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Rapid and large-scale changes in household consumption patterns during the 21 
COVID-19 pandemic can serve as a natural experiment to explore the 22 
environmental outcomes of changing human behavior. Here, we assess the 23 
carbon footprint of household consumption in Japan during the early stages of 24 
the COVID-19 pandemic (January-May 2020), which included moderate 25 
confinement measures. COVID-19 confinement measures in Japan, and 26 
associated lifestyle change, did not have a significant effect on the overall 27 
household carbon footprint compared with 2015-2019 levels. However, there 28 
were significant trade-offs between individual consumption categories, with 29 
carbon footprint increasing for some (e.g. eating at home), while declining (e.g. 30 
eating out, transportation, clothing, entertainment) or remaining relatively 31 
unchanged for others (e.g. housing). Furthermore, carbon footprint patterns 32 
between age groups were largely consistent with 2015-2019 levels. However, 33 
changes in food-related carbon footprints were visible for all age groups since 34 
March, and in some cases since February. 35 
 36 
 37 
Keywords: Decarbonization, Input-output analysis, Greenhouse gas 38 
emissions, Natural experiment  39 

 40 

 41 

INTRODUCTION  42 

The coronavirus disease 2019 (COVID-19) emerged in the late 20191, and has 43 
since caused an unprecedented disruption of social and economic activity 44 
globally. Billions of people were forced to change on short notice their behavior 45 
and lifestyle, including how they live, work and socialize. Responses to the 46 
COVID-19 outbreak have varied significantly between countries, reflecting the 47 
very different national approaches and policies seeking to prevent or mitigate 48 
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the spread of the disease. Some of the most common measures have included 49 
tele-commuting, scaling down (or even halting) of economic activity (e.g. 50 
services, industry), and stay-at-home orders of variable severity between 51 
countries2. Although a wide array of different control measures has been 52 
applied, at the time of writing this paper according to the World Health 53 
Organization (WHO), there have been nearly 83.3 million confirmed cases in 54 
220 countries3 and a second and third wave of infections in many countries.  55 
 56 
Since the early phases of the pandemic, studies have noted that these major 57 
changes in human activity have had important economic and social 58 
ramifications4,5. This in turn seems to have had significant implications for the 59 
environment through the disruption of aggregate demand and global trade62. 60 
For example, studies have estimated substantial short-term decreases in 61 
Greenhouse Gases (GHGs) emissions6,7 nationally and globally, as well as 62 
locally in some emission hotspots8-11. However, the observed changes in 63 
socioeconomic activity might have more pronounced and long-term 64 
environmental implications, for example by derailing current progress to (or 65 
providing new opportunities for) energy transitions and decarbonization12,13,37. 66 
Furthermore, many of the actual environmental outcomes seem to vary 67 
substantially between countries, depending on their different approaches to 68 
containment measures14-15. Most of the studies mentioned above have 69 
explored the environmental outcomes of the COVID-19 pandemic through 70 
measuring directly environmental variables or identifying macro-level patterns 71 
associated with changes in aggregate economic and social activity. It can thus 72 
be argued that they such studies have mainly adopted a production 73 
perspective.  74 
 75 
However, there has been very little evidence of the possible environmental 76 
outcomes of the COVID-19 pandemic from a micro-level or consumer 77 
perspective, for example, by exploring quantitatively shifts in consumption 78 
patterns due to changes in the lifestyles of individuals and/or households. In 79 
the past, many studies have used such a lens to explore the direct links 80 
between the lifestyles of individuals/households, their consumption choices and 81 
impact on the environment16,17, e.g. carbon footprints of current and future 82 
lifestyles in the UK18, USA19, China20,21, and Japan22, among others. Other 83 
studies have identified the very diverse factors mediating the environmental 84 
impacts of lifestyles and consumption practices such as household type23, 85 
income/wealth (and related inequalities)24-28, and demographic processes (e.g. 86 
aging)29-31.  87 
 88 
At the same time it has been argued that by transitioning to more sustainable 89 
lifestyles such as those characterized by lower mobility and/or consumption, 90 
could have major environmental benefits by decreasing overall energy 91 
consumption, GHG emissions and environmental degradation29,32-34,17,35. For 92 
example studies have pointed to the environmental dividends that a voluntary 93 
“downsizing” of the lifestyle has, without necessarily compromising the quality 94 
of life36,37. However, despite the wealth of micro-level studies exploring the 95 
environmental outcomes of observed (and not simulated) lifestyle changes, 96 
these studies tend to have a piecemeal approach by focusing on small 97 
populations and/or distinct practices (e.g. mobility, dietary transitions)38. 98 
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Conversely most studies exploring the environmental outcomes of large-scale 99 
lifestyle changes have either relied on simulations or long-term historical data39.  100 
 101 
Based on the above, the aim of this paper is two-fold. First it assesses the 102 
changes in the direct and indirect GHG emissions associated with household 103 
consumption (carbon footprint) due to the large-scale lifestyle shifts during the 104 
early stages of the COVID-19 pandemic. Second, by viewing these shifts 105 
through the lens of a natural experiment40, it critically discusses the implications 106 
of possible large-scale lifestyle changes for decarbonization. This reflects the 107 
emerging view of many environmental scientists that the COVID-19 pandemic 108 
is an unprecedented natural experiment (e.g. Global Human Confinement 109 
Experiment)40 that can provide profound insights about the environmental 110 
outcomes of large-scale changes in human activity due to its extensive and 111 
rapid effects on socioeconomic activity and human behavior40 (Anthropause).   112 
 113 
This study focuses on Japan, which offers an ideal setting in terms of its 114 
significant contribution to anthropogenic climate change, its distinct 115 
demographic/socioeconomic characteristics, and its response to the outbreak 116 
using much milder control policies compared to other countries. On the one 117 
hand, Japan is the world’s 3rd largest economy and 5th largest GHG emitter, 118 
with a highly affluent and consumerist society. On the other hand Japan had a 119 
relatively unique response to the early COVID-19 outbreak, which did not entail 120 
a full and strict lockdown, instead influencing the restriction of usual behavior 121 
through mild measures41. This makes Japan arguably a better proxy of a more 122 
“reduced activity” lifestyle compared to most other developed countries that 123 
endured more severe measures. Furthermore, Japan has been undergoing 124 
profound demographic changes in terms of aging, with the proportion of 125 
persons >65 years old increasing from 10% in 1985 to 28.1% in 2018 (one of 126 
the highest such fractions in the world)42. This makes Japan an ideal setting to 127 
explore the age-differentiated environmental outcomes of lifestyle change, 128 
considering the observed trends towards higher affluence, consumerism, and 129 
population ageing in many parts of the developed and developing world17. 130 
 131 
In summary, we assess the carbon footprint of lifestyle changes for the period 132 
January-May 2020 across a set of constituents of household consumption for 133 
different age groups, and compare it with 2015-2019 levels. We use 134 
Environmental Extended Input-output (EEIO) analysis and data from a 135 
nationally representative sample around 7,500 households, collected monthly 136 
by the Statistics Bureau, Ministry of Internal Affairs and Communications of 137 
Japan. The study period consists of three relatively distinct time intervals 138 
characterized by (a) lack of any marked lifestyle change (January-February), 139 
(b) moderate visible lifestyle change (March), and (c) more pronounced 140 
changes during an initially partial and subsequently national state of emergency 141 
(7 April-25 May) (Figure S1, Supplementary Material).  142 
 143 

