Main Manuscript for

LXR directly regulates glycosphingolipid synthesis and affects human CD4+ T cell function

Kirsty E Waddingtona,b,1, George A Robinsona, Beatriz Rubio-Cuestab,2, Eden Chrifi-Alaouia, Sara Andreonea,3, Kok-Siong Poonb,4, Iveta Ivanovab, Lucia Martin-Gutierreza, Dylan M Owenc,5, Elizabeth C Jurya,6 and Inés Pineda-Torrab,7,.*

aCentre for Rheumatology or bCentre for Cardiometabolic and Vascular Science, University College London, United Kingdom. cDepartment of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, United Kingdom.

Present addresses: 1GammaDelta Therapeutics Limited, London, UK, 2Translational Oncology Laboratory, Research Institute i+12 and Spanish National Cancer Research Centre (CNIO) and Universidad Autonoma de Madrid, Madrid, Spain, 3Department of Oncology and Molecular Medicine, Instituto Superiore di Sanità, 00161 Rome, Italy, 4Department of Pathology, Yong Loo Lin School of Medicine, National University Singapore and 5University of Birmingham, United Kingdom.

*Shared senior authorship

1 Inés Pineda-Torra and Elizabeth C. Jury

Email: i.torra@ucl.ac.uk and e.jury@ucl.ac.uk

Classification

Biological Sciences/Immunology and Inflammation

Keywords

liver X receptor, CD4+ T cell, lipid metabolism, cholesterol, glycosphingolipids
Author Contributions

KEW performed most experiments and data analysis, and prepared the figures. KEW, GAR, K-SP, LMG, EC-A and SA performed flow cytometry experiments and qPCR analysis. BR-C performed western blotting experiments. DMO and II acquired microscopy images for di-4-ANEPPDHQ experiments and provided guidance for image analysis. KEW, IPT and ECJ designed experiments, interpreted the data, and prepared the manuscript. IPT and ECJ conceived the study, secured the funding and supervised all aspects of the work.

Competing Interests

No competing interest to declare

This PDF file includes:

Main Text
Figures 1 to 6

Abstract

The liver X receptor (LXR) is a key transcriptional regulator of cholesterol, fatty acid, and phospholipid metabolism. Dynamic remodeling of immunometabolic pathways, including lipid metabolism, is a crucial step in T cell activation. Here we explored the role of LXR-regulated metabolic processes in primary human CD4+ T cells, and their role in controlling plasma membrane lipids (glycosphingolipids and cholesterol) which strongly influence T cell immune signaling and function. Crucially, we identified the glycosphingolipid biosynthesis enzyme glucosylceramide synthase (UGCG) as a direct transcriptional LXR target. LXR activation by agonist GW3965 or endogenous oxysterol ligands significantly altered the glycosphingolipid:cholesterol balance in the plasma membrane by increasing glycosphingolipid levels and reducing cholesterol. Consequently, LXR activation lowered plasma membrane lipid order (stability), and an LXR antagonist could block this effect. LXR stimulation also reduced lipid order at the immune synapse and accelerated activation of proximal T cell signaling molecules. Ultimately, LXR activation dampened pro-inflammatory T cell function. Finally, compared to responder T cells, regulatory T cells had a distinct pattern of LXR-target gene expression corresponding to reduced lipid order. This suggests LXR-driven lipid metabolism could contribute to functional specialization of these T cell subsets. Overall, we report a novel mode of action for LXR in T cells involving the regulation of glycosphingolipid and cholesterol metabolism, and demonstrate its relevance in modulating T cell function.

Significance Statement

This work shows for the first time that LXR regulates glycosphingolipid biosynthesis expression in primary human T cells, thereby influencing T cell plasma membrane lipid composition, subsequent immune synapse formation, T cell receptor-mediated signaling and function. Furthermore, we show LXR actions are differentially regulated in functional T cell subsets, supporting an important role for lipid metabolism in human T cell homeostasis. This new mode of action for LXR could be of therapeutic relevance to disorders characterized by defects in T cell
signaling and metabolism, including autoimmune and neurodegenerative diseases, cardiovascular disease and cancer.
Main Text

Introduction

CD4+ T cells (also known as T helper cells) shape the immune response by releasing cytokines with both pro-inflammatory and immunomodulatory effects. A number of factors govern the precise balance of pro- and anti-inflammatory mediators produced, including antigenic stimulation, cell-cell signaling and micro-environmental cues. The T cell plasma membrane facilitates these processes, providing a flexible interface between the cell and its microenvironment, where membrane receptors integrate internal and external signals to generate functional outcomes. Lipids are a key component of the plasma membrane and contribute to its biophysical properties and protein receptor compartmentalization. Cholesterol and glycosphingolipids are particularly enriched, forming signaling platforms known as lipid rafts which play a critical role in T cell antigen receptor (TCR) signaling and T cell function (1). Cholesterol maintains lipid raft structure, inhibits spontaneous TCR activation and promotes TCR clustering (2, 3). In addition, cholesterol has been shown to regulate T cell proliferation (4, 5), differentiation and cytokine production (6). Similarly, glycosphingolipids influence TCR-mediated signaling, responsiveness to cytokine stimulation and Th17 cell differentiation (7, 8). Plasma membrane cholesterol and glycosphingolipid levels influence lipid order, a measure of how tightly packed lipids are in the membrane (9); notably increased cholesterol is associated with higher lipid order (9-11). Variations in lipid order can influence the interaction of membrane receptors and determine the strength of cell signaling (12). In particular, changes in lipid order at the T cell immune synapse can alter the strength and nature of signaling events and impact T cell function (9, 10, 13). Importantly, abnormal T cell plasma membrane lipids have been linked to pathogenic T cell function and are attractive targets for immunotherapy in autoimmunity, viral infection and cancer (14-19).

Our previous work linked pathogenic elevation of CD4+ T cell glycosphingolipid expression in systemic lupus erythematosus (SLE) to liver X receptor (LXR) expression (7). LXRα (NR1H3) and LXRβ (NR1H2) are transcription factors activated by oxidized derivatives of cholesterol (oxysterols) (20) and intermediates of cholesterol biosynthesis (20) to regulate gene expression. The majority of LXR target genes are involved in the metabolism of lipid metabolic processes, including cholesterol efflux and uptake, fatty acid biosynthesis, and phospholipid remodeling (20). However, it is not known whether LXR regulates glycosphingolipid metabolism or T cell lipid rafts. This prompted us to further explore the relationship between LXRs, glycosphingolipid metabolism and plasma membrane lipid composition.

Here we demonstrate a new role for LXR in human CD4+ T cells that involves modulation of the human T cell transcriptome and lipidome. We show how LXR activation modulates glycosphingolipid and cholesterol homeostasis and define a new mechanism for LXR-mediated effects on T cell function via regulation of plasma membrane lipid composition. Finally, we show that regulatory T cells (Tregs) have a distinct plasma membrane lipid profile that corresponds to differential expression of LXR target genes. We propose that regulation of membrane lipids by LXR could contribute to the specialized regulatory functions of this T cell subset.

