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Abstract-- Recent long term planning studies have 

demonstrated the important role of variable renewables (VRE) in 

decarbonising our energy system. However, cost-optimising 

models do not capture the visual impact of VREs on the 

landscape which can act to undermine their public acceptability. 

Here, we use crowd-sourced scenicness data to derive spatially 

explicit wind energy capacity potentials for three scenarios of 

public sensitivity to this visual impact. We then use these 

scenarios in a cost-optimising model of Great Britain’s power 

system to assess their impact on the cost and design of the 

electricity system in 2050. Our results show that total system 

costs can increase by up to 14.2% when public sensitivity to 

visual impact is high compared to low. It is thus essential for 

policy makers to consider these cost implications and to find 

mechanisms to ameliorate the visual impact of onshore wind in 

local communities. 

 
Index Terms— Power system planning, variable renewable 

integration, geographic information systems 

NOMENCLATURE. 

Sets:  

g Set of generation clusters 

s Set of storage technologies 

z Set of zones 

t Set of hours 

  

Variables:  

U Committed units in cluster (integer) 

N Total units in cluster (integer) 

UP Number units in cluster starting up (integer) 

DOWN Number units in cluster shutting down (integer) 

P Power generated (GW) 

OR Operating reserve provided (GW) 

FR Frequency response provided (GW) 

ORquick Quick start OR (GW) 

SCAP Power capacity of storage (GW) 
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SLEVEL Energy level of storage (GWh) 

FRreq Frequency response required (GW) 

ORreq Operating reserve required (GW) 

  

Parameters:  

af Availability factor 

pmax Maximum power (GW) 

pmin Minimum power (GW) 

ormax Maximum OR in reserve time window (GW) 

frmax Maximum FR in response time window (GW) 

s_ormax % storage power available in reserve window 

s_frmax % storage power available in response window  

DEMt Hourly demand (GWh) 

DEMuncert Demand uncertainty (%) 

VREuncert VRE forecast uncertainty (%) 

minup/down Minimum up/down time 

 

I.  INTRODUCTION 

HE decarbonisation of the power sector is key to achieving 

the headline goal of the Paris Agreement to limit the global 

mean surface temperature rise to well below 2°C. Indeed, this 

sector’s importance is only set to grow with the drive to 

electrify more of the energy system, especially transport and 

heat. Future very low or net-zero emission power systems 

must also continue to be equitable and secure. Taken together, 

these three challenges of energy sustainability, 

affordability/accessibility and security form the so-called 

energy trilemma faced by decision makers going forward. In 

this conceptual model prioritising one of these challenges 

often leads to trade-offs concerning the other two (see e.g. [1] 

for a more detailed discussion). Policy makers frequently look 

to power and energy system optimisation models to balance 

these dimensions and, to the extent that such models can 

operationalise the trilemma, map out internally consistent low 

carbon futures for these systems. 

Variable renewables, i.e. those whose output varies because 

it is dependent on the weather and we define here as onshore 

and offshore wind and solar photovoltaics (PV), have a central 

role in low carbon power systems owing to their rapid cost 

reductions in recent decades. Indeed, onshore wind and solar 

PV are quickly approaching cost parity with the cheapest 

forms of fossil fuel power [2] and cost reductions are expected 

to continue. Therefore, high shares of VREs are an 

increasingly common theme emerging from long-term power 

system planning studies that employ cost-optimising models 

(see e.g. [3]–[5]).  

However, the limited capability of such models to 

encapsulate the holistic definition of the energy trilemma is 
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one of their central limitations. Typically, sustainability is 

operationalised as greenhouse gas or CO2 emissions, without 

considering the wider, often abstract and qualitative, 

dimensions of sustainability. The inclusion of such factors in 

energy research has been advocated for some time (see e.g. 

[6], [7]). One such aspect is the impact that VRE plants have 

on the landscape and the way in which this is perceived, 

tolerated (or not) and the potential impacts upon the general 

population. The spatial coincidence of landscapes both 

perceived as beautiful and with particularly high VRE 

resources creates a tension between two partly opposing 

objectives, which is especially significant for onshore wind. 

This visual impact is one of the major drivers that can act to 

undermine the public acceptability of wind energy in such 

communities [8]–[10] and in turn limit its deployment. In 

addition, the sheer spatial scale associated with significant 

VRE deployment can lead to competition with agricultural 

land uses, as is the case with solar PV.  