RESULTS 144 

 145 
Carbon footprint fluctuation and trade-offs  146 
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Figure 1 shows the total carbon footprint associated with the different 147 
components of household consumption in Japan for 2020 (red lines) compared 148 
to 2015-2019 levels (green/yellow areas), and the major constituent of each 149 
consumption component for 2020 (pie charts). Overall, the results suggest that 150 
the total carbon footprint has not changed throughout the period of January-151 
May 2020 compared to the five previous years (2015-2019). Indeed, the total 152 
monthly carbon footprint for 2020 (red line) has remained with within the window 153 
of the carbon footprint of household consumption in the period 2015-2019 154 
(green area) (Figure 1T). However, it is possible that lifestyle change 155 
decreased slightly the carbon footprint for the months of April and May 156 
considering that it reaches the upper bound of the 2015-2019 carbon footprints 157 
for these months.  158 

 159 
<<Insert Figure 1 here >> 160 

 161 
When looking at the disaggregated carbon footprint for individual consumption 162 
categories, as expected, there are large overall the carbon footprint declines 163 
for activities affected by the confinement measures such as eating out (Figure 164 
1I), entertainment (Figure 1S) and clothing (Figure 1O). On the contrary, as 165 
expected, the carbon footprint for most consumption categories associated with 166 
eating at home increased substantially (Figure 1A-H). For all these 167 
consumption categories the footprint changes from 2015-2019 levels are very 168 
pronounced for March and April, which signify the months of major lifestyle 169 
change. However, the footprints for these consumption categories increased 170 
rapidly in May, which signifies the end of the confinement measures, through 171 
not reaching the levels of previous year.   172 
 173 
The total transport-related emissions (both direct and indirect) followed similar 174 
trajectories as the five years before the outbreak (albeit a bit elevated in 175 
January-February), but fell well below the levels of previous years during April 176 
and May, when the confinement measures affected travelling patterns for large 177 
segments of the population (Figure 1Q). This decline is mainly due to 178 
decreases in gasoline consumption for private vehicles, which fell 18% below 179 
the lowest emission levels of the five previous years. This seems to imply that 180 
even without mandatory control measures, Japanese residents decreased 181 
substantially their private vehicle using even during the Golden Week in May, 182 
which is the major holiday period in Japan.   183 
 184 
Surprisingly, despite this reduced activity lifestyle, the carbon footprint of 185 
housing-related consumption categories such as accommodation, electricity, 186 
gas, heating, and sewerage remained largely within the range window of the 187 
past five years with some small exceptions (Figure 1K-N). Albeit the carbon 188 
footprint of most these consumption categories hovered at the higher end of 189 
the past footprint spectrum (except for gas), especially during the confinement 190 
measures, they did not show any significant variation despite the larger amount 191 
of time that residents spent at home. The reason might have been the 192 
decreasing demand for space heating due to the regular seasonal warming 193 
from March have weekended the COVID-19’ impact on housing related 194 
emission, rather than any unusually high temperatures compared to previous 195 
years (Figure S2, Supplementary Material). The carbon footprint of other 196 
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household consumption categories such as medical services and education, 197 
were close to past footprint levels, with the former staying at the higher end of 198 
the spectrum and the latter at the lower end of the spectrum (Figure 1P, R).  199 
 200 
These patterns suggest two major things. First, despite the major lifestyle 201 
changes, the aggregate carbon footprint of household consumption seems to 202 
have remained relatively constant compared to previous years, with some signs 203 
of slight increase. However, there were very pronounced and changes in the 204 
carbon footprints of some consumption sub-component, which started 205 
bouncing back to the levels of previous years very rapidly after the lift of the 206 
state of confinement measures, such as eating out, clothing and entertainment.  207 
 208 

<<Insert Figure 2 here >> 209 
 210 

<<Insert Figure 3 here >> 211 
 212 

<<Insert Figure 4 here >>   213 
Age-differentiated carbon footprints.  214 
Figure 2 and 4 show the carbon footprint of non-food and food household 215 
consumption categories respectively, differentiated by age group. Figure 3 216 
provides a more disaggregated view of the age-differentiated emissions related 217 
to the demand on energy, sewage and transportation.  218 
 219 
Consistent with aggregate carbon footprint trends (Figure 1), the carbon 220 
footprint for most non-food household consumption categories remained almost 221 
within previous years’ footprint limits for all age groups. However, there have 222 
