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Abstract 
The biomechanical studies on the craniofacial sutures can be classified to three groups, to 
understand: (1) the inherent mechanical properties of the sutures; (2) role and function of the 
sutures (using in vivo and in silico techniques) and (3) how sutures respond to mechanical loads 
(using in vitro or in vivo experiments). The aim of this chapter was to provide a short overview of the 
biomechanics of the sutures under the aforementioned categories. This chapter can be consider as 
an introduction to the biomechanics of the sutures and readers are encouraged to read throught the 
papers reviewed here. 
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11.1 Introduction 
Sutures are composites of mesenchymal cells that during development differentiate and deposit 
extracellular matrix consisting primarily of collagens as well as various bone-related proteins and 
proteoglycans [1,2]. Sutures are an integral part of the craniofacial system that together with the 
synchondroses modulate the growth and development of the craniofacial system [3,4] while their 
premature fusion leads a clinical condition called craniosynostosis [5,6].  
 
During the development, sutures accommodate the radial expansion of the brain [7,8]. By the time 
the brain has reached its maximum size, visible gaps at the sutures have reduced to 
micro/nanometer gaps where sutures have differentiated to bone [9]. A few of the sutures fuse but 
a large number of them remain open during  adulthood with different morphologies, butted, 
overlapping and with varying degrees of interdigitations [10-12]. During the adulthood, they 
contribute to a uniform distribution of the mechanical loads applied to the craniofacial system and 
act as shock absorbers [13-15]. The mechanical loads that sutures experience arise from e.g. the 
growth of internal organs in the craniofacial system such as brain and eye; from daily activities such 
as biting; or from sudden impact from external objects [16].  
 
A wide range of techniques such as tensile testing, nanoindentation, strain gauging and finite 
element methods have been used to understand the biomechanics of the sutures. These studies can 
be classified to three groups, to understand: (1) the inherent mechanical properties of the sutures; 
(2) role and function of the sutures (using in vivo and in silico techniques) and (3) how sutures 
respond to mechanical loads (using in vitro or in vivo experiments). Under each category, there is a 
wealth of literature.  
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The aim of this chapter was to provide a short overview of the biomechanics of the craniofacial 
sutures under the aforementioned categories. The goal of this chapter was not to offer a critical 
review of past studies nor to summaries the whole literature. Instead, the goal was to inform the 
reader of the key ongoing research areas, provide a brief overview of the methodologies used and 
highlight the key studies to the best of our knowledge. Readers are referred to studies cited here 
and other reviews on the mechanobiology of sutures [17-20]. 
 
11.2 Inherent mechanical properties of the sutures  
Tensile/compression testing, three/four-point bending and indentation are the most commonly used 
techniques to characterise the mechanical properties of the sutures on a wide range of species (see 
the review of such studies in human by Savoldi et al. [21]). In brief, these techniques characterise the 
load-displacement of the sutures under a specific loading rate and based on this data estimate 
parameters such as the elastic modulus, yield and ultimate stress. There are a number of key factors 
in such studies. These can be classified into the biological related factors such as species, anatomical 
region and age or testing related factors such as loading approach, loading rate, and indentation tip. 
  
It is widely accepted that sutures are viscoelastic materials where their mechanical property are 
nonlinear and is influenced by the loading rate and its duration [16,22]. Nonetheless, a few studies 
have characterised the viscoelastic properties of the sutures. Studies of Tanaka et al. [22], Margulies 
and Thibault [23] and Popowics and Herring [24] are some the classical examples that reported 
Elastic modulus of the sutures under different loading rates. At the same time, there is a good body 
of literature that has quantified the elastic modulus of the sutures using a specific set of parameters 
in comparative studies. Table 1 summarises some of the key studies to the best of our knowledge. It 
is clear that elastic modulus that has been reported for the sutures varies considerably. This can be 
due to the aforementioned factors involved in these studies. Also given that tissue differentiation is 
present across the sutures, at least during the development, it can be expected that the elastic 
modulus of the suture can vary across the sutures. In this respect, indentation is a powerful tool to 
characterise such variation across the cross-section of the sutures. Overall it seems that the elastic 
modulus of the sutures is in the range of low MPa (1-30MPa – see Table 1). 
 
11.3 Role and function of the sutures  
A range of techniques such as in vivo, ex vivo strain gauging, and in silico computational methods 
have been used to quantify the level of loading across the craniofacial system and sutures. Given 
that sutures are mainly loaded during biting, themajority of these studies have focused on biting and 
its associated muscles and soft tissues. Clearly in vivo studies are the “gold standard” to quantify the 
loading level across the sutures. Nonetheless, the computational models are powerful tools to 
answer a variety of “what if” questions and ex vivo studies are invaluable to validate the in silico 
studies.  
 
