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We introduce a general framework for analysing general probabilistic theories, which
emphasises the distinction between the dynamical and probabilistic structures of a sys-
tem. The dynamical structure is the set of pure states together with the action of the re-
versible dynamics, whilst the probabilistic structure determines the measurements and
the outcome probabilities. For transitive dynamical structures whose dynamical group
and stabiliser subgroup form a Gelfand pair we show that all probabilistic structures are
rigid (cannot be infinitesimally deformed) and are in one-to-one correspondence with
the spherical representations of the dynamical group. We apply our methods to classify
all probabilistic structures when the dynamical structure is that of complex Grassmann
manifolds acted on by the unitary group. This is a generalisation of quantum theory
where the pure states, instead of being represented by one-dimensional subspaces of a
complex vector space, are represented by subspaces of a fixed dimension larger than one.
We also show that systems with compact two-point homogeneous dynamical structures
(i.e. every pair of pure states with a given distance can be reversibly transformed to any
other pair of pure states with the same distance), which include systems corresponding
to Euclidean Jordan Algebras, all have rigid probabilistic structures.

1 Introduction
General probabilistic theories (GPTs) provide a framework for the study of operational theories
beyond quantum theory. Within this framework quantum theory appears as one non-classical
theory amongst many. This field has its origin in the work of Segal [1], Mackey [2] and Ludwig [3–
5] with other notable contributions at the time including [6–13] amongst others. Contemporary
interest in GPTs was kickstarted by Hardy’s seminal work [14] followed by a detailed exposition of
the framework by Barrett [15]. Important applications of the framework include the operational
derivations of quantum theory of [16–18]. Current treatments have tended to emphasise finite
dimensional systems and system composition. Using this framework (or related frameworks such
as convex operational theories [19, 20] and operational probabilistic theories [21]) many physical
and informational features of general probabilistic theories have been studied, such as interference
phenomena [22–25], computation [26, 27], thermodynamics [28–30] and others [31–38].

Examples of GPTs (excepting classical and quantum theory) include Boxworld [15, 39–42],
quantum theory over the field of real numbers [43–45] or quaternions [46], theories based on Eu-
clidean Jordan algebras [35], quartic quantum theory [47], d-balls [16, 48, 49], density cubes [50]
and quantum systems with modified measurements [51]. Amongst these, only Boxworld, quantum
theory over real or quaternionic fields and theories based on Euclidean Jordan algebras are full
theories, in that they have non-trivial composites.

The aim of this paper is to provide tools to systematically explore the space of non-classical
systems. Rather than generating examples of non-classical systems we can give full classifications
of families of non-classical systems which share a common dynamical structure (pure states and re-
versible dynamics) but different probabilistic structures (measurements and measurement outcome
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probabilities); as done in [51] for systems which share the dynamical structure of quantum sys-
tems. We can thus obtain a richer picture of the space of non-classical systems, of which quantum
systems are just one example.

We provide a general framework for convex systems and use it to study transitive systems,
that is to say systems for which any two pure states are related by a reversible transformation.
This is a generalisation of the OPF (outcome probability function) framework of [51–53], where
the pure states and dynamical group no longer have to be those of quantum theory. We restrict
ourselves to systems with reversible dynamics given by finite and compact groups, noting that all
the examples of GPT systems mentioned previously are transitive systems with finite or compact
dynamical groups. The assumption of transitivity has played an important role in derivations of
quantum theory from operational/information theoretic principles, for instance in Hardy’s original
derivation [14] as well as subsequent derivations by other authors [16–18, 54]. It is worth mentioning
that many derivations of the second law of thermodynamics from more fundamental principles
(see for example [55–59]) use as the central premise the reversibility of the underlying dynamics
(both in the classical and quantum frameworks). Also, when all the transformations that can be
implemented on a system are generated by reversible dynamics, all the achievable states of the
system form a transitive space. Hence, there is a connection between transitivity and the second
law of thermodynamics.

