Parr, T;
Bhat, A;
Zeidman, P;
Goel, A;
Billig, AJ;
Moran, R;
Friston, KJ;
(2021)
Dynamic causal modelling of immune heterogeneity.
Scientific Reports
, 11
(1)
, Article 11400. 10.1038/s41598-021-91011-x.
Preview |
Text
s41598-021-91011-x.pdf - Published Version Download (2MB) | Preview |
Abstract
An interesting inference drawn by some COVID-19 epidemiological models is that there exists a proportion of the population who are not susceptible to infection-even at the start of the current pandemic. This paper introduces a model of the immune response to a virus. This is based upon the same sort of mean-field dynamics as used in epidemiology. However, in place of the location, clinical status, and other attributes of people in an epidemiological model, we consider the state of a virus, B and T-lymphocytes, and the antibodies they generate. Our aim is to formalise some key hypotheses as to the mechanism of resistance. We present a series of simple simulations illustrating changes to the dynamics of the immune response under these hypotheses. These include attenuated viral cell entry, pre-existing cross-reactive humoral (antibody-mediated) immunity, and enhanced T-cell dependent immunity. Finally, we illustrate the potential application of this sort of model by illustrating variational inversion (using simulated data) of this model to illustrate its use in testing hypotheses. In principle, this furnishes a fast and efficient immunological assay-based on sequential serology-that provides a (1) quantitative measure of latent immunological responses and (2) a Bayes optimal classification of the different kinds of immunological response (c.f., glucose tolerance tests used to test for insulin resistance). This may be especially useful in assessing SARS-CoV-2 vaccines.
Type: | Article |
---|---|
Title: | Dynamic causal modelling of immune heterogeneity |
Location: | England |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1038/s41598-021-91011-x |
Publisher version: | https://doi.org/10.1038/s41598-021-91011-x |
Language: | English |
Additional information: | This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Computational models, Immunological models, Statistics, Viral infection |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > The Ear Institute UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Imaging Neuroscience |
URI: | https://discovery.ucl.ac.uk/id/eprint/10129416 |
Archive Staff Only
![]() |
View Item |