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INTRODUCTION 

 

Inherited retinal disease (IRD) affects approximately 1 in 3,000 individuals in North 

America and Europe, and is a significant cause of visual impairment and blindness 

among children and working-age adults, with huge personal and societal impact.[1,2] 

Accurate clinical phenotypic and genotypic diagnosis of IRD is challenging, but 

increasingly important and relevant. Traditionally, genotypic diagnosis has been 

considered “nice to have”, but not “essential”, with implications usually related to 

patient prognostication and genetic counselling. However, an accurate genetic 

diagnosis is now of paramount importance because of rapid advances in potential 

gene replacement and other therapies for these previously untreatable conditions. In 

2017, the first gene therapy for IRD was approved by the United States Food and 

Drug Administration (FDA) for the treatment of RPE65-mediated retinal dystrophy 

and shortly after by the European Medicines Agency (EMA) as well.[3] Multiple 

clinical trials are currently underway for other IRDs, including Choroideremia, 

Stargardt disease, and Retinitis Pigmentosa (RP).[4,5]  Besides gene replacement 

therapy, progress in other areas such as antisense oligonucleotide (AON) therapy 

and gene editing with clustered regularly interspaced short palindromic repeats 

(CRISPR) and CRISPR-associated proteins (Cas) also rely on accurate genetic 

diagnosis.[5,6] 

 

UNMET CLINICAL CHALLENGES 

 

Successful genotypic diagnosis remains elusive for many patients globally, due in 

part to remaining gaps in knowledge, but also due to limited access to testing, which 



remains relatively expensive, along with scarcity and an uneven distribution of 

institutions with expertise in IRD. In the majority of tertiary centres in the Western 

world, patients have a high chance of an accurate genetic diagnosis. Recent studies 

have demonstrated the successful characterization of large cohorts of patients with 

IRD using systematic clinical phenotyping and genetic testing protocols.[7–10] 

Typically, historical, clinical, electrophysiologic and multi-modal imaging data are 

used to assign each patient a clinical phenotypic category and to facilitate the 

selection of a genetic testing strategy. For example, in 2017, Stone et al reported 

successful identification of disease-causing genotypes in 76% of 1000 consecutive 

families with IRD.[10] They used a tiered testing strategy, first relying on focused 

testing for specific genes, based on the phenotypic category.  If needed, they then 

gradually enlarged the molecular hypothesis in a recursive manner up the 

classification tree, eventually using whole-exome and whole-genome sequencing, 

only if required.  This tiered testing strategy had greater sensitivity, lower average 

cost, and a much lower false genotype rate (FGR) than a strategy using whole-

exome sequencing for all cases.  A phenotype-driven genetic testing strategy may 

therefore be advantageous, but requires a team of experienced clinicians, well 

versed in accurate clinical phenotyping, seeing diverse groups of patients with IRD.  

It also requires major infrastructure such as a certified genetic laboratory and 

communication between the clinician and testing laboratory.  Unfortunately, such 

expertise and resources are not readily available in most countries except in a select 

few sub-specialty tertiary referral centres worldwide. Most patients with IRD thus do 

not have access to an accurate clinical phenotypic and genetic diagnosis – these 

patients often experience an unacceptably long “diagnostic odyssey”. This major 



clinical need presents a unique opportunity for artificial intelligence (AI), and 

particularly deep learning (DL). 

 

AI AND DL IN MEDICINE 

 

AI and DL techniques have been applied extensively to various technical and 

medical fields, ranging from medical imaging analysis, to natural language 

processing and speech.[11] Recently, DL using reinforcement learning has shown 

promising results in prediction of protein structures, with the potential to greatly 

increase our understanding of how specific genetic variants cause disease.[12] In 

ophthalmology, DL techniques have been applied to diagnosis of major ocular 

diseases such as diabetic retinopathy (DR), age-related macular degeneration and 

glaucoma from colour fundus photographs, fundus autofluorescence (FAF) images 

and optical coherence tomography (OCT).[13–17]  