been some major differences between consumption categories as explained 223 
below.  224 
 225 
First, similar to the aggregate carbon footprint (Figure 1), the largest carbon 226 
footprint decreases observed during the pandemic across all age groups are: 227 
clothing (Figure 2F), transportation (Figure 2H), and communication, 228 
entertainment and relaxation (Figure 2J). For these consumption categories 229 
their 2020 emission levels started falling below the 2015-2019 levels from 230 
March 2020 onward (since the early parts of outbreak in Japan), and further 231 
reduced very significantly in the subsequent months across all age groups.  232 
 233 
Second, the age-differentiated carbon footprints for housing and related energy 234 
use (Figure 2A-D) seem to have remained within the previous years’ footprint 235 
limits during the pandemic period, despite major changes in working conditions 236 
(i.e. promotion of remote working) and socialization activities (i.e. request by 237 
Japanese government to avoid crowding). Regardless of the month and age 238 
group, the main elements of housing-related emissions are from electricity and 239 
natural gas (Figure 3), which might explain the increase by age in Figure 2D. 240 
When looking in more detail energy use patterns (Figure 2B-D, Figure 3), as 241 
temperature increases into the spring season, heating demand decreases 242 
appreciably. Interestingly, emissions linked to sewage show a slight increase 243 
in April 2020 among age groups >45 years old compared to previous years, but 244 
it is not clear why this happens. While it could be due to increased hand 245 
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washing for sanitary purposes, the lower than average sewage emission in May 246 
for all groups might challenge this hypothesis.  247 
 248 
Third, we observe a pronounced decline in transportation-related emissions in 249 
May, when the confinement measures affected travelling patterns for large 250 
segments of the population, and especially groups between 40-64 years old. 251 
Interestingly the transportation emissions of younger groups in May are similar 252 
to previous years, while much more reduced for elderly groups, possibly 253 
implying normalization of travelling activities for the former during Golden Week 254 
(which is the main holiday period in Japan) and continuation of a more “reduced 255 
activity” lifestyle for the latter.  256 
 257 
When looking more closely into the different food consumption categories, 258 
some interesting patterns emerge (Figure 4). First, although the confinement 259 
measures were implemented in April and May, changes in food-related carbon 260 
footprints were visible for all age groups since March, and in some cases since 261 
February (see below), considering that Japan was one of the first countries to 262 
record COVID-19 infections. While it is possible that some of the increase 263 
consumption (and related carbon footprint for some food categories) came from 264 
panic buying in February and March as possibly implied by the increased 265 
footprint of starchy and processed food that reached the emission levels of 266 
previous years (Figure 4A, F), there have also been very visible increases 267 
during April-May 2020 from more perishable items such as red meat, eggs and 268 
dairy, and fresh vegetables and fruit (Figure 4C-E). There is a marked and 269 
consistent increase in the carbon footprint of eating at home across all age 270 
groups, with the April 2020 levels being consistently higher than the highest 271 
related footprint of the past five years. In contrast, there are exactly the opposite 272 
consistent patterns for the carbon footprint of eating out (Figure 4B). However, 273 
we have to point that we cannot infer through these results whether dietary 274 
change took place during the confinement measures, and its effect on GHG 275 
emissions. This is because all of the distinct food categories in Figure 4 relate 276 
to eating in, as in the FIES survey expenses for “eating in” is divided across 277 
food item categories. However, in the FIES survey “eating out” is captured as 278 
a single block expense category not differentiated by food item. In other words, 279 
the results of Figure 4 should not be used to elicit whether dietary change 280 
occurred, and the associated changes in emissions.  281 
 282 
Finally, when looking more closely the footprint of the different age groups we 283 
see some interesting patterns. The most important is that despite some 284 
differentiation in the footprints of individual age groups for some specific 285 
consumption categories, there is no major change in group ranking/order for 286 
the aggregate footprint and almost all individual consumption categories, 287 
except for transportation demand. This suggests that no age group altered 288 
disproportionally its behavior during the period of confinement measures, when 289 
compared to behavior in previous years, and only the younger household 290 
cannot wait for going out in May but the elderly generation still lead a “reduced 291 
activity” lifestyle.  292 
 293 
 294 
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DISCUSSION 295 

