITTI2012
has 194. It does not provide the ground truth for 200 test pairs
of KITTI2015 and 195 of KITTI2012. The results of test set
can be assessed by submitting to the evaluation server. Mid-
dlebury [16] is a high-resolution dataset of real indoor scenes,
but it only provides no more than 50 image pairs for training.

Training strategy. In the ablation study, we use Scene-
flow and KITTI2015 to evaluate our proposals and search for
the best settings. On Sceneflow, the network is trained from
scratch for 10 epochs at the learning rate of 10−3. The best
model is selected to be further finetuned on KITTI2015. The
learning rate is set to 10−3 for first 200 epochs and reduced to
10−4 for the remaining 100 epochs. We also validate the ap-
plicability of our feature wrangling strategies on top networks
(PSMNet, GA-Net). All the experiments are performed on
two 1080Ti GPU with three batches on each GPU.

Performance metrics. End-point error (EPE) is the aver-
age value of disparity errors (the absolute error between the
estimated disparity and the true value); N -px represents the
percentage of pixels with disparity error beyondN ; similar to

N -px, D1 is the percentage of pixels with the disparity error
beyond 3 or exceeding 5% of the true disparity.

(a) (b)

Fig. 5. Results of models with different feature expansion
factor k on (a) Sceneflow and (b) KITTI, with EPE (end-point
error) and D1 (error rate) as the evaluation metrics.

3.2. Ablation Studies

In this section, we conduct multiple experiments on Scene-
flow and KITTI2015 to evaluate the effectiveness of our two
proposals. For simplicity, we call the model employing fea-
ture transformation ftt (t : threshold), and the model apply-
ing feature expansion fek (k : expansion factor).

Feature transformation. Different thresholds t repre-
sent different strategies to leverage the rank information in
the feature transformation. We mainly compare the cases of
t = 6, 12 and 18. For each threshold, we further compare
the feature transformation scheme applying only high-ranking
(ftht ) or low-ranking features (ftlt) with that applying both.
In Table 1, we can observe the following patterns. First, all
the ftt outperform the original model without feature trans-
formation, even for the models (fth6 , ftl18) having fewer valid
pixels and lacking sufficient semantic information. This ver-
ifies the benefit from our feature transformation to the search
for stereo correspondence. Secondly, the performance of the
models with much valid pixels, such as ftl6 and fth18, is sig-
nificantly improved, inferring that the pixel partition enhances
the local variant of features and benefits to matching. Thirdly,
models using high-ranking or low-ranking feature alone per-
form worse than models that applying both. ft18 works the
best and its D1 result on KITTI2015 is 15% lower than the
original model, owing to the necessary semantic information
and the advantage of correspondence search.

Feature expansion. From Figure 5, we can observe the
follows. First, all models with feature expansion have a per-
formance improvement from the original model. On Scene-
flow, the EPE of fe4 is 0.9662, reducing nearly 10% from
the original model (1.0751), indicating the benefit from us-
ing a more informative cost volume due to feature expan-
sion. Secondly, there can be an optimal expansion factor k
(e.g. k = 3, 4 for these two datasets), as with the increase of
expansion factor k, the performance of fek does not mono-
tonically increase. A very large k may challenge the feature
extraction module to converge to an optimal solution.

In addition, we compare the two feature volume construc-
tion strategies in Figure 4(b). The EPE of the network with-
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Fig. 6. (a) Left view (upper panel) and ground truth (lower panel). (b-e) The estimation results (upper panels) and error maps
(lower panels) of the original model, ft18, fe3 and ft18&fe3, respectively. The yellow arrows in (b-e) point to the estimation
differences of these models in a specific region, and the warmer color in error maps means the larger error.

Fig. 7. Results on Middleburry test set. From left to right:
left view, the result of our network without feature wrangling,
and the result with feature wrangling, respectively.