We show that for a given dynamical structure (pure states and dynamical group) every pos-
sible probabilistic structure (measurements and outcome probabilities) is in correspondence with
a representation of the dynamical group. Moreover we find necessary and sufficient conditions on
the dynamical structure (the dynamical group and subgroup form a Gelfand pair) which make this
correspondence one-to-one. We find that certain probabilistic structures cannot be infinitesimally
deformed and call these rigid. We show that all dynamical structures which are Gelfand pairs do
not have any probabilistic structures which can be infinitesimally deformed. We apply the methods
developed to classify generalisations of quantum systems, with pure states given by Grassmann
manifolds and unitary dynamics. We introduce the family of systems with compact two point
homogeneous dynamical structures and show that they all have rigid probabilistic structures.

1.1 Structure of the paper
In Section 2 we introduce the OPF framework used for studying transitive systems and present
relevant known results (or slight generalisations thereof). In Section 3 we give the main theorem of
this work (the classification theorem), establishing a correspondence between probabilistic struc-
tures of transitive systems and group representations, as well as the conditions under which this
correspondence is one-to-one. In Section 4 we introduce the notion of deformation of probabilis-
tic structures, and show that the only dynamical structures which admit probabilistic structures
which can be infinitesimally deformed are those corresponding to non-Gelfand pairs. We also give
an explicit example of deformations of a non-rigid probabilistic structure. In Section 5 we intro-
duce the family of compact dynamical structures which are two point homogeneous and show that
they are all rigid. In Section 6 we apply the classification theorem to systems with dynamical
structures given by complex Grassmann manifolds (a generalisation of complex projective space).
In Section 7 we discuss the results of this paper in light of existing work as well as comment on the
implications of new concepts and results of the present work. Lastly we close with some concluding
remarks in Section 8. A glossary of notation is given in Appendix A and an introduction to some
of the representation theory used in this paper can be found in Appendices B and C.

2 Single system state spaces
We provide a characterisation of single systems within the GPT framework which emphasises the
pure states and reversible dynamics. This will allow us to consider families of systems with the
same pure states and reversible dynamics, but different measurements. This is a generalisation
of [51] where all systems with the same pure states and reversible dynamics as quantum theory
were classified and their informational properties studied. We first describe quantum systems in
this framework.
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2.1 A characterisation of finite dimensional quantum systems
Quantum systems are often characterised directly in terms of mixed states, that is to say their
convex representation. States are positive semi-definite operators on a finite dimensional complex
space Cd equipped with a sesquilinear inner product, transformations are CPTP maps and mea-
surements are associated to POVMs, with the probability of an outcome occuring being given by
the usual trace rule. Here we provide a characterisation of quantum systems which separates their
dynamical structure from the probabilistic structure. In this characterisation the mixed state rep-
resentation described above is derived, rather than postulated. Moreover this distinction between
dynamical and probabilistic structures will provide us with a way of classifying families of more
general systems which share a common dynamical structure. A quantum system SQuant

d associated
to the space Cd is given by the following:

I. Pure states: ψ ∈ PCd.

II. Reversible dynamics: ψ 7→ Uψ, U ∈ PU(d).

III. Outcome probabilities: FQuant
PCd = {Q : PCd → [0, 1] |Q(ψ) = 〈ψ|Q̂|ψ〉 , ∀ Q̂ : 0 ≤ Q̂ ≤ I}.

PCd is the complex projective space with elements corresponding to one dimensional subspaces
of Cd. PU(d) is the projective unitary group constructed from U(d) by taking equivalence classes of
unitaries under multiplication by a complex phase: U0 = eiθU1 ⇐⇒ U0 ∼= U1 where U0, U1 ∈ U(d)
and θ ∈ R.

We assume that any subset {Qi}ni=1 such that
∑
iQi(ψ) = 1 for all ψ ∈ PCd forms a valid

measurement. This implies that a measurement consists of positive semi-definite operators Q̂i
such that

∑
i Q̂i = 1. Here I. and II. are the dynamical structure, whilst III. is the probabilistic

structure. The mixed state representation (density operators) is derived from the dynamical and
probabilistic structures. We observe that the probability assignment (Born rule) is not given in
terms of the trace, since this already presumes the structure of mixed states. We now define general
non-classical systems in terms of dynamical and probabilistic structures and show how to derive
the convex representation.