Studies that assess the potential for VREs have attempted 

to consider various criteria that can restrict the deployment of 

onshore wind. For example, the visual impact of onshore wind 

on the resulting feasible potential has been analysed in Austria 

[11], Denmark [12] and Baden-Württemberg [13]. The latter 

study employed data on survey-based valuations of the 

landscape aesthetics amongst the general population, in order 

to exclude especially scenic areas, a similar approach to the 

one employed in the present paper. Reference [13] concluded 

that, in a moderate scenario in terms of public acceptance, the 

technical potential for onshore wind generation in Baden-

Württemberg (from [14]) was roughly halved. In a similar 

approach, but also engaging stakeholders in an iterative 

participatory framework, [11] found that Austria’s technical 

onshore wind generation potential is reduced by in excess of 

95% when considering the multitude of factors that can restrict 

its deployment. Yet this study stopped short of linking their 

socially acceptable capacity potentials with a power system 

planning model. 

Efforts have been made to combine this type of analysis 

with techno-economic energy systems modelling (see e.g. [3], 

[15], [16]) to constrain the optimisation in an attempt to reflect 

more realistic and publicly acceptable contributions from 

VREs. But none of these studies has considered social barriers 

to siting by engaging actual stakeholders and/or drawing on 

empirical data. In order to close this research gap, this paper 

combines empirical data on landscape aesthetics (or 

scenicness) and VRE capacity potentials with a power system 

model that makes planning and operational decisions. We 

focus on a case study for Great Britain’s (GB) power system 

in 2050, which is constrained to be part of a wider energy 

system that meets the country’s net-zero greenhouse gas 

emissions target. We use a spatially-explicit assessment of 

onshore and offshore wind capacity potentials based on 

technical restrictions and crowd-sourced scenicness data from 

the website Scenic-Or-Not1. We augment these with a detailed 

analysis of GB’s solar PV capacity potential. Using this 

modelling framework, we assess the implications on the 

electricity system, in terms of costs and design, of different 

                                                           
1 http://scenicornot.datasciencelab.co.uk/ 

levels of public sensitivity to the visual landscape impact 

associated with VRE deployment. 

This paper is structured as follows: in section II we 

describe the model and methodology used here, section III 

provides a discussion of the results and section IV summarises 

the insights emerging from this study. 

II.  METHODOLOGY 

Fig. 1.  Provides an overview of the methodology described 

in subsections A through D below.  

 
 
 

A.  The highRES model 

highRES is a cost-minimising model of the GB electricity 

system written in the General Algebraic Modelling System 

(GAMS) language. It simultaneously optimises spatially-

explicit capacity investment, based on annualised costs, as 

well as hourly dispatch of the power system so that supply 

matches demand in every hour of the year, in each of 20 zones 

that spatially represent GB, at least cost. In terms of low 

carbon generation it considers three VREs (solar PV – ground 

and roof mounted are considered one technology, onshore and 

offshore wind), nuclear, and natural gas combined cycle 

turbines with CCS (NGCGT-CCS). All generation capacity 

that exists today is assumed to be retired by 2050 apart from 

Hinkley Point C. To integrate renewables into the system we 

model natural gas open cycle turbines (NGOCGT), electricity 

storage in the form of grid-scale Lithium Ion batteries (with an 

8 hour discharge duration) and reinforcement of the 

transmission system within GB. The transmission network is 

represented using a computationally efficient linear 

transshipment formulation, i.e. a transport model in which 

power flows between zones in a controlled manner (see [17] 

for more discussion). The 2.8 GW of pumped hydro currently 

on the GB system is also operationally available to the model 

but no further capacity investment was permitted. The model 

incorporates 8.4 GW of interconnection to Europe/Ireland 

(based on existing and planned links currently under 

construction) and this capacity is fixed in all model runs. The 

European electricity price for 2050 is taken from the EU’s 

Reference Scenario, which assumes a 48% reduction in GHG 

emissions relative to 1990 by 2050, developed by [18]. The 

cost assumptions we use here for generation and storage are 

given in Table I. All costs are given in 2010 GBP and taken 

from the UK TIMES model [19] unless otherwise stated. 

