Neurological side effects of COVID-19 vaccines are rare

<table>
<thead>
<tr>
<th>Journal: Acta Neurologica Scandinavica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID: Draft</td>
</tr>
<tr>
<td>Manuscript Type: Reply</td>
</tr>
<tr>
<td>Date Submitted by the Author: n/a</td>
</tr>
<tr>
<td>Complete List of Authors: Lu, Lu; Sichuan University West China Hospital, Neurology Xiong, Weixi; Sichuan University West China Hospital, Neurology Mu, Jie; Sichuan University West China Hospital, Department of Neurology Zhang, Hesheng; Sichuan University West China Hospital, Department of Neurology Zou, Ling; Sichuan University West China Hospital, Department of Radiology and International Office Zhou, Dong; West China Hospital, Sichuan University, Neurology Li, Weimin; Sichuan University West China Hospital, Department of Pulmonary & Critical Care Medicine He, Li; West China Hospital of Sichuan University, Neurology Sander, Josemir; UCL Queen Square Institute of Neurology, Neurology Zhang, Qi; Sichuan University West China Hospital, Department of Neurology</td>
</tr>
<tr>
<td>Therapy Areas: Cerebrovascular diseases, Neuropathies</td>
</tr>
<tr>
<td>Keywords: adverse effect, safety, blood blot, SARS-CoV-2</td>
</tr>
</tbody>
</table>
Letter to Editor: Response

Neurological side effects of COVID-19 vaccines are rare

Lu Lu¹,²#, Weixi Xiong¹,²#, Jie Mu¹,², Qi Zhang¹,², Hesheng Zhang¹,², Ling Zou³, Weimin Li⁴, Li He¹,², Josemir W. Sander¹,²,⁵*, Dong Zhou¹,²*

1. Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
2. Institute of Brain science and Brain-inspired technology of West China Hospital, Sichuan University
3. Department of Radiology, West China Hospital of Sichuan University; The International Office, West China Hospital of Sichuan University, Chengdu, China
4. Department of Pulmonary & Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
5. NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG; Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom & Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands

Number of Words: 464
Number of References: 8
Number of tables: 0
Number of figures: 0

Keywords: SARS-CoV-2, adverse effect, safety, blood blot

Lu Lu: E-mail: hxlulu@foxmail.com, ORCID: 0000-0003-3717-5237
Weixi Xiong: E-mail: 502216168@qq.com, ORCID: 0000-0001-6835-8664
Jie Mu: E-mail: mujie2010@foxmail.com, ORCID: 0000-0002-9773-3838
Qi Zhang: E-mail: 1306914045@qq.com, ORCID: 0000-0002-7238-8134
Hesheng Zhang: E-mail: zhanghesheng0924@163.com, ORCID: 0000-0003-4489-2103.
Ling Zou: E-mail: zl_scu@163.com, ORCID: 0000-0002-3404-0321
Weimin Li E-mail: weimin003@163.com, ORCID: 0000-0003-0985-0311
Li He E-mail: heli2003new@126.com, 0000-0002-2034-1027
Josemir W. Sander E-mail: l.sander@ucl.ac.uk, ORCID: 0000-0001-6041-9661
Dong Zhou E-mail: zhoudong66@yahoo.de, ORCID: 0000-0001-7101-4125

the authors contributed equally.

*Corresponding authors:
Dong Zhou, MD, Department of Neurology, West China Hospital of Sichuan University. Institute of Brain science and Brain-inspired technology of West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. E-mail: zhoudong66@yahoo.de, Tel: +86-13980088088, ORCID: 0000-0001-5096-7023.
Josemir W. Sander, MD, PhD, FRCP, FEAN, Chalfont Centre for Epilepsy
Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (81801294, 81871017, 81420108014), and the 1.3.5 Project for Disciplines of Excellence of West China Hospital at Sichuan University (ZY2017305, ZYGD20011). JWS is based at NHIR University College London Hospitals Biomedical Research Centre, which receive a proportion of funding from the UK Department of Health's Research Centres funding scheme. He receives research support from the Marvin Weil Epilepsy Research Fund, the UK Epilepsy Society, and the Christelijke Vereniging voor de Verpleging van Lijders aan Epilepsie, Netherlands.

Disclosures

The authors report no conflicts of interest in relation to this work.
We read with interest the letter by Finsterer & Scorza on our review of potential neurological effects of COVID-19 vaccines\(^1\). Their content is not dissimilar to our conclusion that post-vaccine neurological events are, at this time, relatively rare and that possible long-time effects will need further prospective monitoring. It is, of course, essential to remind Finisterer & Scorza that this is an evolving field, and evidence will change as time goes. Therefore, pontification with the help of the retroscope is always welcomed.

Some new evidence needs to be updated and clarified.

The main safety concerns in the viral vector platform are blood clots reported with Vaxzevria (previously COVID-19 Vaccine AstraZeneca)\(^2\). By 22 March 2021, the EU drug safety database reported 62 cases of cerebral venous sinus thrombosis (CVST) in people who received the vaccine. This is a slight increase in the risk of this in the general population\(^3\). Conversely, another study compared the incidence rate of venous thromboembolic events between the Oxford–AstraZeneca vaccine population and the entire Danish population before vaccination. It suggested that the reported thromboembolic events do not increase \(^4\). The European Medicines Agency concluded that the combination of blood clots and low blood platelets are extremely rare. The causality of CVST with the vaccine requires further investigation. According to the Joint CDC and FDA Statement, the same blood clot incidence was also associated with the Johnson & Johnson viral vector vaccine, but still appears to be an extremely rare event\(^5\).

There is also new evidence in the mRNA platform. Aside from the published phase 3 trials, real-world data\(^6\) showed a similar number of neurological events between vaccinated and unvaccinated populations. Other safety results are also consistent with the extensive safety and tolerability assessments conducted in Phase 1/2 and Phase 3 trials. The Advisory Committee on Immunization Practices (ACIP) of the CDC also presented similar data compared to the unvaccinated group. No statistical signals were detected for Bell’s palsy, convulsions/seizures, hemorrhagic or ischemic stroke and venous thromboembolism\(^7\). Despite the limitation of neurological adverse events reporting, public media showed a few cases of people with continuous trunk movements and limbs or walking difficulties\(^8\). These reports were considered mainly as functional neurological disorders. The causality between these symptoms and vaccination was uncertain.

Based on the current evidence, though more neurological adverse effects were reported with the massive worldwide vaccination, the causality is yet to be confirmed. As the vaccinated population increases, inevitable more neurological incidents will be seen. The link between them and the vaccine association will need to tested by comparing their incidence rate with epidemiological data preceding the pandemic. We agree that it is essential to establish a transparent and efficient reporting system of vaccination safety. This will require full collaboration between regulators, healthcare workers, the industry and the general public.
Reference