2.2 Dynamical structure
The pure states of a system S form a set X, and the reversible dynamics a group G. The action
of G on X is given by a group action ϕ : G×X → X. This gives X the structure of a G-space.

Definition 1 (Dynamical structure). A dynamical structure D is a triplet

D = (X,G,ϕ), (1)

where X is a set, G is a group and ϕ a group action.

In the following we leave ϕ implicit and write gx for ϕ(g, x). An important family of dynamical
structures are transitive. A dynamical structure is transitive when for any two pure states x, x′ ∈ X
there exists a transformation g ∈ G such that x′ = gx. In other words X is the orbit of G acting
on an arbitrary x ∈ X.

A central notion to the approach used in this work is that of a stabilizer subgroup (also known
as isotropy group) of an element x ∈ X, which is just the subgroup of all transformations in G
which leave a point x invariant. We write Hx := {g ∈ G : gx = x} for the stabilizer subgroup of a
point x ∈ X. For a transitive group action, the stabilizer groups for different points are isomorphic,
hence we write H as the stabilizer group.

Given a group G and a subgroup H ⊆ G, we denote by φG,H the action of G on the set of left
cosets G/H. Given a transitive dynamical structure D = (X,G,ϕ) with stabilizer subgroup H we
have the following isomorphism of dynamical structures (X,G,ϕ) ∼= (G/H,G, φG,H).

Typically dynamical structures (X,G,ϕ) also have topological (and sometimes differentiable)
structure. A topological group G acts on a topological space X when the action ϕ is a continuous
function: ϕ : G×X → X (where G×X has the product topology). If H is a subgroup of G then
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the space G/H of left cosets is a topological space with respect to the quotient topology, which is
the finest topology making the quotient map q : G→ G/H, q : g 7→ gH continuous.

For transitive dynamical structures (X,G,ϕ) where X is Hausdorff and G is compact the
isomorphism (X,G,ϕ) ∼= (G/H,G, φG,H) also involves the topological structure of each compo-
nent of the triplet [60, Proposition 1.10]. When G is a Lie group the isomorphism (X,G,ϕ) ∼=
(G/H,G, φG,H) involves the differentiable structure of each component of the triplet [61, Theorem
20.12].

In the following we restrict our attention to compact dynamical structures (which includes finite
dynamical structures as a special case) implying that the isomorphism (X,G,ϕ) ∼= (G/H,G, φG,H)
includes the topological and differentiable structures of the dynamical structures considered.

For this reason we use the abbreviation

D = (X,G,ϕ) = (G,H) . (2)

for transitive dynamical structures with stabilizer subgroup H.
The case of non-compact dynamical structures is discussed in Section 2.5.

2.3 Probabilistic structure
A system is determined by its pure states, dynamics and measurements. Given the dynamical
structure we need to specify its probabilistic structure, which characterises the measurements
which can be performed on the system.

Definition 2 (Outcome probability function (OPF)). An outcome of a measurement on a system
with pure states X is given by a function f : X → [0, 1], where the probability of the associated
outcome f occurring is P (f |x) = f(x).

Definition 3 (Measurement). A measurement Mj with countable outcomes i = 1, ..., n, .. is
specified by the list {f j1 , ..., f jn, ...}. The elements of this list obey the condition:∑

i

f ji (x) = 1, ∀x ∈ X . (3)

Definition 4 (Unit OPF). The unit OPF u is u(x) = 1,∀x ∈ X.

Definition 5 (Probabilistic structure). The probabilistic structure of a system is the set FX of
all outcome probability functions f .

Typically we assume that any set {f1, ..., fn, ...} such that
∑
i fi = u forms a valid measurement,

however this assumption is not necessary. When this assumption does not hold, one needs to
supplement the set FX with a specification of which OPFs form a valid measurement. One example
of such a specification is the ‘finite measurement outcomes’ assumption:

Definition 6 (Finite measurement outcome assumption). Only finite sets of OPFs {f1, ..., fn} such
that

∑
i fi = u form valid measurements.

The above assumption is sometimes viewed as part of the definition of measurements in an
operational framework, since we can never carry out measurements with infinitely many outcomes.
We will be making this assumption in the present work.