 

 

Fig. 1 Flowchart of the methodology used here. 
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TABLE  I 

Technology cost assumptions 

Technolog

y 

Capex 

(£/kW) 

Variable 

O & M 

(£/kWh) 

Fixed 

O & M 

(£/kW) 

Fuel 

costs 

(£/kWh) 

Start-up 

cost 

(£/start) 

Onshore 

wind 

730 [20] 0.002 23 NA NA 

Offshore 

wind 

1340 [21] 0.003 86 NA NA 

Solar 400 [22] 0.001 6.9 NA NA 

NGCCGT-

CCS 

1179 0.001 33 0.024 141,000 
[23] 

Nuclear 3973 0.004 80.2 0.006 195,000 

[23] 

NGOCGT 286 0.001 13.7 0.024 3,100 

[23] 

Li-ion 

batteries 

(Power) 

52 [24] 0 6.7 NA NA 

Li-ion 

batteries 

(Energy) 

62 [24] 
(£/kWh)  

NA 0 NA NA 

 

highRES is a “snapshot” model in that it designs a system 

for a given year, in this case 2050, that meets all constraints 

placed upon it. The formulation of the model has previously 

been described in detail in [16], [25] and here we only 

describe additional equations that have been added for this 

study. These additions have been made to increase the fidelity 

of the model by better representing: a) the technical details of 

thermal plant operation and b) security of supply, which is 

particularly relevant in highly renewable systems. The 

capacity deployment and operation of thermal plant are 

presented as clustered units following [26], [27]: 

 

 (1) 

 (2) 

 (3) 

 (4) 

 

 

(5) 

 

 

(6) 

 
(7) 

 (8) 

 (9) 

Here: (1) limits the number of committed units to the number 

actually deployed, (2) is a commitment balance between 

hours, (3) limits maximum generation, (4) limits minimum 

generation, (5)-(6) ensure minimum up and down times, 

respectively, are enforced, (7) limits the provision of operating 

reserve while offline to NGOCGT only due to its rapid start up 

capability and (8)-(9) limits the provision of operating reserve 

and frequency response by a generator cluster to the maximum 

ramp achievable in the relevant time window (20 minutes for 

operating reserve, 10 seconds for frequency response). In this 

formulation the integer decision variables are relaxed to be 

continuous for NGOCGT, due to its small individual unit 

capacity, while continuing to expose this technology to all the 

operational constraints detailed above. Technical assumptions 

for the clustered units are given in Table II and taken from UK 

TIMES unless otherwise stated. 

 
TABLE II 

Technical assumptions 

Technolog

y 

Inerti

a (s) 

Unit 

size 

(MW

) 

Min 

stable 

generatio

n (%) 

Min 

up/down 

time 

(hours) 

CO2 

emissions 

(gCO2/kWh

) 

NGCCGT-

CCS 

5 [28] 750 50 [28] 4/4 [23] 44 

Nuclear 7 [28] 1650 50  24/8 [23] 0 

NGOCGT 5 [28] 50 20 [28] 1/1 [29] 528 

 

The model has been further augmented to represent security 

of supply provision (i.e. reserve/response) by energy storage 

technologies as follows: 

 

 (10) 

 (11) 

 (12) 

 (13) 

Here (10) restricts the provision of power and 

reserve/response, (11)-(12) limits the provision of 

reserve/response based on the fraction of total storage capacity 

that can come online within the reserve/response time window 

and (13) ensures the provided reserve/response are limited to 

the energy stored in the storage system at that time step. 

Storage technologies are represented in a continuous fashion, 

i.e. not as integer units. Operating reserve is then aggregated 

by: 

 

 (14) 

 

 

(15) 

The hourly operating reserve requirement in (15) is driven by 

an assumed uncertainty in demand (5%) and VRE output 

forecasts (12% for solar and 14% wind, taken from the UK’s 

Transmission System Operator2) and is based on a formulation 

proposed by [30]. These constraints require the model to 

schedule sufficient operating or quick start reserve so the 

                                                           
2https://www.nationalgrideso.com/sites/eso/files/documents/Quarterly%20

Forecasting%20Report-%20June%2017.pdf 

Authorized licensed use limited to: University College London. Downloaded on June 09,2021 at 09:49:11 UTC from IEEE Xplore.  Restrictions apply. 



0885-8950 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2020.2992061, IEEE
Transactions on Power Systems

 4 

system can contend with these uncertainties. Finally, 

frequency response is aggregated as follows: 

 

 (16) 

 

The hourly frequency response requirement in (16) is set using 

a linearised approximation derived by [28]. The response 

requirement is the amount of power which must be injected 

into the system within 10 seconds to arrest the decline in 

system frequency following a sudden loss of generation and 

prevent it falling below the stipulated minimum of 49.2 Hz. 