 296 
Negligible carbon footprint impacts of lifestyle change 297 
The results strongly imply that lifestyle change during the COVID-19 outbreak 298 
period did not have an appreciable effect on the carbon footprint of household 299 
consumption in Japan, apart from a small decline below past levels for May 300 
(Figure 1). This finding based on micro-level data comes in contrast to macro-301 
level studies suggesting that in the same period the decline in economic activity 302 
and trade around the world during the COVID-19 outbreak precipitated large 303 
overall declines in production-side GHG emissions8,43-46,62.  304 
 305 
This suggests the rather different trajectory of GHG emissions patterns from 306 
the household sector, compared to other economic sectors, at least during the 307 
early months of the COVID-19 pandemic (February–May 2020). However, we 308 
cannot preclude the possibility of more substantial emission reductions in the 309 
medium-to-long term due to reduced household consumption influenced from 310 
a possible economic downturn on the aftermath of the COVID-19 outbreak47. 311 
 312 
Lifestyle change has had relatively consistent effects on age-differentiated 313 
carbon footprints. Even though the absolute carbon footprint levels are higher, 314 
on average, for more elderly groups, there does not seem to be any major shift 315 
in the ranking of carbon footprints between age groups (Figure 2 and 4). It is 316 
worth noting, that elderly groups have the highest per capita carbon footprints, 317 
especially for energy-related categories regardless of the month and the year 318 
(e.g. pandemic vs. regular year). This generally higher emissions of elderly 319 
households has been pointed in other studies in Japan29,31,48, and is mainly due 320 
to due to higher heat needs and cooking49. In our case, the transport-related 321 
emissions of elderly households remain low level even after the emergency 322 
declaration in May, while the total footprint is not significantly affected as neither 323 
emissions from electricity and food consumption show a substantial decline 324 
compared to previous years.  325 
 326 
 327 
Trade-offs among consumption categories 328 
Lifestyle change does not seem to have precipitated uniform and proportional 329 
changes in carbon footprints across consumption categories. Instead, there 330 
seem to be a substantial variation in carbon footprint patterns among 331 
consumption categories, with the main observed carbon footprint trade-offs 332 
observed between consumption categories associated with eating at home 333 
(major increase) and eating outside, transport, clothing and entertainment 334 
(major declines). Surprisingly, and with few exceptions, the “reduced activity” 335 
lifestyle does not seem to have affected substantially the carbon footprint of 336 
housing, despite the opposite trends being visible in some other developed 337 
countries50.  338 
 339 
Despite people spending more time at home, the lack of any major changes in 340 
the carbon footprint of housing (and other related consumption categories) 341 
might be explained by the timing (spring) and seasonality of energy 342 
consumption in Japan31. Heating and cooling are the largest contributors of 343 
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housing-related emissions in Japan31, but the mild weather during late spring 344 
in Japan reduces the need for both heating and cooling, as it is also quite 345 
evident in past footprint patterns for these categories (Figure 1K-M). It is worth 346 
mentioning that the 2020 spring period did not experience any abnormal 347 
warming, with the average temperatures being rather similar to past years 348 
(Figure S2, Supplementary Material). However, we cannot preclude that a 349 
“reduced activity” lifestyle could increase housing-related carbon footprint 350 
during the winter or summer due to the higher demand for heating and cooling 351 
respectively.   352 
 353 
The most pronounced carbon footprint shifts are linked to changes in eating 354 
habits, and especially the large increase in eating at home. This seems to have 355 
negated any carbon footprint gains from other consumption categories due to 356 
lifestyle change, with these changes being largely consistent between all age 357 
groups (Figure 4). Despite some evidence of precautionary food purchasing 358 
during the early part of the outbreak (i.e. indicated by carbon footprint increases 359 
for processed and starchy food in February and March), the subsequent 360 
increase in consumption and carbon footprints of perishable food items shows 361 
a rather clear-cut change in eating habits during the study period. This is quite 362 
visible in the large increase of the carbon footprint of emission-intensive food 363 