Operational considerations impose the following constraints on FX :

i . FX is closed under taking mixtures: for all f1, f2 ∈ FX and all λ ∈ [0, 1] we have that
λf1 + (1− λ)f2 ∈ FX .

ii . FX is closed under composition with group transformations: for all f ∈ FX and g ∈ G we
have that f ◦ g ∈ FX , where (f ◦ g)(x) = f(gx).

iii . FX is closed under coarse graining of measurement outcomes: for any pair of outcomes
fki , fkj ∈Mk of a given measurement Mk we have that fki + fkj ∈ FX .

iv . For every f ∈ FX , the complement OPF fc = u− f is also in FX
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The first constraint implies that FX is a convex set, hence it can be extended to a vector space
R[FX ] with addition (f1 + f2)(x) = f1(x) + f2(x) and scalar multiplication (αf)(x) = αf(x) for any
α ∈ R. Explicitly R[FX ] := {f̃(x)|f̃(x) = αf1(x) + βf2(x), α, β ∈ R, f1, f2 ∈ F . We have that F is
a convex subset of R[FX ] by construction and that spanR(FX) = R[FX ].

Closedness under composition with group transformations implies that FX is a G-space. This
and the fact that the group action commutes with taking mixtures implies that R[FX ] is a linear
representation of G. Closedness under coarse graining of measurement outcomes implies that every
FX contains the unit OPF and the existence of the complement guarantees the existence of the
0 OPF. We introduce the following property, though we will not always require it in the present
treatment.

Definition 7 (Separability of pure states). A probabilistic structure FX separates pure states
when for any two pure states x1, x2 ∈ X there exists an OPF f ∈ FX such that f(x1) 6= f(x2).

If one does not have this requirement, the probabilistic structure FX = {u} leading to a trivial
system for all dynamical structures is valid for example.

2.4 Systems, state spaces and associated group representations
The above definitions allow us to formally define a system SX .

Definition 8 (System). A system SX is a triple SX = (X,G,FX), where (X,G) is a dynamical
structure and FX is a probabilistic structure.

In the following we briefly outline how the general state space (including mixed states) of a
system is derived, both from an operational starting point and directly from the mathematical
starting point SX = {X,G,FX}.

2.4.1 Operational derivation of the state space

Operationally for a single system one has access to a preparation device which is wired up sequen-
tially with a transformation and measurement devices. These devices have classical settings (for
instance which transformation to apply) and classical readouts (for instance which measurement
outcome occurred). In an experiment one collects the statistics for different outcomes given choices
of settings. Typically one assumes that statistics are gathered for all possible setting choices, and
that the relative frequencies obtained become probabilities as the number of runs tends to infinity.
Using these probabilities (which are directly given by the set F in the OPF framework) one derives
the convex state space (and effect space) of the system. We refer the reader to [62] about how one
can in practice derive a state and effect space from experimental data.

2.4.2 Mathematical derivation of the state space

In this work we will make the assumption of the possibility of state estimation using a finite
outcome set (known as ‘Possibility of state estimation’ in [53]).

Definition 9 (Possibility of state estimation using a finite outcome set). The system S = {X,G,FX}
is such that the value of a finite number of outcomes f1, ..., fn ∈ FX on any ensemble {(pi, xi)}i
determines the value of any OPF f ∈ FX on the ensemble {(pi, xi)}i.

It is shown in Lemma 2 of [53] that this implies that R[FX ] is finite dimensional. Equivalently
the convex set of mixed stated is embeddable in a finite dimensional real vector space. We now
briefly outline the derivation of the space of mixed state for a system SX = {X,G,FX} under the
assumption “Possibility of state estimation using a finite outcome set”. First the probability of
an outcome f (defined on X) occurring for an ensemble {(pi, xi)}i is P (f |{(pi, xi)}i) =

∑
i pif(xi).

This allows us to define equivalent ensembles.