Results

LXR transcriptionally regulates lipid metabolic pathways in human CD4+ T cells

To define the transcriptional effects of LXR activation in human CD4+ T cells, primary cells were exposed to the specific LXR agonist GW3965 (GW) (21). Sixty-five LXR-responsive genes were identified (Fig. 1a-b, SI Appendix-Dataset S1), and GW-treated samples were clearly distinguishable from their controls by principal component analysis (PCA) (SI Appendix-Fig. S1a). The majority of differentially expressed genes (DEGs) were upregulated (53 out of 65), a subset of
which demonstrated a very strong ligand response. These included well-characterised LXR target
genes (*ABCG1*, *ABCA1*, *APOC1*, *SCD* and *SREBF1* (22)) and the recently identified
oligodendrocyte maturation-associated long intervening non-coding RNA (*OLMALINC*) (23) (Fig.
1c, SI Appendix-Fig. S1b). Other previously identified LXR target genes had a more modest
upregulation (<5-fold) (SI Appendix-Fig S1c). The significantly enriched pathways were
 hierarchically clustered into functionally related groups (Fig. 1d). Strikingly, all 15 clusters enriched
for LXR-upregulated genes were related to metabolism, the most significant of which was
‘cholesterol metabolic process’. Only 12 genes were significantly downregulated by GW (Fig. 1a-
b, SI Appendix-Fig. S1b), and these were most strongly associated with the ‘regulation of
inflammatory responses’ (Fig. 1e).

LXR can act in a subtype specific manner, and the relative expression of LXRα and β differs
between monocytes/macrophages and T cells (4, 24) (SI Appendix-Fig.S1d-e). Another striking
difference is that in monocytes/macrophages LXRα regulates its own expression via an
autoregulatory loop (25) which does not occur in T cells (SI Appendix-Fig. S1f). These differences
likely lead to cell-type specific responses to LXR activation. To identify potential T cell specific LXR
targets we cross-referenced our list of DEGs with two publicly available RNA-sequencing datasets
from murine macrophages (mMφ) treated with GW (25). Of the DEGs identified in T cells, 52% were
similarly regulated in mMφ, and remarkably, 29% were uniquely regulated in the T cell dataset (Fig.
1f). Some of these genes are known to be differentially regulated between mice and
humans/primates but, to our knowledge, a subset have not previously been associated with LXR
activation (*BRWD3, CHD2, MKNK2, SLC29A2, TDRD6, TKT* and *UGCG*) (SI Appendix-Table S1).
Overall, genes involved in lipid metabolic pathways were upregulated in both cell types, but there
were no shared pathways amongst the downregulated genes, which tended to be involved in the
regulation of immunity and inflammation (SI Appendix-Fig. S1g-h). This supports that the
immunomodulatory effects of LXR activation vary between cell-types and species (26).

Thus, we have identified genes responsive to LXR activation in human CD4⁺ T cells, most markedly
the upregulation of genes involved in lipid metabolic processes, and highlighted a subset of genes
that may represent human or T cell specific targets.

LXR controls transcriptional regulation of glycosphingolipid biosynthesis enzyme UGCG

Since LXR activation predominantly regulated genes involved in lipid metabolism, the impact on T
cell lipid content was assessed using shotgun lipidomics. Although total intracellular lipid levels
were not affected by LXR activation (Fig. 2a), 15% of the detected lipid subspecies were
significantly regulated (54 out of 366, Fig. 2b). Notably, a large proportion of triacylglycerols (TAG)
and hexosylceramides (HexCer) were induced by LXR activation, and overall quantities of TAG
and HexCer were elevated (Fig. 2c-e, SI Appendix-Table S5).

LXR regulated many enzymes involved in fatty acid metabolic processes including synthesis,
desaturation and elongation (Fig 1d, SI Appendix-Dataset S1). There were no changes in total
levels of saturated, monounsaturated and polyunsaturated lipids. However, amongst PUFAs there
was an increase in degree of unsaturation, which is associated with membrane disorder (27, 28) (SI
Appendix-Fig. S2a). Further examination at the lipid class level revealed significant increases in
saturated and monounsaturated lipid species, HexCers, and TAG species with more than 4 double
bonds (Fig. 2c and SI Appendix-Fig.S2b).

This is the first report linking LXR activation to HexCer. We observed GW also reduced levels of
several ceramides (Fig. 2b-c), suggesting an accelerated conversion of ceramide to HexCer - a
reaction catalysed by glycosphingolipid biosynthesis enzymes UDP-glucosylceramide synthase
(*UGCG*) or UDP-glycosyltransferase 8 (*UGT8*) (Fig. 2f-g). In support of this, UGCG mRNA
expression was upregulated by LXR activation (Fig. 2h), whereas UGT8 was absent in CD4+ T cells (SI Appendix-Fig. S2c).

UGCG upregulation was further amplified by co-stimulation of LXR and its heterodimeric partner the retinoid X receptor (RXR) (SI Appendix-Fig. S2d), as has been reported for other LXR target genes (29, 30). GW treatment also enhanced UGCG expression in other immune cell types, including peripheral blood mononuclear cells (PBMCs), CD14+ monocytes and CD19+ B cells (SI Appendix-Fig. S2e). However, in monocyte-derived macrophages and THP-1 macrophages, UGCG was only modestly increased (<1.5-fold change, SI Appendix-Fig. S2e-f). This may explain why UGCG has not been identified as an LXR target gene in previous RNA-seq and ChIP-seq experiments using macrophages (31, 32), in which most of LXR biology has been reported to date.

The increase in UGCG expression was not a GW-specific effect, as UGCG mRNA was also upregulated in response to stimulation with the endogenous LXR activators 24S, 25-epoxycholesterol (24S,25-EC) and 24S-hydroxycholesterol (24S-OHC), albeit with an altered kinetic (SI Appendix-Fig. S2g).

To determine whether LXR regulates UGCG expression by directly binding to the UGCG locus, we screened for potential LXR response element (LXRE) sequences in silico. A putative DR4 sequence was identified upstream of the UGCG gene that coincided with an LXR-binding peak in HT29 cells treated with GW39 (SI Appendix-Fig. S2i). ChIP-qPCR experiments demonstrated enrichment in LXR occupancy at this site, which increased with ligand activation (SI Appendix-Fig. S2i). The observed LXR occupancy at the UGCG gene followed a similar pattern to that of a reported LXRE within SMPDL3A (34) (SI Appendix-Fig. 2i & S2h-j). Moreover, acetylation of histone H3K27 was enriched at this region compared to the IgG and a negative control sequence, suggesting this site falls in an active transcriptional enhancer (SI Appendix-Fig. S2i-j).