In vivo studies have mainly placed strain gauges across the skull and recorded strain across the 
bones and sutures during various biting scenarios. To the best of our knowledge, fewer studies have 
specifically used this technique to measure the strain across the sutures. There are several studies 
e.g. in fish [36], lizards [37,38], rat [39], pig [40-43] and macaque [44-45] where in vivo strain across 
a range of sutures have been measured. These studies broadly highlight that there is a correlation 
between the morphology of the sutures and the predominant loading that they undertake with high 
interdigitate sutures being mainly loaded under compression, the overlapping sutures under shear 
and butted sutures under tension.   
 
In silico studies have mainly used finite element (FE) method (see following textbooks on this 
method [46, 47]). This computational technique enables us to carry out a structural analysis that can 
predict the deformation of the skull under a particular loading regime (see the reviews by Rayfield 



3 
 

[48] and Prado et al. [49]). It is a powerful technique where a variety of scenarios can be modelled 
and a wide range of questions can be asked and answered in a cost-effective manner. This method 
requires various input parameters i.e. morphology of the skull, inherent properties of various 
constituents of the skull e.g. bones and sutures and loading applied to the skull.  
 
FE models have been widely used in the past 30 years to understand the role and function of sutures 
in a range of species with a range of evolutionary, functional, developmental and clinical questions 
(see Table 2). Perhaps one of the early studies with evolutionary and functional questions that used 
FE method to model sutures is the study of Rayfield et al. [50], a case study on a dinosaur. The same 
approach was then adopted by many others to study roles of sutures in e.g. lizards [15, 51, 52], 
Sphenodon [53], macaque [54-55], pig [56] and recently in amphibian [57]. Studies using the FE 
method to model the development of the craniofacial system (i.e. modelling the sutures) seem to be 
far more limited. A few recent studies have recently used this technique to model the development 
of calvaria in mouse [58-61] and human [62-65]. Similarly, a few studies have used FE method to 
inform clinical management of conditions associated with craniofacial sutures such as cleft lip/palate 
[e.g. 66-68] and craniosynostosis [e.g. 69-73 and see the review by Malde et al. [74]).  
 
Regardless of the application of the FE method, the validation of these models is crucial to build 
confidence in their outcomes. Hence, a wide range of validation studies have been carried out by 
comparing the FE results versus in/ex vivo strain gauging or recently using laser speckle 
interferometry. Perhaps some of the key studies in this respect are studies  Kupczik et al. [75] and 
Wang et al., [45] in macaques; Bright and Groning [76] in pig; Cuff et al. [77] in ostrich. Overall, FE 
studies have already shown that sutures play an important role in distributing the strain across the 
skull more uniformly and have clearly shown the potentials of this method to advance the treatment 
of various clinical conditions.  
 
11.4 Sutures response to the mechanical loads 
In vivo and in vitro experimental loading set ups have been developed and used to test the response 
of sutures to controlled loading regimes. The loading has been either quasi-static (compressive or 
tensile) or dynamic (compressive or tensile). Perhaps the classic in vivo example of applying forces to 
the sutures is cranial deformation. This has been practiced by various human groups in e.g. North 
and South American Indians, Pacific Islander and various European stocks resulting in e.g. 
circumferential or anteroposterior deformed crania [78, 79]. While the level of loading that has been 
applied in these cases is unknown, the skull is clearly deformed but interestingly various sutural 
morphologies do not seem to be affected.  
 
A large body of literature has carried out various in vitro experiments where a section of the skull 
including the sutures have been placed and loaded in a dish. These controlled experiments have 
enabled us to study the cellular and morphological changes in the sutures with their main limitations 
being their in vitro nature i.e. lacking the blood supply, surrounding anatomical structures and 
alteration in the overall mechanics of the tissues. One of the early studies that used such an 
approach was the study of Meikle et al. [80] on a rabbit model followed by several other groups [81-
85]. See the review by Alaqeel et al. [86] for a detailed summary of in vitro loading experiment 
studies on the sutures (and also in vivo studies). They summarised the various changes in e.g. 
protein level, growth factor expression, and extracellular matrix of sutures due to the mechanical 
forces.  
 
A relatively large body of literature has also carried out in vivo studies where various sutures have 
been loaded under different loading regimes and durations. Table 3 provides a summary of the key 
in vivo experiments that have been carried out to the best of our knowledge. These studies together 
with the in vitro studies highlight that external tension across the sutures up-regulate sutural cell 
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proliferation, increasing the number of cells and their macroscopic width. The quasi-static tensile 
force seems to have a limited effect [87] while dynamic loading seems to have a larger and perhaps 
a longer lasting effect. A Study from Kopher and Mao [88,89] highlighted that both tensile and 
compressive cyclic loading may also enhance maintenance of the sutures. Nonetheless, our 
understanding of the impact of various parameters in such studies (loading duration, frequency etc.) 
are still limited and largely based on pioneering studies of Mao’s team. 
 