categories such as red meat, dairy and eggs39, especially after March. Even 364 
though it is not possible to confirm possible dietary change from this highly 365 
aggregated data, such shifts might have happened, and can have major 366 
environmental ramifications considering that Japan imports most of these food 367 
items from other countries51. 368 
 369 
Implications for decarbonization 370 
Before exploring the implications of this study for decarbonization efforts 371 
through the lens of a natural experiment, we should first acknowledge two 372 
important points. First, as outlined in the Introduction Japan offers a rather 373 
interesting case for exploring the ramifications of reduced social and economic 374 
activity, as the confinement measures were rather moderate and largely 375 
voluntary41. Thus, compared to other countries they could in theory reflect 376 
better a possible switch to a “reduced activity” lifestyle. However, at the same 377 
time Japan has some specific characteristics that might affect generalization to 378 
a degree. These include its mild spring, relatively small homes, and lower 379 
reliance on car use, especially in large metropolitan areas such as Tokyo where 380 
a large proportion of the population resides.  381 
 382 
That said, our results suggest that contrary to other economic sectors and 383 
geographical contexts8,43-46,62, there seem to be no obvious short-term 384 
environmental benefits from the lifestyle change in the Japanese household 385 
sector during the COVID-19 confinement measures. In our mind this has a 386 
major ramification when seeking to contribute to decarbonization through 387 
lifestyle change, in that environmental benefits might not materialize simply by 388 
adopting a “reduced activity” lifestyle. In fact, the evidence suggests that there 389 
was a simultaneous shift in consumption patterns, which seems to have 390 
practically negated any environmental benefits, at least in the short-term. 391 
Furthermore, the quick bounce of carbon footprints to pre-confinement levels 392 
strongly implies that any changes might be easily reversible.  393 
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 394 
This seemingly minor environmental effect of this involuntary change in 395 
consumption patterns across all age groups seems to be in stark contrast with 396 
the pronounced positive environmental outcomes of voluntary lifestyle 397 
changes36,37. In this sense we see two major ramifications of our results for 398 
influencing decarbonization through lifestyle change. First, in our mind it re-399 
affirms the real importance of education to foster more sustainable lifestyles 400 
and prolonged shifts in consumption patterns17,39,52 , if lifestyle change is to 401 
contribute meaningfully to decarbonization efforts. Second, considering the 402 
larger per capita footprints of the ever-increasing elderly population, future 403 
decarbonization efforts through lifestyle change should focus on emission-404 
intensive household demand, such as space and water heating, and private car 405 
using.     406 
 407 
 408 
Future perspectives 409 
Future studies should seek to bridge some of the limitations of this study. 410 
Methodologically these include the inability to consider properly the carbon 411 
intensities of imported goods and the consumption of single-person households 412 
(see Limitations in Methods). The former would require the development of 413 
multi-regional input-output (MRIO) tables that have high sectoral resolution and 414 
employ recent datasets that can capture well national economic structure, 415 
going beyond simple calculations based on GDP change. This is to our best 416 
knowledge a major research gap for Japan, with most current studies unable to 417 
use such high-resolution MRIOs22,53. The latter would possibly require 418 
dedicated primary data collection campaigns from nationally representative 419 
singe-person households, as these are not considered in the underlying 420 
consumption datasets collected by the Japanese government and used in this 421 
study (see Methods). 422 
 423 
More broadly studies should seek to explore the effects of different confinement 424 
measures on GHG emission changes due to lifestyle changes. Arguably, as 425 
outlined in the introduction Japan’s confinement measures have been rather 426 
mild compared to other developed countries, which in our mind make them a 427 
better approximation of “reduced activity” lifestyles. However, comparative 428 
studies across different countries could provide a better micro-level evidence 429 
of how the “Anthroposause” has affected the environment, which would 430 
complement better the emerging studies from the macro-level54-56.  431 
 432 