LXR regulates the T cell plasma membrane lipid raft profile

UGCG is the rate-limiting enzyme for the biosynthesis of glycosphingolipids, important components of plasma membrane lipid rafts. Indeed, LXR activation consistently upregulated T cell glycosphingolipid expression measured using cholera-toxin B (CTB) (Fig. 3a), a well-established surrogate glycosphingolipid marker (7). Specific pharmacological inhibition of UGCG activity blocked the induction of glycosphingolipids by GW, suggesting this was UGCG-dependent (SI Appendix-Fig. S2k). The increase in glycosphingolipid levels was accompanied by significant downregulation of membrane cholesterol (Fig. 3b), likely due to the strong induction of cholesterol efflux transporters ABCA1 and ABCG1 (Fig. 1c, SI Appendix-S2m). As expected, UGCG inhibition had no effect on the reduction of cholesterol or lipid order (SI Appendix-Fig. S2k). Overall, LXR activation significantly increased the ratio of glycosphingolipids to cholesterol (Fig. 3c).

The relative abundance and arrangement of lipids in the plasma membrane dictates its ‘lipid order’, an important determinant of signalling protein localisation during immune synapse formation (10). Cholesterol levels positively correlate with T-cell plasma membrane lipid order, whereas glycosphingolipid levels have a negative correlation (9). LXR lowers cholesterol and raises glycosphingolipids, resulting in the significant reduction of membrane lipid order by GW/OHC activated LXR (Fig. 3d-e, SI Appendix-S2k-i). The specific LXR antagonist GSK233 was able to block the reduction of lipid order, glycosphingolipid and cholesterol levels by GW (Fig. 3e, SI Appendix-S2l). Oxyesters, also activated LXR-target gene expression and reduced lipid order while GSK233 only partially reversed the effect of 24S-OHC, in line with the known LXR-independent actions of oxyesters (SI Appendix-Fig. S2m-o).

Furthermore, LXR target genes were differentially expressed in T cells sorted based on their (high/low) plasma membrane lipid order. T cells with low membrane lipid order (low cholesterol, high glycosphingolipids) had elevated expression of ABCA1, ABCG1 and UGCG compared to T cells with high membrane lipid order (high cholesterol, low glycosphingolipids) (Fig. 3f). This suggests LXR ligand induced cholesterol efflux (ABCA1/G1) and glycosphingolipid biosynthesis (UGCG) contribute to the generation of low membrane lipid order. In contrast, there was no
Overall, these data suggest that LXR transcriptionally upregulates \textit{de novo} glycosphingolipid synthesis in human T cells, thereby contributing to the remodelling of plasma membrane lipid composition in response to LXR activation.

\textbf{LXR activity modulates lipid metabolism and effector function of activated T cells}

Next, we explored the effect of LXR on primary human T cell activation. Over 3000 genes were significantly regulated by TCR activation, although most of these were regulated irrespective of LXR activation with GW (Fig. 4a). Interestingly, LXR\(\beta\) expression was slightly increased by TCR stimulation, while LXR\(\alpha\) expression remained low (Fig. S3a). Overall, 113 genes were regulated by the presence or absence of GW in activated T cells (Fig. 4b, SI Appendix-S3b & Dataset S2).

TCR/LXR co-stimulation upregulated genes involved in lipid metabolic processes, and downregulated genes associated with immune system processes including chemokine production and chemotaxis (SI Appendix-Fig. S3c). When these genes were clustered based on their expression in both activated and resting cells, four major patterns of gene expression were identified (Fig. 4c, SI Appendix-Table S2). Many genes upregulated by GW in resting cells were upregulated to an equal or greater extent in GW/TCR co-activated cells (clusters A and C, Fig. 4c).

These clusters were enriched for genes involved in lipid and cholesterol metabolic processes, including canonical LXR target genes \textit{ABCA1} and \textit{SREBF1} and the newly identified LXR-target gene \textit{UGCG}. This corresponded with changes in global plasma membrane lipid composition, namely increased glycosphingolipids but reduced cholesterol in response to LXR/TCR co-stimulation compared with TCR stimulation alone (Fig. 4d-f). Therefore, LXR activation continues to modulate plasma membrane composition throughout the course of T cell activation.

In contrast, GW/TCR co-stimulation reduced the induction of a subset of genes involved in leukocyte activation (cluster B, Fig. 4c). Interestingly, other genes were only activated (cluster C) or repressed (cluster D) by LXR activation in the context of TCR stimulation (Fig. 4c). Therefore, bidirectional crosstalk between LXR and TCR stimulation modulates transcription in a gene-specific manner. Likely, more subtle differences did not reach statistical significance due to the heterogeneous response to stimulation between the healthy donors (SI Appendix-Fig. S3d).

In murine T cells, TCR stimulation was previously reported to repress LXR transcriptional activity, by reducing the availability of endogenous LXR ligands due to their modification by the sulfotransferase \textit{SULT2B1} (4). However, in the present study we observed very low levels of \textit{SULT2B1} in human CD4\(^+\) T cells (<11 gene counts), and \textit{SULT2B1} was not regulated by TCR activation (Fig. 4g). We considered that oxysterol levels could be controlled by an alternative mechanism, for example increased efflux or metabolism. Indeed, TCR activation downregulated the expression of oxysterol-binding proteins and oxysterol biosynthesis enzyme \textit{CYP27A1}, and upregulated oxysterol metabolising enzyme \textit{CYP1B1} (Fig. 4g). Therefore concentrations of endogenous LXR ligands during human T cell activation are also tightly regulated, but likely through a different mechanism.

LXR and T cell co-activation had significant functional consequences including increased production of interleukin (IL)-2 and IL-4, reduced IL-17A release compared to non-LXR-treated controls (Fig. 4h-i, SI Appendix-Fig. S4a-b). No changes in T cell interferon-\(\gamma\), tumour necrosis factor-\(\alpha\) or IL-10 production were detected (SI Appendix-Fig. S4b). Although LXR has been reported to regulate the transcription of certain cytokines (6, 35), this was not observed here (SI Appendix-Dataset S2). Furthermore, the expression of transcription factors which drive Th1 (Tbet), Th2 (GATA3), Treg (Foxp3) and Th17 (ROR\(\gamma\)) polarisation were also unaffected by LXR activation (SI Appendix-Fig. S4c). Proliferation was inhibited by GW-treatment (Fig. 4j, SI Appendix-S4d) and importantly, addition of the UGCG inhibitor NB-DNJ countered this effect by increasing proliferation and partially blocking IL-2 and IL-4 production (SI Appendix-Fig. S4e,f). Considering the preferential
regulation of lipid metabolism genes (SI Appendix-Fig. S3c) and observed changes in plasma membrane lipid levels (Fig. 4d-f), we instead hypothesised that the effects of LXR activation on T cell function could be mediated, at least in part, by an altered lipid landscape.