Reference [28] derive a function (equation 38 in that work) 

that relates this requirement to system inertia such that lower 

levels of inertia require greater amounts of responsive power 

to be scheduled within the aforementioned time window. Here 

hourly system inertia is estimated according to equation (32) 

from [28]. 

B.  VRE land use scenarios 

During optimisation highRES must respect the exogenously 

defined VRE capacity potentials per zone and technology. As 

touched upon earlier, here these are derived in a spatially 

detailed manner based on crowd-sourced data from the 

website Scenic-or-Not. This resource allows users to upload, 

geotag and rate the perceived scenicness of pictures from 

landscapes all across GB on a scale of 1 to 10, with 1 being 

least scenic. The Scenic-or-Not dataset is based on images 

sourced from Geograph3 covering nearly 95% of the 1 km grid 

squares of Great Britain and contains a total of 1,536,054 

ratings. Based on this raw data, [31] employed machine 

learning in order to interpolate and fill in the missing areas 

based on land use categories.  

The average scenicness value for a given location then 

provides an indication of how picturesque that site is typically 

regarded to be. In the present case only 1 km2 grid squares 

with three or more votes were employed in order to avoid 

outliers. The methodology for employing this scenicness data 

to derive resource potentials for VREs in GB is based on [32]. 

Here we provide a short summary, for further details the 

reader is referred to the full report.   

The first step in this analysis involved a logistic regression 

between scenicness and planning applications for onshore 

wind and ground-mounted PV in GB4. The regression 

demonstrated that, while not related to the likelihood of 

success of ground-mounted PV applications, there is a 

significant negative correlation for onshore wind (odds ratio 

0.71-0.86 for a 95% confidence interval at 99% significance), 

i.e. a higher scenicness value leads to a greater likelihood of 

rejection of a planning application. From this, it can be 

concluded that scenicness is strongly related to the 

deployment of onshore wind, but not for ground-mounted PV. 

Due to a relative paucity of planning applications, we also 

make the assumption that scenicness does not impact the 

likelihood of success of roof-mounted PV projects. 

Furthermore, we assume that, in a similar way to [13], 

scenicness can be employed as a proxy for the level of visual 

                                                           
3 http://www.geograph.org.uk/ 
4https://www.gov.uk/government/publications/renewable-energy-

planning-database-monthly-extract 

impact that onshore wind would have within a particular 

landscape.  

 The next step in the analysis is to determine the capacity 

deployment potentials for all three VREs based on a suitable 

set of constraints. For onshore wind, we develop a technical 

potential (i.e. before applying the scenicness data) using 

essentially the same method as that presented in [33], [34], 

whereby, for example, residential areas, land near airports and 

roads, as well as national parks and gradients over 20° are 

excluded and buffer distances inserted. Further details can be 

found in [32]. We then use these potential data to develop 

three scenicness scenarios, which progressively decrease the 

land area available in each zone on which the model is 

permitted to deploy onshore wind. Based on a statistical 

analysis of the distribution of the scenincess data, we opt for 

scenicness thresholds of 7, 5 and 3, each of which roughly 

includes an equal share of the dataset. This means that all sites 

with values greater than this are restricted, which exclude 8%, 

40% and 87% of locations respectively. 

For offshore wind we take the “medium” restrictiveness 

scenario from [16] as our technical potential and additionally 

apply visual impact spatial buffers around the coast based on 

the scenicness data. This involves restricting offshore wind 

deployment out to a distance of 44 km [35] for sections of the 

coast that exceed our scenicness thresholds.  

The available spatial area for solar PV deployment is 

distinguished between rooftop and ground-mounted systems. 

The former is determined through a combination of bottom-up 

[36], based on satellite images and open maps to automatically 

recognise rooftop geometry, and top-down [37] approaches. 

The bottom-up method was applied to four GB cities (London, 

Leeds, Birmingham and Glasgow) and the results employed to 

derive floor:roof area ratios and inclination/azimuth angles for 

the whole country. For ground-mounted PV, baseline spatial 

restrictions include, for example, removing land that is steeper 

than 15° or is protected. Guidance from the Department for 

Communities and Local Government5 stipulates that 

preference should be given to poor agricultural land quality for 

the development of ground-mounted PV. Therefore, we use 

the agricultural land grade system, that classifies land based 

on its suitability for crop production with grade 1 being best 

and grade 5 worst, to exclude areas of grade 1 and 2. We 

further develop a more restrictive case to capture land use 

competition between PV and food/biomass production by 

excluding grade 3 land as well. For further details, see [32]. 