 

AI AND DL FOR INHERITED RETINAL DISEASE 

 

Currently, the application of AI and DL techniques for IRD diagnosis is still at a very 

nascent stage. Most of these efforts have focused on clinical phenotyping. A few 

studies have investigated automated classification of IRD versus normal controls or 

acquired retinal disorders, with AI and DL applied to various modalities such as ultra-

widefield (UWF) fundus photographs, FAF or OCT images.[18–21] For example, 

Masumoto et al utilized 373 UWF pseudocolour and FAF images with DL to 

diagnose RP cases from controls, while Shah et al used individual OCT B-scans at 

the fovea (749 scans from 93 individuals) with DL to distinguish Stargardt disease 



from controls.[18,21] Both of these studies were limited to binary classifications of 

single IRD disease cases versus controls. Miere et al developed a DL algorithm that 

used 389 FAF images to classify patients with 3 different IRDs (RP, Best disease 

and Stargardt disease) from healthy controls.[20] However, their study was 

fundamentally limited by the fact that only a minority of this cohort was genetically-

confirmed. 

 

In this issue of the British Journal of Ophthalmology, Fujinami-Yokokawa et al 

utilized a Japanese Eye Genetics Consortium dataset of 417 images (fundus 

photographs and FAF images) from 156 subjects, containing 115 genetically-

confirmed cases of ABCA4-, EYS- and RP1L1-associated retinal dystrophies, and 41 

normal age-matched controls, to train and validate a DL system for automated 

classification amongst these 4 categories.  They report encouraging overall 

sensitivity/specificity values for fundus photographs and FAF images of 

88.3%/97.4% and 81.8%/95.5%, respectively.  They also report area under the 

receiver operating characteristic curve (AUC) values for fundus photographs and 

FAF images of 0.708 and 0.703 respectively. The authors conclude that the DL 

system they have developed could provide accurate, easily accessible diagnosis of 

these 3 important IRDs in Japan, which may one day help to provide earlier 

diagnosis, more appropriate referrals, and lower cost of investigation and genetic 

testing at the general ophthalmologist level. This study represents a step in the right 

direction for AI in the field of IRD. It tackles the 3 most prevalent genetic causes of 

IRD in the Japanese population, includes only genetically-confirmed cases, and was 

developed on a clinically well-characterized IRD cohort. It also uses 2 different and 



commonly used imaging modalities in IRD assessment – colour fundus photographs 

and FAF imaging.  

 

Nevertheless, there are important limitations to this study, which serve to highlight 

some of the key challenges in applying AI to IRD diagnosis. 

 

First, it is important to note that this is, by nature, an artificially curated dataset. 

Typical phenotypes associated with ABCA4, EYS, and RP1L1 disease-causing 

variants are primarily Stargardt disease, RP and occult macular dystrophy 

respectively, which are markedly different from each other on colour photography 

and FAF. However, individually, each of these genotypes can result in different, even 

overlapping, phenotypes. For example, ABCA4 variants can produce a cone 

dystrophy/cone-rod dystrophy phenotype which can have similarities with RP 

especially in advanced stages, while EYS variants can also be associated with a 

cone-rod dystrophy phenotype, and RP1L1 can also be associated with RP.[22] 

Furthermore, these challenges may be compounded by ethnic-specific variants and 

founder effects for specific IRD genes. There is limited information on the phenotypic 

heterogeneity within each genetic group in this study. Therefore, it is difficult to be 

certain if the DL system developed is truly predicting the causative gene, or if it is 

relying largely on notable phenotypic differences to make its classification decisions. 

An alternative approach with potential advantages may be to group subjects initially 

by phenotype (e.g. Stargardt disease) with different disease-causing variants, and 

use AI-DL within this subset to predict the causative variant. This may also make any 

DL system developed more clinically applicable – in practice, patients first present 

with a particular phenotype (e.g. Stargardt disease), and it is the clinician's task to 



then solve the genetic basis – a task which one day an AI system may be able to 

facilitate. Of course, such an analysis would require a much larger sample size, and 

a very well-characterized cohort of patients, both of which are potential challenges in 

the field of rare/orphan disease. 