LXR-driven modification of plasma membrane lipid profile alters TCR signalling

TC cell activation is initiated by TCR-proximal signalling at the immune synapse, leading to proliferation and cytokine production. We previously demonstrated that, compared to cells with highly ordered plasma membranes, T cells with lower membrane lipid order have reduced synapse area, transient synapse formation and a Th1 cytokine skew (9). These functional outcomes are influenced by the localisation of TCR-signalling proteins within lipid microdomains at the immune synapse (36). To examine the effect of LXR stimulation on the kinetics of lipid reorganisation during the early stages of T cell activation we used di-4-ANEPPDHQ staining and TIRF microscopy to assess the interaction between CD4+ T cells and antibody-coated glass coverslips (mimicking the 'immune synapse') (Fig. 5a, SI Appendix-Movies S1-2). T cells pre-treated with GW had a significantly lower membrane order (generalised polarisation (GP) ratio) at the cell/coverlip interface for up to 20 minutes post-activation (Fig. 5b, SI Appendix-Movies S1-2). Synapse area was unaffected (SI Appendix-Fig. S4g), however, the pattern and distribution of lipid order was disrupted in GW-treated T cells compared to controls (SI Appendix-Fig. S4h). This was accompanied by increased levels of global tyrosine phosphorylation (Fig. 5c), increased accumulation of Lck receptor tyrosine kinase at the synapse (Fig. 5c) and a preference for Lck to accumulate at the synapse periphery (Fig. 5d), an area typically associated with active signalling (37). Specifically, GW treatment increased phosphorylation of important proximal T cell signalling molecules CD3 and the adaptor molecule linker for activation of T cells (LAT), but not extracellular signal related kinase (Erk) or phospholipase (PL) Cy1 (SI Appendix-Fig. S4i).

Taken together, these results suggest that plasticity in T cell function could be driven, at least in part, by altered plasma membrane lipid composition controlled by LXR activation.

Functional T cell subsets differ in their expression of LXR-regulated genes and lipids

T cells with high and low membrane lipid order are functionally distinct (9). Compared to responder T cells (Tresp), regulatory T cells (Treg) (Fig. 6a) had lower membrane order increased glycosphingolipid levels and reduced membrane cholesterol (Fig. 6b-d). We hypothesised that the LXR pathway could contribute to these differences. LXRO mRNA expression was significantly lower in Tregs, although LXRβ, which is the predominant form in T cells (SI Appendix-Fig. S1d-f), tended towards higher expression (p=0.06) (Fig. 6e). Corresponding to the plasma membrane lipid phenotype, Treg expression of the cholesterol transporter ABCG1 and glycosphingolipid enzyme UGCG were increased compared to Tresp, whereas other LXR target genes were not differentially expressed (ABCA1, IDOL, SREBF1, FASN) (Fig. 6e).

Interestingly, Tregs had a more variable response to LXR stimulation than Tresp in terms of reduction of membrane lipid order and induction of glycosphingolipids, although downregulation of cholesterol was consistently similar (Fig. 6f-h). Mirroring the regulation of glycosphingolipids and cholesterol, cholesterol metabolism genes (ABCA1, ABCG1, IDOL) were similarly induced in both subsets whereas UGCG mRNA was significantly upregulated in Tresp but not Treg (Fig. 6g-h). Fatty acid synthesis enzymes had a similar magnitude of regulation (4-fold vs 6-fold), although FASN levels were much higher in GW-treated Treg than Tresp (Fig. 6i).

These results demonstrate that Treg and Tresp have distinct plasma membrane lipid profiles and differences in LXR ligand responses. This suggests that variation in LXR activity could influence the functional specialisation of T cell subsets.
Discussion

CD4+ T cells provide essential protection against infection and cancer, but dysregulated T cell responses contribute to the pathogenesis of many diseases. LXRs are an attractive therapeutic target in many immunometabolic diseases involving T cells (38, 39). However, the actions of LXR in lymphocytes have not yet been fully investigated, particularly in human cells. This is important since a number of differences in LXR biology have been reported between human and rodent models, including the aforementioned species-specific regulation of certain genes (23, 25, 34, 40).

Furthermore, in stark contrast to the anti-inflammatory effects of LXR activation in murine macrophages (41-43), LXR has been shown to potentiate pro-inflammatory responses in human monocytes (40, 44, 45).

Here, we have comprehensively assessed the action of LXR in human CD4+ T cells combining transcriptomic and lipidomic analyses with cell biology approaches to study the regulation of lipid metabolism and T cell function. Our findings revealed a novel regulation of glycosphingolipid biosynthesis by LXR in these cells, which may be replicated in other immune cell types. The combined effect of LXR activation on glycosphingolipid and cholesterol levels contributed to an overall reduction in plasma membrane lipid order, which modulated immune synapse formation and proximal T cell signalling in the context of TCR activation.

Whilst this work was ongoing, LXR was shown to contribute to T cell development in animal models. T cell specific deletion of LXR resulted in peripheral lymphopenia, thought to be caused by accumulation of plasma membrane cholesterol, heightened apoptotic signalling, and subsequent enhanced negative selection (46). This supports our findings that regulation of plasma membrane lipids by LXR is important for T cell function. Additionally, recent work in murine models highlighted LXR indispensable role in murine Tregs (47). LXR activation was also shown to exert anti-tumour affects by reducing the Treg content of the murine tumour microenvironment (48). While this work stresses the importance of LXR in T cell biology, the impact of LXR on plasma membrane metabolism was not examined.

There is extensive evidence in the literature that UGCG plays an important role in T-cell immune synapse formation in vitro and in vivo. Similar to other studies (49), we did not use siRNA-based methods which could adversely influence membrane integrity to assess the complex changes imparted by LXR on membrane lipids and order. Rather, we used pharmacological inhibitors of LXR (GSK2033) and UGCG (NB-DNJ). Inhibition of UGCG has been shown to attenuate proximal TCR signalling in Jurkat T cells, to reduce the production of IL-2 and IFNγ and to inhibit proliferation (8, 50). Our own work also showed that inhibition of UGCG normalised T-cell signalling and function in primary human T cells from SLE patients in vitro (7). We have also shown that in human T cells, increased glycosphingolipids are associated with increased accumulation of protein tyrosine phosphatase CD45 (which regulates Lck activity) within lipid rafts and increased Lck phosphorylation at the immune synapse (18). Thus, changes in lipid order and lipid profile could reflect an initial acceleration in signalling (seen as increased tyrosine phosphorylation), altered interaction between regulatory and inhibitory molecules and altered downstream signalling events. This may result in increased overall activation, but result in changes in certain cytokine levels as we and others have described previously (36, 51-57).