To convert available land area per zone to a capacity potential 

for each VRE technology we use land use footprints of 40, 3 

and 5 MW/km2 for solar PV, onshore and offshore wind 

respectively. The rationale for these values is explained in 

more detail in [16]. 

C.  2050 Power system boundaries 

To ensure the power systems designed by highRES are in 

line with the UK’s recently updated Climate Change Act, i.e. 

net-zero greenhouse gas emissions by 2050 from the whole 

UK economy, we constrain annual CO2 emissions to be at 

most 3 MtCO2 based on the Further Ambition scenario from 

[38]. Hourly demands input into highRES are based on 

                                                           
5 https://www.gov.uk/guidance/renewable-and-low-carbon-energy 
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rescaled metered hourly electricity demand for 2017 from 

National Grid (GB's transmission system operator). This 

process uses the 2050 annual demand from the Committee on 

Climate Changes’s (CCC) net-zero report, excluding demand 

from electrified heat in buildings and electric vehicles, which 

amounts to 373 TWh. Electrified heat is then added on 

assuming 133 TWh of annual electricity demand. This is 

adjusted from the 146 TWh specified in the CCC’s report 

because 2017 was a relatively warm year, assessed based on 

the number of heating degree days per year over the period 

1993-2017. The percentage difference between the median 

number of heating degree days over this period and those for 

2017 is used to make the adjustment. The annual demand for 

heating is distributed to the daily level according to the 

heating degree days in 2017 and then to the hourly level using 

an average heat pump profile derived from [39]. Annual 

electric vehicle demand of 76.4 TWh is shared out according 

to the hourly resolution diurnal charging profile from [40], i.e. 

the annual demand is multiplied by a time series created from 

365 copies of the daily profile. This process provides an 

estimate of hourly electricity demand in 2050, which we 

assume to be inelastic. Total annual demand is then 574 TWh. 

Finally, to align with the demand year, 2017 weather data 

from the climate reanalysis ERA56 (wind speeds, 2m air 

temperature) and CMSAF SARAH27 (solar irradiance) is used 

to drive VRE production in each zone.  

D.  Scenario analysis 

We use the capacity potentials described previously to 

assess the cost and system design impacts of different levels of 

scenicness, which we take to be a suitable proxy for local 

sensitivity to visual impact of wind deployment. For example, 

excluding land with a scenicness value greater than 3 

represents a high sensitivity to visual impact. Conversely, only 

preventing VRE deployment in highly scenic areas (i.e. > 7) 

would indicate a low sensitivity to visual impact and a higher 

public acceptance at the local level. Therefore, hereafter, we 

refer to our scenicness scenarios as Low, Moderate (excluding 

scenicness > 5) and High sensitivity restrictions.  

Initial testing indicated that varying the solar PV and 

offshore wind scenarios had very little impact on total system 

cost. For the former, this is because solar PV capacity 

potential is dominated by ground-mounted installations which 

even under more restrictive land-use assumptions still provide 

a large potential due to the relatively high power density 

(MW/km2). For the latter, GB has an extensive offshore wind 

capacity potential because of the shallow and large North Sea. 

Therefore, we limit our investigation to onshore wind, varying 

its potential based on the three scenicness thresholds described 

previously, with offshore wind and solar PV fixed at their 

highest restriction. 

 
TABLE III 

VRE capacity potential scenarios used here 

Technology Restriction 

level and 

Scenicness 

excluded 

Total 

national 

area 

available 

Fraction of 

GB land 

(onshore) 

or UK 

Capacity 

potential 

(GW) 

                                                           
6 https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 
7 www.cmsaf.eu 

(km2) Renewable 

Energy 

Zone 

(offshore) 

area (%) 

Solar Low, no 
scenicness limit 

91,614 40 3,665 

Solar High, no 

scenicness limit 

13,818 6 553 

Offshore 

wind 

Low, Scenicness 
> 7 

94,466 13 472 

Offshore 

wind 

Moderate, 

Scenicness > 5 

91,593 13 458 

Offshore 

wind 

High, 
Scenicness > 3 

91,434 13 457 

Onshore 

wind 

Low, Scenicness 

> 7 

60,343 26 181 

Onshore 

wind 

Moderate, 
Scenicness > 5 

34,451 15 103 

Onshore 

wind 

High, 

Scenicness > 3 

6,575 3 19.7 

 