 

Second, this AI system deals with mutations in only 3 genes, in a specific ethnic 

population. In clinical practice, pathogenic variants in more than 250 genes can 

cause IRD, with significant ethnic and geographic variation. This AI system in its 

current form is not yet ready for general deployment on “unknown” IRD patients, that 

may exhibit significant genotypic and phenotypic heterogeneity. 

 

Third, as with most other DL systems in the early stages of development, this study 

relies on a selected subset of images of good quality for training and validation. The 

authors excluded 31.5% of colour fundus photographs, and 60.4% of FAF images in 

their initial quality assessment. Therefore, the encouraging sensitivity and specificity 

results reported in their validation need to be interpreted in context. The challenge 

here, and indeed with other DL systems pushing towards clinical translation, will be 

to prove that the algorithms developed are robust and generalisable, by testing on 

external datasets with a variety of image quality and acquisition protocols. Ultimately, 

DL systems employed as “physician assistive tools”, as opposed to fully autonomous 

systems (e.g. for DR screening), are less vulnerable to image quality concerns, but 

this still needs to be addressed in future studies. 

 

Fourth, the AUC values reported in this study of 0.708 and 0.703 are relatively low 

as compared to DL systems for other ocular conditions. This may be due to 



limitations of small sample size or reflect an inherent difficulty in the task at hand. 

Future studies with larger sample sizes, and appropriate performance benchmarking 

against human experts will help to resolve this issue.  

 

FUTURE DIRECTIONS FOR AI APPLICATIONS IN IRD 

 

Evidently, to support further development of AI tools for IRD, there is a need for more 

well-characterized, sizable datasets. IRDs are individually rare diseases, and there 

exists also significant geographic variation in relative prevalence patterns of 

genotypes and phenotypes. Therefore, in order to develop clinically useful and 

robust AI algorithms, there is a need for greater international collaboration. 

 

Key areas for future development include: 

 

1. Global standardization of nomenclature, classification systems, and data 

collection for IRD databases by international IRD consortia/consensus groups – 

this will provide strong ground truth data for AI development 

2. Inclusion of additional information from the retinal periphery by greater reliance 

on UWF colour and FAF images 

3. Inclusion of key clinical history data as algorithm input (such as age of onset, 

family history etc.) 

4. Multi-class and multi-modal (including UWF imaging, FAF imaging, OCT, 

electrophysiology and visual field) AI algorithms for classification of IRD 

5. Triaging AI algorithms to stratify the genotype of IRDs to determine suitability for 

specific gene therapies 



6. Predictive AI algorithms on IRD progression 

7. Testing of AI algorithms on independent external datasets, with a variety of image 

quality and acquisition protocols 

8. Benchmarking of AI algorithms against expert human performance  

 

CONCLUSIONS 

 

AI systems capable of providing accurate phenotypic or genotypic classification of 

IRDs based on clinical and multi-modal imaging data could become useful assistive 

tools for clinicians, particularly in clinics or centres where sub-specialty expertise in 

IRD is lacking. This would help to fill expertise and resource gaps, and guide general 

clinicians to order appropriate genetic tests by a targeted testing strategy, which 

would help to keep testing costs low, minimize the FGR, and potentially, also further 

improve the rates of genetic diagnosis.  

 

If AI tools can also identify causative sequence variants in certain “difficult” cases 

and outperform human experts, then analysis of “heatmaps” and reasons for the AI 

classification decisions may help to identify novel subtle phenotypic abnormalities 

that point to the underlying genetic diagnosis.  

 

Hopefully, with a concerted effort and greater international collaboration, such 

effective AI tools for more rapid and accurate diagnosis of IRD can be developed to 

optimize patient care, with the promise that blindness from IRD can be ultimately 

prevented or eliminated.  
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