Indeed, in T cells from SLE patients, inhibition of UGCG activity increased phosphorylation of TCRζeta and Erk, yet dampened proliferation and pro-inflammatory cytokine production (7). Interestingly, Guy et al. (58) also demonstrated that cytokine production and proliferation can be uncoupled depending on the number of phosphorylated sites on the TCR subunits, whereby weak signals are sufficient to maintain cytokine production but fail to induce proliferation – similar to the phenotype observed here. Furthermore, changes in sphingolipid content at the immune synapse, specifically a decline in glucosylceramide (the product of UGCG), have been linked to T-cell dysfunction in aged mice (59). Finally, reduced expression of the glycosphingolipid GM1 in effector T cells was associated with resistance to Treg suppression (60). Overall, these studies
demonstrate that perturbation of UGCG activity and glycosphingolipid levels have been linked with abnormal TCR signalling at the immune synapse, resulting in altered effector functions. However, LXR had not previously been linked to glycosphingolipid metabolism.

It is important to note that changes in membrane lipid order, that could at first glance appear modest especially when compared to changes in gene expression, can nonetheless have important consequences in T cell function (9, 12, 61, 62). Changes in plasma membrane lipid order, measured using phase sensitive probes, can affect T cell responses to TCR stimulation (9, 12). Specifically, high order cells form a more stable immune synapse, resulting in a robust proliferative response and Th2 cytokine skew. In contrast, cells with lower order proliferate less and produce IFNγ (Th1) (9). Furthermore, pharmacologically reducing membrane order with an oxysterol is sufficient to alter the immune synapse between T cells and antigen presenting cells and subsequent T cell proliferation and cytokine production (9, 10).

The discovery that LXR activation upregulates UGCG expression in primary human immune cells provides a novel mode of action for LXR in the immune system. The magnitude of transcriptional activation by LXR, as for other nuclear receptors, depends on several factors, including chromatin architecture and epigenomic landscape at the specific gene that will determine cofactor recruitment and corepressor release, or whether other signal dependent transcription factors are present at the binding site (63). We observed that H3K27 acetylation at the UGCG site does not change in response to LXR ligand activation, similar to other LXR target genes (SMPDL3A is shown). This is not unusual for LXR regulation of gene expression (64). Changes in H3K27ac could be dynamic and altered with kinetics different to those of LXR binding. Additionally, other chromatin acetylation marks associated with transcriptional activation linked to gene activation in human CD4+ T cells or in the regulation of lipid metabolism could be relevant (65, 66). Future investigations will aim to characterise currently lacking global profiles of activation marks in these cells in response to LXR agonist and lipid changes. Furthermore, gene regulation may be mediated by the binding of additional signal-dependent transcription factors to adjacent sites (67). Finally, we and others have demonstrated that LXR regulation can be gene selective (68, 69).

UGCG is a ubiquitously expressed and highly conserved gene. To date no post translational modifications have been identified, and transcriptional regulation appears to be the main determinant of its activity (70). UGCG expression has been shown to be strongly upregulated by a variety of inflammatory signals (71-74), in response to inhibition of prenylation by statin treatment (71-74), and by mTORC2 during tumorigenesis (75). It will be important to establish whether LXR-mediated regulation of UGCG extends to other cell-types and tissues, as this could have wide-reaching implications for the therapeutic activation of LXR in various contexts. For example, elevated expression of UGCG has repeatedly been linked to acquisition of multi-drug resistance and resistance to apoptosis in cancer models (76, 77). More recently, UGCG overexpression was shown to drive enhanced glutamine and mitochondrial metabolism in breast cancer cells (78-80).

LXR activation can be pro- or anti-inflammatory depending on the timing of stimulation and species studied (40, 44, 45). LXR activation has previously been reported to inhibit cytokine production by T cells (35, 81, 82), generally attributed to repression of cytokine mRNA transcription (35, 81), which we did not observe here. We confirmed inhibition of proliferation and IL-17 production as previously observed (4, 35, 81, 82). However, we detected an increase in the production of both IL-2 and IL-4 and, in contrast to previous studies, did not observe inhibition of IFN-γ or TNF-α. Because the anti-inflammatory actions of LXR are context dependent (26, 40, 45), it is likely that differences in the conditions for T cell or LXR activation could explain this discrepancy. For example, LXR activation can reduce production of IL-2, TNFα and IFNγ in human CD4+ T cells (81). However, in that study T cells were only briefly stimulated with anti-CD3/28 (6 hours), compared to long-term (72 hours) exposure in our study. Furthermore, a different LXR ligand was used (T0901317), which has also been shown to act on other nuclear receptors (83). This suggests T0901317 activation could have led to LXR-independent effects on
T cell function which would differ from those observed with a more specific ligand such as GW. In addition, the timing, duration and strength of stimulus as well as age and sex of donors can all influence LXR signalling\(^{(84, 85)}\). Future studies could explore whether these factors are relevant in the LXR-dependent regulation of T cells. In our studies, LXR activation by GW did not significantly alter the induction of cytokine mRNA expression. Instead, the most significantly regulated transcriptional pathways were related to lipid metabolism, and we observed changes in plasma membrane lipid expression early (minutes) and late (72 hours) in the course of T cell activation.

We identified that LXR-regulated genes and lipids were differentially expressed in Tregs. Like other nuclear receptors, LXR function is orchestrated by a complex combination of factors as mentioned above. Such mechanisms could contribute to subset-specific and gene-specific regulation as we have observed in human T cell subsets and will require further investigation. In murine cells, LXR has been suggested to play a critical role in Treg function\(^{(47)}\), increase Foxp3 expression, and promote inducible-Treg differentiation \(^{(86)}\). In contrast, LXR activation was recently shown to decrease the frequency of a subset of T cells, intestinal ROR\(^{yt}\)-Tregs, but this was attributed to an indirect effect on myeloid cells \(^{(87)}\). While there is currently no evidence of the regulation of Treg and Tresp subsets by LXR in humans, rodent studies point to the importance of LXR\(^{\beta}\) in murine T reg\(^{(47)}\). In mouse macrophages, LXR\(^{\alpha}\) and LXR\(^{\beta}\) exert overlapping but also specific transcriptional activities \(^{(69)}\) although it is currently not known whether this also occurs in other cell types. Future studies will be needed to carefully dissect the mechanisms underlying the cell and LXR isotype-specific mechanisms of UGCG regulation.

In any case, a potential interaction between LXR signalling, plasma membrane lipids and Tregs has not yet been explored. Murine Tregs also have low membrane order, and genetic deletion of ceramide synthesizing enzyme \(smpdf\) increases the frequency and suppressive capacity of Tregs \(^{(88)}\). This supports a relationship between ceramide metabolism (in which UGCG plays a key role), plasma membrane lipid order, and Treg function. Although plasma membrane cholesterol has been shown to play an important role in the differentiation of Tregs \(^{(89)}\), increasing plasma membrane cholesterol was reported to have no effect on their suppressive function \(^{(90)}\). In contrast, reduction of intracellular cholesterol by 25-hydroxycholesterol or statin treatment inhibited Treg proliferation and expression of the immune checkpoint receptor CTLA-4 \(^{(91)}\). Together, this work supports the hypothesis that LXR could contribute to Treg function via modulation of plasma membrane lipid order.