Definition 10 (Equivalent ensembles). Two ensembles {(pi, xi)}i and {(p′j , x′j)}j are equivalent
if P (f |{(pi, xi)}i) = P (f |{(p′j , x′j)}j) ∀f ∈ FX , and we write {(pi, xi)}i ∼ {(p′j , x′j)}j .
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The mixed states are defined as equivalence classes of ensembles under this equivalence relation.
For each state x ∈ X we define the linear functional Ωx : R[FX ] → R as Ωx(f) = f(x). The
probability of outcome f on ensemble {(pi, xi)}i can be written as

P (f |{(pi, xi)}i) =
∑
i

pif(xi) =
∑
i

piΩx(f) = ω(f) , (4)

where we define the functional associated to ensemble {(pi, xi)}i as ω =
∑
i piΩx. Therefore, two

ensembles{(pi, xi)}i and {(p′j , x′j)}j are equivalent if and only if, their corresponding functionals
are identical

∑
i piΩxi =

∑
j p
′
jΩx′j . The outcome probabilities P (f |{(pi, xi)}i) on the space of

ensembles uniquely define linear functionals Λf on the space of mixed states, such that Λf ·ω = ω(f)
for all mixed states ω.

The group action ϕ : X × G → X, naturally extends to the space of mixed states (embedded

linearly in R[FX ]∗) as Ωx
g−→ Ωgx. This is a linear action which is such that Ωx

g−→ Ωgx
g′−→ Ωg′gx

is the same as Ωx
g′g−−→ Ωg′gx; hence there exists a homomorphism Γ : G 7→ GL(R[FX ]∗). We call

this the group representation associated to the system S. This naturally induces a representation
Γ∗ : G 7→ GL(R[FX ]), which is isomorphic to Γ since the representations are unitary and real.

We can summarise the above in the following theorem (fully proven in Appendix D), which is
a straightforward generalisation of Result 1 of [51] to arbitrary dynamical structures:

Theorem 1 (Result 1 of [51]). For every system SX = {X,G,FX} obeying ‘Possibility of state
estimation using a finite outcome set’ there exists an embedding of SX into a finite dimensional
real vector space V ∼= R[FX ]∗ and its dual V ∗ given by the following maps:

Ω : X → V (5)
Γ : G→ GL(V ) (6)
Λ : FX → V ∗ (7)

satisfying the following properties:

1. Preservation of dynamical structure:

ΓgΩx = Ωgx (8)
Γg1Γg2 = Γg1g2 (9)

2. Preservation of probabilistic structure:

Λf · Ωx = f(x) (10)

3. Uniqueness: The embedding of SX into (V, V ∗) given by the maps Ω,Γ,Λ (satisfying all of
the above) is unique up to equivalence.
Two embeddings of SX into (V, V ∗) given by the maps Ω,Γ,Λ and Ω′,Γ′,Λ′ are equivalent
if there exists an invertible linear map L : V → V such that:

Ω′x = LΩx, ∀x ∈ X, (11)
Γ′g = LΓgL−1, ∀g ∈ G, (12)
Λ′f = ΛfL

−1,∀f ∈ FX . (13)

We call the representation Γ of Equation (6) the representation of G associated to the system
SX . conv(ΩX) is the convex hull of the extremal states, which we call state space 1. A standard
representation of the states ΩX is given as a vector of fiducial outcome probabilities.

1The object conv(ΩX) = conv(ΓGΩx) is the convex hull of an orbit of the group G in the vector space V and is
known as an orbitope, see [63] for a detailed study of the theory of orbitopes.
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Remark 1. For a system SX = {X,G,FX} with maps Ω,Γ,Λ the vectors ΩX admit of a standard
representation in terms of a fiducial outcome set (which is non-unique). A fiducial outcome set
{fi}di=1 is a linearly independent basis {fi}di=1 of R[FX ] (here dim (R[FX ]) = d), i.e. it is a set of
OPFs {fi}di=1 such that every other f ∈ FX can be uniquely expressed as f(x) =

∑d
i=1 cifi(x) for

all x ∈ X and ci coefficients in R. In this representation a state Ωx is written as:

Ωx =

f1(x)
...

fd(x)

 , (14)

and an effect Λf (where f(x) =
∑d
i=1 cifi(x)) is a dual vector:

Λf = (c1, ..., cd) .

One can immediately verify that Λf · Ωx = f(x).

In general the convex hull of a set of points P will not have that set of points as extremal
points, since generically some points in P might lie in the convex hull of other points of P . As such
it is not immediate that conv(ΩX) has extremal points ΩX . The following lemma tells us that this
is the case. Let us denote by δe(C) the extremal points of some convex set C.

