UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Fe K-edge X-ray Absorption Spectroscopy of corrosion phases of archaeological iron: results, limitations, and the need for complementary techniques

Simon, H; Cibin, G; Freestone, I; Schofield, E; (2021) Fe K-edge X-ray Absorption Spectroscopy of corrosion phases of archaeological iron: results, limitations, and the need for complementary techniques. Journal of Physics: Condensed Matter 10.1088/1361-648X/ac08b6. (In press). Green open access

[thumbnail of Simon+et+al_2021_J._Phys.__Condens._Matter_10.1088_1361-648X_ac08b6.pdf]
Preview
Text
Simon+et+al_2021_J._Phys.__Condens._Matter_10.1088_1361-648X_ac08b6.pdf - Accepted Version

Download (2MB) | Preview

Abstract

Data analysis methods for iron X-ray Absorption Spectroscopy (XAS) can provide extensive information about the oxidation state and co-ordination of an Fe-species. However, the extent to which techniques developed using a single-phase iron sample may be applied to complex, mixed-phase samples formed under real-world conditions is not clear. This work uses a combination of pre-edge fitting and linear combination analysis (LCA) to characterise the near edge region of the X-ray absorption spectrum (XANES) for a set of archaeological iron corrosion samples from a collection of cast iron cannon shot excavated from the Mary Rose shipwreck and compares the data with phase compositions determined by Synchrotron X-ray Powder Diffraction (SXPD). Archaeological powder and cross-section samples were compared to a library of iron standards and diffraction data. The XANES are consistent with previous observations that generation of the chlorinated phase akaganeite, β-FeO(OH,Cl), occurs in those samples which have been removed form passive storage and subjected to active conservation. However, the results show that if any metallic species is present in the sample, the contribution from Fe(0) to the spectral region containing a pre-edge for oxidised iron - Fe(II) and Fe(III) - causes the analysis to be less effective and the conclusions unreliable. Consequently, while the pre-edge fitting methodology may be applied to a mixture of iron oxides or oxyhydroxides, the procedure is inappropriate for a mixed metal-oxide sample without the application of a complimentary technique, such as SXPD.

Type: Article
Title: Fe K-edge X-ray Absorption Spectroscopy of corrosion phases of archaeological iron: results, limitations, and the need for complementary techniques
Location: England
Open access status: An open access version is available from UCL Discovery
DOI: 10.1088/1361-648X/ac08b6
Publisher version: https://doi.org/10.1088/1361-648X/ac08b6
Language: English
Additional information: © 2021 IOP Publishing. As the Version of Record of this article is going to be/has been published on a gold open access basis under a CC BY 3.0 licence, this Accepted Manuscript is available for reuse under a CC BY 3.0 licence immediately (https://creativecommons.org/licenses/by/3.0/).
Keywords: Archaeology, Conservation, Corrosion, Iron, Mary Rose, SXPD, XANES
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL SLASH
UCL > Provost and Vice Provost Offices > UCL SLASH > Faculty of S&HS
UCL > Provost and Vice Provost Offices > UCL SLASH > Faculty of S&HS > Institute of Archaeology
UCL > Provost and Vice Provost Offices > UCL SLASH > Faculty of S&HS > Institute of Archaeology > Institute of Archaeology Gordon Square
URI: https://discovery.ucl.ac.uk/id/eprint/10129371
Downloads since deposit
104Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item