In addition to the changes in cholesterol and glycosphingolipid metabolism explored here, triacylglycerol (TAG) levels were also substantially upregulated by LXR activation. Compared to conventional T cells, Tregs are lipid-enriched and have increased TAG synthesis and a greater concentration of lipid droplets which serve as a fuel source and protect against lipotoxicity \(^{(92)}\). Furthermore, TAG also promote IL-7 mediated memory CD8\(^{+}\) T cell survival \(^{(93)}\). Thus, the role of LXR-driven TAG biosynthesis in T cells also warrants further investigation, although this was beyond the scope of our current study.

In their resting state, T cells express low levels of endogenous LXR ligands \(^{(94)}\). In our experiments, CYP27A1 was the only oxysterol synthesising enzyme consistently expressed in these cells. However, there is evidence that certain polarisation conditions can lead to dramatic regulation of oxysterol synthesis and thus endogenous modulation of LXR signalling. For example, \(in vitro\) differentiated type 1 regulatory cells upregulate 25-hydroxycholesterol to limit IL-10 production \(^{(94)}\). In contrast, Th17 cells upregulate an enzyme that sulfates oxysterols (SULT2B1), thereby inactivating them as LXR ligands and driving preferential activation of ROR\(^{yt}\) instead of LXR \(^{(95)}\). LXR also plays a unique role in a subset of IL-9 producing CD8\(^{+}\) T cells (Tc9), in which cholesterol/oxysterol are tightly supressed to prevent transrepression of the \(Il9\) locus by LXR \(^{(95)}\). Furthermore, changes in oxysterol availability have been documented in many
diseases, including accumulation in atherosclerotic plaques (96), production in the tumour microenvironment (6), and reduced circulating levels in multiple sclerosis (97). Therefore, the new mechanism described here could be of therapeutic relevance to disorders characterised by defects in T cell signalling and lipid metabolism. For example, in addition to altered oxysterol levels, multiple sclerosis patients are reported to have altered LXR signalling, cholesterol levels and glycosphingolipid metabolism (96). However, whether plasma membrane lipid rafts contribute to immune-cell dysfunction is multiple sclerosis is currently unknown.

In conclusion, our findings show for the first time that LXR regulates glycosphingolipid levels, which strongly impacts plasma membrane lipid composition and T cell function. This mechanism is likely to be complementary to others modes of LXR action, including the transcriptional regulation of certain cytokines (6, 35) and modulation of endoplasmic reticulum cholesterol content (4). However, this new mechanism could be of therapeutic relevance to disorders characterised by defects in T cell signalling and metabolism, including autoimmune and neurodegenerative diseases, cardiovascular disease, and cancer.

Materials and Methods

Antibodies and reagents

A detailed list of antibodies and reagents is included in the SI Appendix Methods.

Human samples

50 mL of peripheral blood was collected from healthy controls (HCs). Men and women aged 18-60 were recruited. Exclusion criteria included current illness/infection, statin treatment, pregnancy, breast-feeding, or vaccination within the past 3 months. For RNA-sequencing and lipidomic analysis of T cells from HCs (Fig. 1) blood, leukocyte cones were purchased from NHS Blood and Transplant. Peripheral blood mononuclear cells (PBMCs) were separated on Ficoll-Paque PLUS (GE Healthcare) using SepMate tubes (StemCell Technologies). PBMCs were cryopreserved in liquid nitrogen until use. Ethical approvals for this work were obtained from the London - City & East Research Ethics Committee (reference 15-LO-2065), Yorkshire & The Humber - South Yorkshire Research Ethics Committee (reference 16/YH/0306), South Central - Hampshire B Research Ethics Committee (reference 18/SC/0323). All participants provided informed written consent.

Cell subset purification

Fluorescence activated cell sorting (FACS): CD3+ T cells for lipidomics analysis were sorted by FACS. Cells were washed in MACS buffer (PBS with 2% FBS (Labtech) and 1 mM EDTA (Sigma)) before staining with antibodies against surface markers for 30 minutes. Sorting was performed on a BD FACS Aria II.

Magnetic assisted cell sorting (MACS): CD4+ T cells and CD19+ B cells were negatively isolated using magnetic bead based separation (EasySep, StemCell Technologies). CD14+ monocytes were positively selected (EasySep, StemCell Technologies). Sample purities were similar to those reported by the manufacturer (95.1 ± 1.3% for negative selection and 97.6 ± 0.21% for positive selection). To obtain monocyte-derived macrophages (MDMs), monocytes were plated in low-serum media (1% FBS) for 1-2 hours in 12-well Nunc-coated plates (ThermoFisher Scientific) to promote adherence, then cultured for 7 days in complete media (RPMI 1640 (Sigma) supplemented with 10% heat-inactivated fetal bovine serum (FBS) (Labtech) and 20 μg/mL gentamycin (Sigma)).

Cell culture

Full details of cell culture conditions and reagents are in the SI Appendix Methods, briefly:
Culture with LXR ligands: PBMCs or purified T cells were treated with GW3965 (GW) +/- RXR agonist LG100268 (LG) or UGCG inhibitor N-Butyldeoxynojirimycin (NB-DNJ) or with oxysterols, 24S-hydroxycholesterol and 24S,25-epoxycholesterol and compared either to vehicle or LXR antagonist GSK1440233 as control.

Functional assays: T cells were stimulated with anti-CD3 and anti-CD28. To measure intracellular cytokine production cells were additionally stimulated with PMA, ionomycin and GolgiPlug.

Lipidomics
CD3+ T cells were sorted by FACS and plated at 5 x 10^6/mL into 12 well plates in complete media (n=4). A total of 10-15 x 10^6 cells were treated with DMSO (CTRL) or GW3965 (GW, 1 µM) for 36 hours and washed twice in PBS. Frozen cell pellets were shipped to Lipotype GmbH (Dresden, Germany) for mass spectrometry-based lipid analysis as described (98) (see SI Appendix Methods). Lipidomics data has been deposited at Mendeley Data: doi: 10.17632/5rzpnr7w65.1.

RNA sequencing and analysis
CD4+ T cells (3 x 10^6) were treated with GW3965 (GW, 2 µM) for 24 hours. The LXR antagonist GSK1440233 (CTRL, 1 µM) was used as a control to suppress baseline endogenous LXR activity. For TCR stimulation, cells were transferred to anti-CD3/28 coated plates for the last 18 hours. Total RNA was extracted using TRIzol reagent (Life technologies) followed by DNA-free™ DNA Removal Kit (Invitrogen). RNA integrity was confirmed using Agilent's 2200 Tapestation. UCL Genomics (London, UK) performed library preparation and sequencing (see SI Appendix Methods). RNA sequencing files are available at Array Express: E-MTAB-9141.

Analysis of gene expression
Gene expression was measured by qPCR, as in (64, 99). Primers were used at a final concentration of 100 nM. Sequences are provided in SI Appendix, Table S3.

Flow cytometry
Flow cytometry staining was performed as previously described (7, 9). (See SI Appendix Methods.