11.5 Discussion 
A short summary of the literature on the biomechanics of the sutures was provided here. There is no 
doubt that there is a wider literature that is not covered here and the readers are encouraged to 
further research. For example, there are a number of studies that have focused on modelling and 
understanding the sutural morphologies [105-107] or there is a wider literature on using FE method 
in addressing various clinical conditions associated with the craniofacial system. Overall, we feel that 
this chapter can be a good initial read for those beginning to explore the biomechanics of sutures, 
pointing them to the relevant literature.  
 
Considering the topics covered here, the material testing experiments to date have significantly 
advanced our understanding of the inherent mechanical properties of the sutures. Perhaps further 
studies can use this technique to quantify the changes in the mechanical properties of the sutures 
during the development or in various craniofacial abnormalities. Similarly, computational and in vivo 
experiments can be further implemented to advance our understanding of various craniofacial 
conditions such as craniosynostosis. Indeed, combining various techniques such as geometric 
morphometric, finite element, machine learning and experimental techniques can be a powerful 
approach to address various non-clinical questions [see e.g. 108]. External loading studies of the 
sutures have so far mainly focused on the normal sutures, applying same methodologies to various 
animal models of craniofacial conditions [109-110] is another key avenue of research that requires 
further attention. This can potentially lead to the development of novel technologies for the 
treatment of conditions such as craniosynostosis. 
 
There is no doubt that the whole field of suture mechanobiology has had an immense progress in 
the last 30 years, advancing our fundamental understanding of this topic. We have already seen 
several examples that have found their way from basic science research to clinical practice.  For 
example, spring-assisted cranioplasty is nowadays becoming a popular treatment option for the 
management of sagittal craniosynostosis [see e.g. 111] with early studies in the 1970s applying the 
same concept to various animal models. There are indeed large bodies of ongoing research e.g. in 
the fields of tissue engineering and gene therapies [e.g. 112-114] that can potentially revolutionize 
the treatment of craniofacial conditions in years to come.  
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Table 1: A summary of some of the key studies characterising the elastic modulus (E) of the sutures. Note C= compression; T= tension; NC= not clear to us. 
 

*Bending strength was reported in this study; ~ mean stiffness was reported in N/mm;^ average value of 22MPa calculated based on suture thickness; “at a 
higher loading rate of 0.02mm/s;**relaxed moduli was estimated following a series of loading-unloading detailed in the paper.  
 

Author Animal Age Suture E (MPa) Testing Method 

Jaslow [25] goat 2-4years internasal and coronal 10-35* & 120-240* three-point bending 

Thibault et al. [26] human 3 months coronal 189~ tension 

Margulies and Thibault [23] pig 2-3 days coronal 194.2 ± 42.5  three-point bending 

McLaughlin et al. [27] rat 7 days 
sagittal, coronal & posterior 

frontal 
13, 14 & 2.3  tension 

Tanaka et al. [22] rat 4 weeks sagittal 4.5±1.8** tension 

Radhakrishnan and Mao [28] rabbit 8 weeks 
pre-maxillomaxillar, nasofrontal 

& zygomaticotemporal 
1.5 ± 0.2, 1.2± 0.2 & 

1.2±0.2  
atomic force 
microscopy 

Henderson et al. [29] rat 2-60 days sagittal 4-80^  three-point bending 

Coats and Margulies [30] human 
21 weeks gestation-

12 month  
coronal 3.8-16.2 tension 

Grau et al. [31] human 9.1±2.8 months 
synostosed metopic & 

synostosed sagittal  
0.5 ± 0.1 & 0.7 ± 0.2 nano-indentation 

Popowics et al. [24] pig 
3-6 weeks & 5-6 

months 
nasofrontal 

68±32 (C); 43±16 (T) &  
115±45 (C); 70±33 (T) “ 

compression (C) & 
tension (T) 

Davis et al. [32] human 6 years NC 1100±530 four-point bending 

Wang et al. [33] human 1.5±0.5 years coronal & sagittal 
354.8 ± 44.9 & 408.1 ± 

59.1 
three-point bending 

Rahmoun et al. [34] human  average of 88 years coronal 2038.4 ± 923.6  three-point bending 

Moazen et al. [35] mouse 10-20 days sagittal, coronal & posterior 
frontal 

20±12, 29±23 & 34±33  nano-indentation 
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Table 2: Short summary of key finite element studies modelling the cranial sutures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