Lemma 1. The embedding of a system SX = {X,G,FX} into (V, V ∗) with maps Ω,Γ,Λ is such
that δe (conv (ΩX)) = ΩX .

This lemma is proven in Appendix D.2, and makes use of the transitivity of the action of G
on the pure states X. It follows from the fact that ΩX is a subset of a hypersphere in the affine
span of ΩX centred on the maximally mixed state. See also [63, Proposition 2.2] for an equivalent
statement of the lemma and proof.

Definition 11 (Tomographically equivalent probabilistic structures). Two probabilistic structures
F and F ′ are tomographically equivalent if they yield the same equivalence classes of ensembles
(i.e. mixed states).

We note that two systems SX = (X,G,FX) and S ′X = (X,G,F ′X) with embeddings Ω,Γ,Λ
and Ω′,Γ′,Λ′ are tomographically equivalent if and only if ΩX and Ω′X are affinely isomorphic (i.e.
equivalent as convex set).

For a given system the asymptotic limit consists of the scenario where all preparation procedures
are of n copies of the same state and n tends to infinity. In this case all states (including mixed)
become perfectly distinguishable (though this does not lift the degeneracy of equivalent ensembles).
We denote F̄X the equivalence class of all tomographically equivalent probabilistic structures,
hence

(
X, F̄X

)
can be identified with the state space (convex set) conv(ΩX) which is the same

for all systems (X,FX) with FX ∈ F̄X . A representative element is the probabilistic structure
corresponding to the (effect) unrestricted system.

Remark 2 (On the link between tomographically equivalent probabilistic structures and restric-
tion of effects). The notion of tomographically equivalent probabilistic structures can be cast
in terms of restriction of effects. A state space is effect unrestricted when all linear functionals
GL(R[FG/H ]∗)→ [0, 1] correspond to allowed measurement outcomes. A system is restricted when
some of the mathematically allowed functionals do not represent any measurement outcomes of the
theory. However when a system has restricted effects, it is always the case that the allowed effects
span the dual space V ∗ of the state space embedded in V . In other words both the restricted and
unrestricted systems have the same mixed states (the restricted effects are always such that they
separate the initial state space). A system with restricted effects has a tomographically equivalent
probabilistic structure to the unrestricted system. Two tomographically equivalent probabilistic
structures can be obtained by restriction of a common probabilistic structure.
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2.4.3 Topological and differentiable features of the probabilistic representation

In the case where the dynamical structure (X,G) has topological/differentiable features, we assume
that the maps Ω : X → V and Γ : G → GL(V ) are continuous/smooth, implying that the action
Ωx → Ωgx is also continuous/smooth. In the cases where FX separates X and G (implying that Ω
and Γ are injections) the inverse maps Ω−1 and Γ−1 are also assumed to be continuous, implying
that ΩX and ΓG are homeomorphic/diffeomorphic to X and G respectively.

For topological groups a group representation is a continuous homomorphism Γ : G→ GL(V )
(smooth for Lie groups), hence the continuity/smoothness of Γ will allow us to make use of the
representation theory of topological/Lie groups in the rest of the work. Since R[FX ] is assumed to
be finite dimensional continuity of these maps entails that the functions f are continuous on X.

Remark 3. The assumption that Ω : X → V and Γ : G → GL(V ) are continuous/smooth
is justified by the following. First note that continuity of these maps implies that ΩX and ΓG
are isomorphic to X and G not just as set/groups, but as topological spaces/topological groups
(differentiable manifolds/Lie groups). Consider the case where the dynamical structure has topo-
logical/differentiable structure but the maps Ω and Γ are not continuous/smooth, i.e. ΩX and
ΓG are not homeomorphic/diffeomorphic to X and G respectively. Then given access only to the
operational system, with state space conv(ΩX) and transformation space conv(ΓG) and asked to
reconstruct the dynamical structure, we would not assign it a dynamical structure with X a topo-
logical space acted on continuously by the group G (or differentiable manifold acted on smoothly by
a Lie group). Rather we would assign it the set of pure states X without any topological structure.
To summarise: the operational perspective begins from some experimental data, then constructs
the convex state, transformation and effect spaces and only then can one infer the pure states and
reversible transformations of those systems (i.e. dynamical structure). From this perspective the
dynamical structure has all the structural properties of the experimentally determined ΩX and
ΓG, implying that the maps Ω and Γ must preserve these structures.