Fig. 8. Results of our model on the Sceneflow test set. From
left to right: left view, ground truth, and our estimation.

out feature expansion on Sceneflow is 0.98, which achieves a
subtle improvement comparing with the 1.01 of fe2. How-
ever, taking account of parameter and prediction speed (7.2M
vs. 4.6M and 0.62s vs. 0.42s), the feature expansion strategy
shows significant performance.

Effectiveness of two feature wranglings. In Table 1, we
also list the results of the model ft18&fe3, combining the two
schemes under their respective optimal hyper-parameters. In
Table 1, ft18&fe3 offers the best performance on Sceneflow,
where EPE is reduced by 12.68% compared with the origi-
nal model, and D1 is reduced by 8.22%. We also observe
that, although the 3px (1.7828) of ft18&fe3 on KITTI2015
is slightly higher than the 1.7633 of ft18, ft18&fe3 outper-
forms ft18 in all other scenarios, especially for the EPE of
Sceneflow, which is improved by 4.38% from ft18. The su-
periority of two strategies and their combination is reflected
in the regions highlighted in Figure 6. Figure 7 shows us that
the feature wrangling strategies promotes the network’s esti-
mation at some front and back scene boundaries (marked by
white boxes).

Table 2. Results on the Sceneflow, KITTI2015 and
KITTI2012 test sets. The key metric and best results are in
bold. * denotes the model equipped our proposals.

Method
Sceneflow KITTI2015 KITTI2012

EPE(px) D1(%) 3px(%)
All Noc All Noc

SegStereo [17] 1.45 2.25 2.08 2.03 1.68
EdgeStereo [18] 1.11 2.16 2.00 1.83 1.46

GC-Net [5] 2.51 2.87 2.45 2.30 1.77
SSPVC-Net [19] 0.87 2.11 1.91 1.90 1.47
DeepPruner [11] 0.86 3.56 2.15 - -

PSMNet [8] 1.09 2.32 2.14 1.89 1.49
GA-Net [20] 0.84 1.81 1.63 1.60 1.19

PSMNet* 0.97 2.03 1.82 1.80 1.31
GA-Net* 0.81 1.68 1.50 1.69 1.15

ours 0.81 1.97 1.80 1.69 1.29

3.3. Comparisons with the state-of-the-art methods

In this section, we compare our best model with some state-
of-the-art algorithms.

In Table 2, we show the EPEs of ours and some classic
networks on the Sceneflow test set. Among them, our model
and GA-Net* achieves the best performance, proving the va-
lidity of our proposal. Tables 2 also presents official evalua-
tion data of top networks on the KITTI2015 and KITTI2012
test sets, respectively. On KITTI2015, our network performs
outstandingly on multiple metrics and the performance pro-
motion of GA-Net* and PSMNet* from their original network
strongly confirms the effectiveness and applicability of our
schemes. In fact, our network works better than PSMNet on
both KITTI2012 and KITTI2015 test sets, showing the effec-
tiveness of our network structure improvement.

Figure 8 reveals the excellent performance of our network
on some detailed structures. The qualitative results on the
KITTI2015 and KITTI2012 test sets are presented in Figure 9,
which can be compared to highlight the advantages of our
approach in some error-prone regions (marked in the white
dashed boxes).
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Fig. 9. Results of KITTI2015 (upper two rows) and KITTI2012 (lower two rows) test sets: (upper) disparity map and (lower)
error map. For error maps, warmer or brighter color means larger error in KITTI2015 and KITTI2012, respectively. Significant
improvements are highlighted by white boxes.

4. CONCLUSION

In this paper, we propose two feature wrangling strategies for
the cost construction: One is a spatially differentiable fea-
ture transformation scheme amenable to stereo matching; and
the other is a channel-wise memory-economical feature ex-
pansion scheme generating a information-richer cost volume.
Both of them can effectively improve the performance of the
network and help our simple network achieve the state-of-the-
art results on multiple datasets. In future, we will further at-
tempt other effective feature transformation to boost stereo
matching performance.
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