In addition, we consider this in the context of five VRE shares 

meaning that the model designs a system which is cost optimal 

while requiring 75-95% of annual generation to come from 

VREs, in 5% steps. We stop at 95% because the current 

formulation of our model requires a minimum system inertia 

of 41.25 GWs assuming a maximum rate of change of 

frequency of 1 Hz/s and a largest loss of 1650 MW - one unit 

of Hinkley Point C. This in turn implies a minimum amount of 

synchronous generation must be online in each hour, resulting 

in a minimum of ~5% annual generation. 

III.  RESULTS AND DISCUSSION 

A.  Capacity potential maps and supply 

curves 

Before discussing the results emerging from highRES, it is 

prudent to elaborate how our sensitivity scenarios shape the 

potential for onshore wind. With this in mind, in the first row 

of Fig. 2 we present maps of the three sensitivity thresholds 

considered here. Each map demonstrates how a progressively 

higher sensitivity leads to the exclusion of more and more land 

from onshore wind development. In addition, they also show 

how certain areas of GB are perceived to have more beautiful 

landscapes than others, e.g. Western Scotland. 

In the middle row of panels of Fig. 2, we show maps of 

capacity potential based on aggregating the detailed land 

availability data in the first row to the 20 zones represented in 

the optimisation model and then converting this area to a 

capacity limit using a footprint of 3 MW/km2. Here we clearly 

see the reduction in capacity potential per zone as more land is 

excluded when moving from our Low to High sensitivity 

scenario. Indeed, some prominent zones such as those in 

Scotland and the South-West have their potentials cut from 

~20 and ~15 GW respectively to less than 5 GW. 

The bottom row of panels in Fig. 2 then demonstrates the 

impact that sensitivity to visual impact has on the supply curve 

of onshore wind energy input into the model. At Low, onshore 

wind can provide in excess of 400 TWh/yr. However, in the 

most stringent case this is reduced to 50 TWh/yr. We stress 

once more that the model makes investment and dispatch 

decisions at an hourly resolution based on time series of zonal 

VRE capacity factors, and that their annual aggregation as 
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supply curves neglects important factors such as timing of 

production and costs associated with transmission line 

reinforcement. Nevertheless, these panels do provide useful 

clarity on the implications of our sensitivity scenarios for 

onshore wind in GB.  

B.  Capacity mix 

We now move on to explore the results output from our 

optimisation modelling. In the left panel of Fig. 3 we show the 

national installed capacity of generation and storage at each 

VRE share for our Low scenario. In the middle and right hand 

panels of this figure we also show how changing the scenario 

alters the wider power system in terms of these capacities. 

Considering the left panel first, the total installed capacity 

of the system initially grows steadily with increasing VRE 

share, as one might expect, until a large jump when moving 

from 90 to 95% penetration. In all cases the capacity mix is, 

predictably, dominated by variable renewables with onshore 

wind initially being the largest component, while the capacity 

of solar PV and, to a lesser extent, offshore wind and battery 

storage, grows at higher VRE shares. 

Both the central and right panels of Fig. 3 demonstrate how 

the model is forced to switch from onshore wind to greater 

deployment of offshore wind and solar PV when moving to 

the High scenario. The extent to which this shift occurs grows 

both as a function of increasing VRE share and sensitivity to 

visual impact. Furthermore, at the highest shares and most 

limited land availability, the system requires substantially 

more batteries and to a lesser extent NGCCGT-CCS for 

balancing and to meet security constraints. We note that while 

nuclear capacity reduces with increasing VRE share it, 

generally, does not change across our sensitivity scenarios.  

 

 
Fig. 3 National installed capacity for our Low sensitivity scenario (left panel) 

and the change in capacity when moving from Low to Moderate (middle 

panel) and Low to High (right panel) as a function of VRE share. Nuclear is 
not shown as it does not change, abbreviations are those explained previously. 

Interestingly, when moving from Low to High, at 95% 

penetration the trend of increasing solar PV deployment with 

growing VRE share reverses. This should be understood in the 

context that here national PV capacity is already at 168 GW in 

the Low scenario, essentially exhausting all the higher 

capacity factor zones in the south of GB, which are also close 

to important demand centres. A final noteworthy point from 

this figure is that, at a given VRE penetration, the total 

generation capacity of the system reduces when moving from 

low to moderate or high sensitivity to visual impact. This 

occurs for all shares apart from 95% (where the total system 

capacity does not change substantially between the scenarios) 

because the system moves towards technologies with higher 

availability factors. As will be shown in the next sub-section, 

these smaller systems in fact lead to increases in total system 

costs. 