EXPERIMENTAL PROCEDURES 433 

 434 
Resource availability 435 
 436 
Lead contact 437 
Further information and requests for resources should be directed to and will 438 
be fulfilled by the lead contact, Yin Long at longyinutokyo@gmail.com 439 
Materials availability  440 
This study did not generate new unique materials. 441 
Data and code availability 442 
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The dataset used for this paper has been uploaded to the figshare data 443 
repository, where it is freely available 444 
(https://doi.org/10.6084/m9.figshare.14211989.v1). 445 
 446 
Carbon footprint of household consumption 447 
Household consumption emits GHGs both directly and indirectly. The direct 448 
emissions are due to the actual consumption of fuel such as natural gas and 449 
petroleum products by households. Indirect emissions refer to the emissions 450 
embodied in the different goods and services consumed by households such 451 
as food and consumer products. Thus, the total carbon footprint of household 452 

consumption (𝐸𝑖 ) is estimated as the sum of direct (𝐸𝑑
𝑖 ) and indirect emissions 453 

(𝐸𝑐𝑓
𝑖 ) (Eq.1). 454 

 455 

𝐸𝑖 = 𝐸𝑑
𝑖 + 𝐸𝑐𝑓

𝑖                                                       (1) 456 

 457 
In this study we estimate the total carbon footprint of household consumption 458 
for the period January-May 2020, and compare it with 2015-2019 levels to 459 
identify the effect of lifestyle changes during the first COVID-19 confinement 460 
measures in Japan. The GHGs considered in the calculations include CO2, 461 
CH4, N2O, HFCS, PFCS, SF6 and NF3. 462 
 463 
Indirect emissions 464 
Many studies have argued for the importance of tracking indirect emissions 465 
when evaluating the environmental consequences of household 466 
consumption57-61. Indirect emissions can be estimated through Environmental 467 
Extended Input-output (EEIO) analysis29,53,62-64, which involves the use of an 468 
economic input-output table (IO-T). IO-Ts have been originally used to estimate 469 
economic transactions among industrial sectors65-67. However, subsequently 470 
they have found applications in environmental impact assessment, as a means 471 
of tracking indirect energy flows and emission transfer.  472 
 473 
In the EEIO model, the relationship between final consumer demand and its 474 
environmental impacts can be expressed through Equation (2):  475 
                                                                     𝑿 =  (𝐈 − 𝑨)−1𝑭                                                    (2) 476 
…where 𝑿 is the vector of domestic production, 𝐈 is the identity matrix, 𝑨 is the 477 
input coefficient matrix, and 𝑭 is the vector of final demand. When the effects 478 
of imported goods are considered, then the emission intensity of economic 479 
sectors is instead calculated using the (𝐈 − 𝑨𝑑)−1 type, which refers to inverse 480 
matrix coefficients of “non-competitive import type” used for analysis when the 481 
input ratios of imports vary between sectors68. When considering the effect of 482 
imports, Equation (2) is modified into Equation (3): 483 
                                                                   𝑿 =  (𝐈 − 𝑨𝑑)−𝟏𝑭𝑑                                                  (3) 484 
…where 𝑨𝐝  and 𝑭𝐝  represent the vectors of domestic input coefficients and 485 
domestic final demand respectively. Then, by combining with the household 486 
consumption inventory, indirect emissions embodied in consumption are 487 
quantified following Equation (4): 488 

                                                      𝐸𝑐𝑓
𝑖 =  ∑ 𝑒𝑗

𝑖

𝑗=1

∗ (𝐈 − 𝑨𝐝)
−1

∗ 𝐸𝑝𝑖                                       (4) 489 

https://doi.org/10.6084/m9.figshare.14211989.v1
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…where 𝐸𝑐𝑓
𝑖  indicates the household carbon footprint by consumption item 𝑖; 490 

𝐸𝑝𝑖  refers to monetary consumption on consumption item 𝑖 ;  𝑒𝑗
𝑖  is the direct 491 

emission intensity of consumption item 𝑖’s GHG emission  𝑗. By multiplying the 492 
Leontief Inverse Matrix, the direct emission intensity is converted into indirect 493 

emission intensity, i.e.  ∑ 𝑒𝑗
𝑖

𝑗=1 ∗ (𝐈 − 𝑨𝐝)
−1

 denoting the indirect emission 494 

intensity of item 𝑖. 495 
 496 
Direct emissions 497 
Direct emissions are due to the use of fossil fuel, such as natural gas and other 498 
petroleum products. For this study we include the emissions associated with 499 
the use of city gas (pipe gas), liquefied petroleum gas (LPG), kerosene and 500 
gasoline. Japanese households do not use coal directly, while kerosene is an 501 
important fuel for space heating especially in the mountainous regions49.The 502 
direct emission is estimated through Equation (5),  503 

𝐸𝑦,𝑚
𝑑𝑟 = ∑ 𝑒𝑡

𝑖
𝑖=1 ∗ 𝐸𝑝𝑦,𝑚

𝑖 ∗ 𝑈𝑝𝑐𝑦,𝑚
𝑖                                    (5) 504 

 505 
…where  𝐸𝑦,𝑚

𝑑𝑟  indicates the total direct household emissions in year 𝑦 month 506 

𝑚, 𝐸𝑝𝑖  the direct monetary on fuel 𝑖, 𝑈𝑝𝑐𝑦,𝑚
𝑖  the unit price of fuel 𝑖 in year 𝑦 507 

month 𝑚, and 𝑒𝑡
𝑖   the emission intensity of fuel 𝑖 in year 𝑦 derived from hthe 508 