Immunoblotting
Cells were lysed in RIPA buffer and immunoblotting was performed as previously described (99).

Chromatin immunoprecipitation
Detailed description can be found in the SI Appendix Methods.

Microscopy
Immunostaining: CD4+ T cells were incubated in antibody coated chamber slides for 15 minutes at 37°C, 5% CO2 to facilitate synapse formation. Medium and non-adherent cells were discarded, and wells were washed gently with PBS before fixation (4% PFA, 2% sucrose, 140 mM NaOH, pH 7.2) for 20 minutes at RT. Formaldehyde was quenched with two washes in 0.1 M ammonium chloride (Sigma-Aldrich), followed by a PBS wash. 0.2% Triton-X-100 was used to permeabilise cells for 8 minutes at RT. Samples were blocked with 5% BSA in PBS + 0.2% fish skin gelatin (Sigma-Aldrich) overnight at 4°C. Primary antibodies were added in blocking solution for 1 hour at RT, followed by addition of fluorescently conjugated secondary antibodies for 30 minutes, RT. Cells were preserved in Prolong Diamond mounting media with DAPI (Invitrogen). For fixed synapses were stained with phalloidin-FITC conjugate (Sigma).
Confocal microscopy: Single slices were acquired on a Leica SPE2 confocal microscope with an 60x63 oil-immersion objective and 488 and 633 nM excitation solid-state lasers, using the following settings: 1024x1024 pixels, 600 Hz and line average of 3.

Total Internal Reflection Fluorescence (TIRF) Microscopy: To record live cells stained with ANE, a customized two-channel set up was used as described by Ashdown et al. (61) and in the SI Appendix Methods. 30-minute movies were acquired at a rate of 1 frame/minute. The background MFI was based on three measurements taken from the area surrounding each cell.

Image analysis: Image analysis was performed using ImageJ 1.51 (National Institutes of Health, USA, RRID:SCR_003070). Fluorescence intensity was analysed using the ‘Analyze Particles’ function. Mean fluorescence intensity (MFI) was measured as mean grey scale value (between 0 and 255), and corrected total cell fluorescence (CTCF) was calculated as follows:

\[
\text{CTCF} = \frac{\text{integrated density}}{\text{cell area} \times \text{MFI of background}}
\]

To analyze TIRF movies of ANE-stained cells ordered and disordered channels were aligned using the Cairn Image Splitter plugin. Membrane lipid order was calculated as a GP ratio, using the plugin at https://github.com/quokka79/GPcalc (GitHub, RRID: SCR_002630). Hue, saturation and brightness (HSB) images were set to visualize GP and pseudocoloured using the Rainbow RGB look up table.

Statistical analysis
Statistical tests were performed in GraphPad Prism 8 (GraphPad Software, La Jolla California USA, RRID: SCR_002798, www.graphpad.com) unless otherwise stated. The D’Agostino & Pearson omnibus K2 test was used to check whether datasets were normally distributed. In some cases extreme outliers were removed based upon a ROUT test (Q=1%). Un-paired two-tailed t-tests or Mann-Whitney U were used to compare between independent groups and are represented as bar charts (mean ± SD) or violin plots (median and interquartile range). In line with previous studies on LXR agonism in human cells (7, 81, 100), paired two-tailed t-tests or repeated measures ANOVA were used where cells from the same donor sample were exposed to different treatments (e.g. GW vs CTRL). This minimizes the impact of donor-to-donor heterogeneity at baseline. Where paired tests were applied, data is presented as paired line graphs. Correction for multiple comparisons was made with Tukey’s post-hoc test or Dunnet’s test (to compare all samples to vehicle), as specified. For Figure 5b, p-values from multiple un-paired t-test were corrected using the two-stage linear step-up procedure of Benjamini, Krieger and Yekutieli with FDR threshold of 5%.
Acknowledgments

We are grateful to K.R. Steffenson for the provision of the LXR antibody used for chromatin immunoprecipitation and to A. Castrillo and J. Thorne for earlier discussions on LXRE identification in the UGCG gene.

KEW was funded by a British Heart Foundation PhD Studentship (FS/13/59/30649) and MS Society (Grant 76). IPT was funded by a Medical Research Council New Investigator Grant (G0801278), a British Heart Foundation Project Grant (PG/13/10/30000) and an Academy of Medical Sciences Newton Advanced Fellowship. ECJ was funded by the Innovative Medicines Initiative Joint grant agreement n° 115303, as part of the ABIRISK consortium (Anti-Biopharmaceutical Immunization: Prediction and analysis of clinical relevance to minimize the risk), Arthritis Research UK Fellowships (20085 and 18106), Lupus UK, The Rosetrees Trust (M409), and University College London Hospital Clinical Research and Development Committee project grant (GCT/2008/EJ and Fast Track grant F193).

References

9. L. Miguel et al., Primary human CD4+ T cells have diverse levels of membrane lipid order that correlate with their function. J Immunol 186, 3505-3516 (2011).

75. B. Binnington et al., Inhibition of Rab prenylation by statins induces cellular glycosphingolipid remodeling. Glycobiology 26, 166-180 (2016).

87. S. M. Parigi et al., Liver X receptor regulates Th17 and RORγt(+) Treg cells by distinct mechanisms. Mucosal Immunol 10.1038/s41385-020-0323-5 (2020).

S. Vigne et al., IL-27-Induced Type 1 Regulatory T-Cells Produce Oxysterols that Constrain IL-10 Production. *Front Immunol* **8** (2017).

Figure Legends

Figure 1. LXR regulates lipid metabolism in human CD4+ T cells. Primary human CD4+ T cells (n=3) were cultured with or without LXR agonist (GW3965, GW) for 24 hours. Gene expression was assessed by RNA-Seq. (a) Volcano plot showing fold changes and p-values. Coloured points represent significantly regulated genes (p < 0.05). (b) Clustered heatmap of normalised gene counts of all LXR-regulated genes with FDR corrected p < 0.1. (c) Regulation of a selection of genes was confirmed by qPCR in an independent set of donors (n=3-6). Bars represent mean ± SD. Unpaired two-tailed t-test: *p < 0.05, **p < 0.01, ****p < 0.0001. (d-e) Network diagrams illustrate pathways significantly enriched for up- (d) or down- (e) regulated genes. Each node represents a significantly enriched term, with node size proportional to the number of contributing genes. Similar terms with a high degree of redundancy were clustered, as depicted. Bar charts plot cluster significance and show enrichment ratios (ER). (f) Pie chart showing the proportion of genes regulated by GW in human T cells that are also regulated in murine bone marrow derived macrophages (BMDMs) (21) or peritoneal macrophages (pMφ) (22).