Fig. 2 The impact of the three different visual impact sensitivity scenarios spanned here on capacity potentials and supply curves. In the first row, black areas are 

land where onshore wind can be deployed. The second row shows the resultant capacity potential (in GW) per zone for the 20 balancing zones in highRES. The 

available land is aggregated into these zones and then converted to a capacity potential. The third row shows the supply curve for onshore wind with 20 steps, 

each one corresponding to a zone. 
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To demonstrate the repercussions of the different sensitivity 

scenarios used here on the spatial deployment pattern of 

onshore wind, in Fig. 4 we plot the zonal capacity for our Low 

scenario (left panel) and the change in capacity when moving 

to Moderate or High (middle and right panels respectively). 

Due to space restrictions we only show this for an 85% VRE 

share. The left panel highlights that capacity is spread 

throughout the country, with particular concentrations in 

Northern Scotland and the South-West. This is because the 

system benefits in cost terms from such spatial diversity as it 

is able to leverage the fact that different locations experience 

different weather conditions at the same time. 

 

 
Fig. 4 Spatially explicit onshore wind capacity deployment for our Low 

scenario (left panel) and the change in capacity when moving to our Moderate 

(mid panel) and High (right panel) scenarios. These plots show the case for an 
85% VRE share in annual generation. 

 

The Moderate sensitivity constraint results in large 

reductions in Scotland, emphasising how picturesque that part 

of GB is perceived to be. At the same time certain zones see 

an increase of capacity as deployment in other, more cost-

effective zones, is constrained. Moving to the right panel, 

onshore capacity is now heavily restricted across the country 

(see also Fig. 3), with Scotland and the South-West of GB 

losing in excess of 30 GW and 20 GW each, respectively. 

Only very small increases in onshore wind capacity are now 

observed due to the restrictive nature of this threshold over the 

entirety of GB. Furthermore, because some parts of GB are 

considered to be more scenic than others, e.g. Scotland, here 

we see that the amount of spatial diversity available also 

becomes progressively restricted.  

C.  Total system cost 

In this section we focus on the impact on total system cost of 

our scenarios of public sensitivity to the visual impact of 

onshore wind deployment. In Fig. 5 we plot the total system 

levelised cost of electricity (LCOE) computed by dividing 

total system costs by total generation as a function of VRE 

share. We also show the change in system LCOE that occurs 

when moving from our Low scenario to Moderate or High, 

again for all five VRE shares we consider. 

From the left panel we immediately see that 85% 

penetration is the lowest cost system but that 75-85% shares 

all have relatively comparable costs. This highlights that, as 

other studies such as those discussed in the introduction have 

shown, systems which are predominately powered by variable 

renewables are increasingly seen as the future of very low 

carbon electricity. It is only at 90% and above that system 

LCOE begins to rise rapidly. As touched upon previously, this 

is due to the substantial increase in extra installed VRE 

capacity and batteries necessary to integrate them into the 

system.  

 
Fig. 5 Total system levelised cost of electricity for our least restrictive 

sensitivity threshold (left panel) and the change in total system LCOE when 
moving to the Moderate (middle panel) and High (right panel) scenarios as a 

function of VRE share in annual generation. 

The middle and right panels of Fig. 5 highlight that moving 

to a more restrictive sensitivity scenario results in an increase 

in system LCOE. In the former, initially this uptick is ~2% but 

this grows with VRE share up to ~6% at the highest share 

considered here. When moving to the most stringent visual 

impact scenario (right panel) we see a minimum increase of 

~7.5% which rises steadily to over 8% at 90% penetration 

before growing markedly to 14.2% if we push to 95% variable 

renewables. Again, this can be understood by looking at the 

capacity changes plotted in Fig 3, particularly the increased 

requirement for offshore wind, batteries and CCGT-CCS to 

replace onshore wind while also managing system stability. 