Agency for Natural Resources and Energy by year69,70. 509 
 510 
To analyze direct emission by household activities, we merged the four direct 511 
emission types with the indirect emission inventory, and reclassified sectors 512 
according to household demand. In more detail, gasoline emissions are merged 513 
with other transportation-related indirect emission into the “Transportation and 514 
communication” sector, city gas and LPG in gas-related emissions with indirect 515 
up-stream emission, and kerosene into the “Other heating and lighting” sector.  516 
 517 
Datasets and Input-Output Tables 518 
The base data for household consumption used to calculate the indirect and 519 
direct emissions comes from the monthly Family Income and Expenditure 520 
Survey (FIES)71, conducted monthly across Japan by the Statistics Bureau, 521 
Ministry of Internal Affairs and Communications. The FIES follows a 522 
standardized approach to capture the expenditures of a nationally 523 
representative sample of 7,500 households per month across the country.  524 
 525 
The data for the indirect emission intensity of household consumption comes 526 
from the Embodied Energy and Emission Intensity Data for Japan Using Input-527 
Output Tables (3EID), a database of Japan’s sectoral intensity of life-cycle 528 
environmental burdens. This is constructed from the Input-Output Tables for 529 
Japan using a EEIO model developed by Nansai et al (2002)72,73. Even though 530 
the original model was developed in 2002, it is updated regularly based on the 531 
Japan official input-output table. For our calculations we used the GHG 532 
emission intensity for each final demand sector included in the last updated 533 
version of the 3EID, developed for the year 2015.  534 
 535 
We select the 3EID, which is a single-regional input-output (SRIO) table, rather 536 
than a multi-regional input-output (MRIO) table for two reasons: (a) higher 537 
sectoral resolution; (b) most recent data availability. In more detail, the 3EID 538 