Figure 2. LXR activation regulates the transcription of glucosylceramide synthase (UGCG) (a-e) Primary human CD3+ T cells (n=4) were sorted by FACS and treated ± GW (2 μM) for 36 hours and total cellular lipid content analysed by shotgun lipidomics. (a) Total lipids (normalized to cell numbers) were unchanged (mean ± SD). (b) Volcano plot represents significant changes in the expression of lipid sub-species, colour coded by broader lipid class (p < 0.05). (c) Bars show the number of subspecies detected for each lipid type. The filled area represents the proportion of subspecies significantly altered by GW treatment. (d) Unclustered heatmaps represent levels of individual sub-species. (e) Dot plots show overall change in triacylglycerol (TAG) and hexosylceramide (HexCer) levels. (f) Schematic illustrating the role of UGCG in the conversion of ceramide to HexCer. (g) Pie chart showing a GW-induced shift from ceramide (Cer) to hexosylceramide (HexCer). (h) Uregulation of UGCG mRNA expression in CD4+ T cells after 24 hours GW treatment (n=13). (i) Cells were treated with LXR (GW, 1 μM) and RXR (LG100268; LG, 100 nM) ligands for 2 hours. LXR occupancy at the putative DR4 motif at UGCG compared to IgG control, positive control (SMPDL3A) and negative control (RPLP0) sequences. Representative of three independent experiments. (a-h) Two-tailed t-tests: *p < 0.05, **p < 0.01, ***p < 0.001.

Figure 3. Plasma membrane lipid order is reduced by LXR activation. (a-c) Cells were cultured ± LXR ligands for 24 hours (GW) or 72 hours (24S,25-EC and 24S-OHC) and flow cytometry was used to identify CD4+ T cells and measure plasma membrane lipid expression in >4 independent experiments. (a) Representative flow cytometry plots show the percentage of T cells highly expressing cholera toxin B (CTB) and CTB gMFI as surrogate markers for glycosphingolipids, as in (9). Cumulative data shows change in percentage of cells highly expressing CTB. (b) Representative histogram of filipin staining for cholesterol, and cumulative data showing change in gMFI. (c) Cumulative data showing GSL/cholesterol ratio as CTB/filipin (n=6). (d-f) Magnetically purified CD4+ T cell membrane lipid order was measured using di-4-ANEPPDHQ. (d) Representative confocal microscopy image and a histogram of average generalised polarisation (GP) ratio per image analysed are shown (n=1 donor). (e) Cumulative data from three experiments showing lipid order measured by flow cytometry. Cells were treated with an LXR agonist (GW) or antagonist (GSK233)(n=5) for 24 hours. (f) di-4-ANEPPDHQ-stained CD4+ T cells (n=4) were sorted into high or low membrane order by FACS, and gene
expression was compared by qPCR. Bars show mean ± SD. (a-f) Two-tailed t-tests or one-way ANOVA with Tukey's posthoc test; *p < 0.05, **p < 0.01, ***p < 0.001.

Figure 4. LXR activation modulates T cell immune function. (a-c) RNA-seq was performed on magnetically-isolated CD4+ T cells incubated ± GW for 6 hours, before stimulation with anti-CD3/CD28 (TCR) ± GW (n=3). (a) Venn diagrams compare the number of genes up or down regulated by TCR stimulation in the presence (red) or absence (blue) of GW. (b) Volcano plot of genes differentially expressed between GW+TCR and CTRL+TCR. (c) Normalized RNA-Seq gene counts of differentially expressed genes were compared to resting T cells. Four patterns of gene expression were identified by hierarchical clustering (clusters A-D). One gene from each cluster is shown as an example (mean ± SD) and the most significantly enriched gene ontology (GO) term is given. (d-f) Representative flow cytometry plots and cumulative data from 4 independent experiments (n=6–9) show the effect of GW on the plasma membrane cholesterol (f), (g) Schematic illustrating enzymes controlling oxysterol metabolism. Bar charts show normalized RNA-seq gene counts of enzymes significantly regulated by TCR activation (mean ±SD, n=3). *FDR < 0.1. (h-j) Magnetically-isolated CD4+ T cells were activated with anti-CD3/CD28 (+TCR) for 72 hours in the presence of GW3965 (GW) or control (CTRL). (h) Intracellular cytokines were analysed by flow cytometry after additional treatment with PMA and ionomycin (h-i) and Ki67 was used as a marker of proliferation (j). Representative flow cytometry plots are labelled with percentage of positive cells and gMFI of both the cytokine-producing/proliferating population and total T cells. Cumulative data from four independent experiments shows cytokine production expressed as an integrated MFI (iMFI = gMFI*frequency of cytokine producing cells (11))(i) or percentage of proliferating cells (j). Two-tailed t-tests; *p < 0.05, **p < 0.01, ***p < 0.001.

Figure 5. LXR activation regulates immune synapse formation and proximal TCR signalling. (a-d) Magnetically purified CD4+ T cells were cultured ± GW before addition to chamber slides coated with anti-CD3/28 for immune synapse formation. (a-b) T cells were stained with di-4-ANEPPDHQ and immune synapse formation was recorded for 30 minutes using TIRF microscopy. (a) Representative images at 5 minute intervals, scale bar = 5 µM. (b) GP ratio was quantified at each minute (n= 10–12 cells/condition, mean ± SEM). (c-d) Immune synapses (n=2 donors) were fixed at 15 mins post activation and immunostained for Lck (CTRL=68 cells, GW=52 cells) and phosphotyrosine (pY) (CTRL=59 cells, GW=52 cells). Representative images and quantification of corrected total cell fluorescence (CTCF) (c) or classification of Lck distribution patterns (d). Violin plots show median and quartile values. Multiple unpaired t-tests corrected for multiple comparisons (b) or Mann Whitney U (c-d); *p < 0.05, **p < 0.01, ***p < 0.001. Abbreviations: Lck – lymphocyte-specific protein tyrosine kinase; pY – phosphotyrosine.

Figure 6. Treg and Tresponder subsets have distinct lipid metabolic phenotypes. (a) Responder (Tresp: CD4+CD25+CD127+) and regulatory (Treg: CD4+CD25+CD127-) T cell subsets were defined by flow cytometry. (b-d) Plasma membrane lipid order (GP ratio) (b), glycosphingolipid levels (GSL) (c), and cholesterol content (d) were analysed using flow cytometry. Lines connect matched Tresp and Treg results from the same sample. (e) Expression of LXR and LXR-target genes that regulate cholesterol, GSL, and fatty acid levels were analysed in FACS sorted T cell subsets (n=3–8). Mean ± SD. (f-i) Cells were treated with GW for 24 hours. Lines connect control (CTRL) and GW treated samples from the same donor. Cumulative data from 3 independent experiments shows the change in membrane lipid order (GP ratio) (f), cholesterol (g), and GSL (h) expression. (g-i) Induction of LXR target genes involved in cholesterol (g), GSL (h) and fatty acid metabolism (i) were analysed in FACS-sorted T cell subsets (n=5–6). Gene expression is expressed relative to the average of control (CTRL) treated Tresp. The average fold change (GW vs CTRL) was calculated for each subset. Two-tailed t-tests; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.