These results demonstrate that the cost implications of 

factoring in the public’s potential sensitivity to the visual 

impact of onshore wind can be large and grow at higher shares 

of VRE. This is particularly relevant as policy makers push 

toward systems that produce 100% of their electricity needs 

from VREs and highlights the potential repercussions if local 

communities do not support such an objective. We therefore 

emphasise that if onshore wind is to feature heavily in power 

systems of the future, it is critical that decision-makers find 

the necessary tools to ameliorate its visual impact and ensure 

an inclusive and just transition for local communities. Here we 

show that, in doing so, policy makers will also be able to keep 

low carbon electricity as cost-effective as possible. 

D.  Methodological limitations 

We note that there are some limitations to this study. From 

a power system optimisation perspective, we constrain 

interconnection capacity with Europe to that which either 

exists today or is under construction. More interconnection 

would provide more flexibility to the system and could reduce 

the system cost impacts we find. However, the importance of 

domestic energy security and uncertainties associated with 

Brexit raises questions about the extent of this reduction. In a 

similar vein, we do not model demand side measures, which 

would be another source of flexibility, due to significant 

uncertainty around the scale of their utilisation. We also only 

consider a single combination of annual electricity demand 

and emissions. Furthermore, while technically possible, VREs 

do not provide any response/reserve services in this paper. 

Finally, we note that only onshore wind has social constraints 
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factored into its siting whereas other potentially contentious 

technologies, for example CCS, do not. This means our results 

may be under estimating the system LCOE increase associated 

with moving to more restrictive onshore wind scenarios. 

The scenicness-based capacity potentials also have 

limitations. Firstly, depending on the cut-off criteria, the 

locations are either scenic or not in a binary manner. In reality, 

landscapes can be partially scenic. Secondly, we describe 

locations by their average scenicness, but we don't include the 

number of voters (i.e. a site with an average scenicness of 5 is 

treated the same whether it is based on 4 or 40 votes). Thirdly, 

we do not account for how many people are affected by the 

"loss of scenicness". Fourthly, here we focus on only one 

component of the public acceptance of onshore wind. Other 

factors which could influence acceptance include, for 

example, perceived procedural fairness, perceived fair 

distribution of costs and benefits and shadow flicker. Thus we 

stress that simply ameliorating visual impact alone may not 

make onshore wind acceptable. 

All these caveats would be of interest to explore in future 

research. 

IV.  CONCLUSIONS 

 In this paper we have used a case study for Great Britain to 

understand the implications of factoring in one aspect of the 

public acceptance of onshore wind on highly renewable power 

systems. To do this we employed empirical data that 

quantifies the scenicness of landscapes across GB and then 

developed three scenarios of spatially explicit capacity 

potentials to represent differing sensitivity levels of local 

communities to the visual impact of onshore wind. We fed 

these capacity potentials into a cost-optimising power system 

model to understand the impact on system costs and designs. 

A summary of the key insights from this study are as follows: 

 

 An increasing sensitivity to the visual impact of onshore 

wind results in a substantial capacity potential reduction, 

which drives a drop of as much as 89% in the total supply 

potential of onshore wind per year. 

 As the role of onshore wind is progressively constrained, 

the system is reoriented toward deploying more offshore 

wind and solar PV. Given this less optimal configuration of 

VREs in terms of their technological and spatial diversity, 

there is also an increased requirement for batteries and, to a 

lesser extent, dispatchable generation. In general, the higher 

the VRE share, the greater the increase in capacity of these 

technologies when moving to a more restrictive sensitivity 

threshold, although there are some exceptions. 

 We find that some of the most picturesque parts of GB also 

happen to be the most cost-effective for onshore wind, 

leading to large reductions in installed capacity as we move 

through our sensitivity scenarios. In particular, deployment 

is heavily limited in Scotland and the South-West which in 

turn acts to limit the spatial diversity of onshore wind. 

 Our results indicate that the extent to which local 

communities are sensitive to onshore wind’s visual impact 

can have a direct bearing on the levelised cost of electricity 

of the system. Initially this is low at a 2% increase of system 

LCOE but can grow to up to 14.2% for a high sensitivity and 

share of VREs in annual generation. We argue it is essential 

for policy makers to consider these cost implications and to 

find mechanisms to ameliorate the visual impact of onshore 

wind in local communities. 

 

This study represents a first step in bringing together 

empirically grounded assessments of VRE siting restrictions 

with a long term power system planning model in an attempt 

to improve the fidelity of the latter. In a future study it would 

be of great interest to design and implement a participatory 

framework where a broad range of stakeholders can iteratively 

engage with the optimisation modelling, thereby helping its 

insights to gain further real world traction. 
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