12 
 

has a much higher sectoral resolution (390 sectors) when compared with other 539 
MRIOs such as WIOD (56 sectors) and EXIOBASE (200 sectors), which is 540 
closer to the structure of the FIES that contains 500 consumption categories. 541 
This allows for a more comprehensive and fine-grain analysis of consumption 542 
changes in the Japanese household sector, which provides a much better 543 
corresponding between categories between model and data (see below). 544 
Furthermore, the 3EID model has more recent data availability compared to 545 
other SRIOs with similar sectoral resolution such as Eora (401 commodities). 546 
In particular while both 3EID and Eora produce recent data, the latter produces 547 
data that is an extension of estimates based on GDP and other information. 548 
Thus, it does not reflect the latest Input-Output table structure information for 549 
Japan, which is necessary considering the span of our study (2015-2020).  550 
 551 
Calculation procedure 552 
First, we extract from the 3EID dataset the data for the 390 sectors for the year 553 
2015, as well as the corresponding emission intensities72,73. Second, we match 554 
categories of the 3EID and FIES, as the classification of industries in the 3EID 555 
database differs from the classification of consumption elements in the FIES 556 
expenditure data. We matched the data following the general approach outlined 557 
in Jiang et al. (2020)22, as shown in Table S1 (Supplementary Material) that 558 
includes the major categories and cross—matching of FIES and 3EID. It should 559 
be noted that there is no perfect match between the categories of the 3EID and 560 
the FIES. Some 3EID categories such as waste management that are not 561 
distinct household components in FIES are linked to consumption-relevant 562 
items such as municipal services. However, to avoid mismatching we have 563 
excluded some of the FIES miscellaneous expenses such as allowances and 564 
donations that cannot match well with 3EID sectors. According to our estimates, 565 
the average consumption ratio of these miscellaneous expenses was 4.65% for 566 
the study months in 2020, which represents a rather minor fraction of overall 567 
household consumption. 568 
 569 
Third, we calculate changes in prices between years adjusting for inflation and 570 
Consumer Price Index (CPI). Here, we applied the constant price of 2015 571 
according to the annual inflation data derived from the Word Bank74. Monthly 572 
average CPI is obtained from the Statistics Bureau of Japan75.  573 
 574 
Fourth, we aggregate the obtained inventory of the 495 indirect emission items 575 
and 4 direct emission items into 19 footprint elements, by month and age group 576 
(see Table S2, Supplementary Material for 2020 levels). To understand 577 
convergences and divergences with past emission patterns, we compare each 578 
footprint elements per month and age group for 2020, with the maximum and 579 
minimum such values between 2015 and 2019 (footprint range window). 580 
 581 
Finally, it is worth mentioning that some of the interannual variation in emissions 582 
might be due to confounding factors related to climate and the economy. To 583 
test whether such confounding factors might have had an important effect on 584 
the results, we check for the study period in 2020 changes for three 585 
confounding factors related to the national economy and climate, namely GDP, 586 
household income, Engel’s coefficient (i.e. proportion of income spend on 587 
food), and temperature. Overall, we find that these factors remain relatively 588 
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constant between years, with no unnatural peaks or declines in the study period 589 
compared to previous years (Figure S3-S5, Supplementary Material).  590 
 591 
Methodological limitations  592 
Despite the high resolution of consumption categories and data quality, this 593 
study has three main limitations, namely (a) the inability to apply distinct carbon 594 
intensities for imported goods, (b) an inability to capture single-person 595 
households, (c) the assumption of constant technology since 2015, and value 596 
chain configurations since the onset of the COVID-19 pandemic.  597 
 598 
First, the 3EID is an emission inventory generated through the Japanese SRIO 599 
table. This inherently means that the emission intensities used in this study 600 
reflect only domestic goods (and their value chains). We also apply these 601 
domestic emission intensities for imported goods, which inserts some level of 602 
uncertainty to our results. As outlined above, despite the higher sectoral 603 
resolution and data quality expected by adopting the 3EID model, this omission 604 
might underestimate the actual carbon footprint, as goods imported in the 605 
domestic market tend to have longer value chains, and thus higher GHG 606 
emissions when compared to similar domestic goods76. However, apart from 607 
the Global Link Input-output for 200573, to the best of our knowledge no   input-608 
output table in the Japanese context has included multi-regional economic 609 
interactions or other similar data in an appropriate manner. This inability to 610 
consider properly emissions from imported good remains a broader gap in the 611 
literature in recent decades.    612 
 613 
Second, the underlying FIES datasets used in this study do not capture single-614 
person households, as the most recent sample used in this study only contains 615 
households with two and more members. Even though single-person 616 
households are very prevalent across all age groups in Japan71, they tend to 617 
be more prevalent across younger age groups77, which are generally 618 
associated with lower per capita emissions in the country (see also Results). At 619 
the same time single-person households are associated with higher per capita 620 
emissions in Japan77. This means that it is difficult to predict what is the actual 621 
effect of this omission from our calculations, in terms of overestimation, 622 
underestimation or balancing out. Thus, considering the relatively large 623 
prevalence of single-person households in the Japanese society78, some 624 
caution should be exerted when generalizing the results of the analysis.  625 
 626 
Third, considering that 3EID data is for 2015 it might be that technology effects 627 
might lead to the over- or under-estimation of the carbon footprints when 628 
applied for other years73,79. Still we believe that these changes might be 629 
relatively marginal considering that the technology improvement needs a 630 
comparatively longer time to manifest80. One interesting phenomenon might be 631 
the effect of COVID-19 in production and trade chains, considering the severe 632 
economic disruptions. It is rather difficult to predict the effects of such changes 633 
for household carbon footprints in Japan. Considering the exclusion of imported 634 
carbon intensities in our analysis as explained above they will not affect the 635 
results of this analysis. In any case we expect them in reality to be marginal as 636 
the confinement measures it is highly possible that most materials were 637 
supplied to the market before the confinement measures, and thus non-food 638 
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items (and possibly food items with long lives such as starchy and processed 639 
food) will not have been affected by any changes in production value chains 640 
due to existing stocks.  641 
 642 
 643 
Figure Legends 644 
 645 

 646 
 647 
Fig.1 Total carbon footprint of household consumption (in kg-CO2eq/cap). 648 
The red line indicates the 2020 GHG emissions for the different household 649 
consumption categories for each corresponding month. The yellow and green 650 
areas indicate the emissions ranges for the past five years (2015-2019). Pie 651 
charts indicate the main emission sources for each consumption category. 652 
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 653 
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Fig.2 Carbon footprint of non-food consumption categories 654 
disaggregated by age group (in kg-CO2eq/cap). The lines indicate the 2020 655 
GHG emissions for the different non-food household consumption categories 656 
for each corresponding month. The shades indicate the emissions ranges for 657 
the past five years (2015-2019).  658 
 659 

 660 
Fig.3 Carbon footprint components for housing, sewage and 661 
transportation by age group (in kg-CO2eq/cap).  662 
 663 
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 664 
Fig.4 Carbon footprint of food consumption categories disaggregated by 665 
age groups (in kg-CO2eq/cap). The lines indicate the 2020 GHG emissions for 666 
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the different food-related household consumption categories for each 667 
corresponding month. The shades indicate the emission ranges for the past 668 
five years (2015-2019). The concentric circles at the pie charts indicate for each 669 
age group the proportion of eating at home (dark blue) and eating out (light 670 
blue) to the food-related carbon footprint by month starting from January (inner 671 
circles) to May (outer circles). 672 
 673 
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