~a finite volume study 
 

 Author Animal 

Rayfield et al. [50] dinosaur 

Kupczik et al. [75] macaque 

Wang et al.  [45, 54, 55] macaque 

Moazen et al, [15, 51] lizard 

Bright and Groning, [76] pig 

Bright [56] pig 

Curtis et al. [53] sphenodon 

Cuff et al. [77] ostrich 

Jones et al. [52] lizard 

Gruntmejer et al. [57] amphibian 

Jin et al. [62] human 

Lee et al. [58,59]~  mouse 

Burgos-Florez et al. [63] human 

Libby et al. [64] human 

Weickenmeier et al. [65] human 

Marghoub et al. [60,61] mouse 

Pan et al. [66] human 

Nagasao et al. [69,70] human 

Chen et al. [67,68] human 

Borghi et al. [71] human 

Malde et al. [72] human 

Bozkurt et al. [73] human 
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Table 3: A summary of key in vivo studies investigating the effect of external loads on the craniofacial sutures. See also studies of Wang and Mao (on rabbit 
cranial base – [90]) and Tang et al.  (on rat cranial base – [91]). NK=not known to us; Q-static=quasi-static. 
 

Author Animal Age  Suture Level of loading Duration 
Q-static or 
dynamic 

Cleall et al. [92] macaque P90-120 midpalatal 
4mm expansion achieved in 2 weeks then 
2mm at 4 weeks interval up to 12 weeks  

several intervals 
from 2 -36 weeks 

Q-static 
tension 

Elder and Tuenge [93] macaque NK several sutures  
700 Gm at 40degree angle to the occlusal 

plane was applied via a frame to the maxilla 
57-72 days 

Q-static 
tension 

Ten Cate et al. [94] rat NK - adults sagittal 
2mm deflection was induced in a wire frame 

that was placed across the sagittal suture 
various intervals 

from 2h to 42days 
Q-static 
tension 

Jackson et al. [95] macaque P1200-P1440 several sutures  
300 Gm per side parallel to the occlusal 

plane was applied via a frame to the maxilla 
63-114 days 

Q-static 
tension 

Southard and Forbes 
[96] 

rat P53-58 interpremaxillary 
50 to 75 g , 150 to 175 g and 250 to 300 g 

was applied via a helical spring (made from 
stainless steel) across the maxillary incisors 

12 hours; 1,2 and 4 
days 

Q-static 
tension 

Anton et al. [78] human unknown several sutures unknown – intentional head deformity unknown Q-static 

Losken et al. [97] rabbit P10 coronal 
A total 3.97mm distraction was applied to 

the coronal suture over 42 days  
2 times per week for 

6 weeks - P28-P70 
Q-static 

Bradley et al. [98] lamb 
85-95 days 
gestation 

coronal 
1mm compression plate was placed across 

the mid portion of the coronal suture 
28 and 56 days 

Q-static 
compression 

Tanaka et al. [99] rat P28 sagittal 
65g expansion was applied across the 

sagittal suture 
for 15, 30 and 50h  

Q-static 
tension 

Kopher and Mao [100] 
and Kopher et al., [88] 

rabbit P42 
premaxillomaxillary

, nasofrontal 

5 N (compressive) applied to the maxillary 
incisors 

at 0 Hz & 1 Hz (sine & square wave) 

10 min/day 
for 12 days 

Q-static and 
dynamic 

Mao et al. [89] rabbit P42 premaxillomaxillary 
2N (tensile) applied to the maxillary incisors 

0 Hz, 0.2 Hz & 1 Hz  
10 min/day 
for 12 days 

Q-static and 
dynamic 

Vij and Mao [101] rat 
P17, P23, 

P32 
Premaxillomaxillary

, nasofrontal 
0.3N (compressive) applied to the maxilla at 

4Hz 
20min/day 
for 5 days 

dynamic 

Peptan et al. [102] rabbit P42 
Premaxillomaxillary

, nasofrontal 

1N (tensile and compressive) applied to the 
maxillary incisors 

at 8 Hz & (sine wave)  

20min/day 
for 12 days 

dynamic 
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Han et al. [103] macaque P960 several sutures  
3N was applied via cast class III magnetic 

twin-block appliance to the upper  
for 45 and 90 days  static 

Takeshita et al. [87] mouse P42 sagittal 
0.2N was applied to the sagittal suture by 

bending and placing a 0.3mm diameter 
nickel-titanium wire  

For 28 days static 

Soh et al. [104] pig P90 nasofrontal 
800-1000micros strain (tensile) was applied 

to the nasofrontal at 2-3 Hz 
30min/day 
 for 5 days 

dynamic 

 
 
 
 
 
 
 
 
 
 
 