2.5 Non-compactness and “Possibility of state estimation using a finite outcome set”
Although we have restricted our attention to probabilistic systems with X and G compact, there
are well defined probabilistic systems which are non-compact such as infinite dimensional quantum
systems. These systems violate “Possibility of state estimation using a finite outcome set” and a
natural question to ask is whether “Possibility of state estimation using a finite outcome set” rules
out non-compact dynamical structures in general. In the following we no longer assume X and G
compact, and briefly explore this question.

Lemma 2. Under the assumption of “Possibility of state estimation using a finite outcome set”
the sets conv (ΩX) and conv (ΓG) are compact.

Observe however that compactness of conv (ΩX) and conv (ΓG) does not imply compactness
of ΩX and ΓG. There exists compact subset of Rn whose extremal points are not closed (for an
example of such a set see [64, proof of Lemma 0.22]). As such one cannot use compactness of a
convex set to infer compactness of its extremal points. Although there exist compact convex sets
in Rn with a non-compact set of extremal points, it is not known to the authors whether any such
sets where the extremal points are transitive under some group action exist. As such it may be the
case that for transitive dynamical structures “Possibility of state estimation using a finite outcome
set” imposes that X and G are compact.

In the case of transitive non-compact dynamical structures with a non-compact group one can
make use of group representation theory to rule out the existence of probabilistic structure com-
patible with the assumption of “Possibility of state estimation using a finite outcome set”. For
many non-compact groups G (such as non-compact simple Lie groups) it is known that there are
no non-trivial finite dimensional continuous unitary representations, which rules out probabilistic
structures which violate “Possibility of state estimation using a finite outcome set” for dynamical
structures with those groups. An open question is whether are there any transitive dynamical struc-
tures, where X and G are non-compact, which are consistent with “Possibility of state estimation
using a finite outcome set”.
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3 Classification theorem
Before stating the main theorem of this section we will need to define the notion of a Gelfand pair.
Here (Γ, V,F) refers to a representation Γ : G 7→ GL(V ) over a field F.

Definition 12 (Gelfand pair). A pair (G,H) with G a group and H a subgroup of G form a
Gelfand pair when for all irreducible representations (Γ, V,C) of G, the restriction Γ|H has at most
one trivial sub-representation.

In other words, for a Gelfand pair (G,H), every irreducible representation (Γ, V,C) of G is such
that all the vectors v ∈ V which are invariant under H span a subspace of dimension at most 1.
A vector v ∈ V is invariant under H when Γhv = v for all h ∈ H.

This definition applies to complex irreducible representations. For irreducible representations
over the field R the restriction Γ|H may contain two trivial sub-representations, however all H-
invariant vectors are related by invertible transformations which commute with the group action
(this does not contradict Schur’s Lemma, which applies to irreducible representation over the
complex field). More details and proofs can be found in Appendix C.

A representation (Γ, V,C) of a group G which has a non-zero H-invariant vector (i.e. for which
Γ|H contains a trivial sub-representation) is called a spherical representation of (G,H).

Theorem 2 (Classification theorem). Let D = (G,H) be a transitive dynamical structure, and let
us consider probabilistic structures FG/H such that R[FG/H ] is finite-dimensional. By Theorem 1
every system SG/H = (G,H,FG/H) has an associated representation Γ : G→ GL(R[FG/H ]∗).

i. Every probabilistic structure FG/H (up to tomographic equivalence) has an associated rep-
resentation Γ of the form:

Γ =
⊕
j

Γj , (15)

where each term (Γj , Vj ,R) is a real-irreducible representation with at least one trivial sub-
representation when restricted to H.

ii. Conversely every representation of the form (15) (where each irreducible representation in the
decomposition has at leat one trivial subrepresentation when restricted to H) is associated
to at least one probabilistic structure FG/H .

iii. When (G,H) forms a Gelfand pair the correspondence between representations (Γ, V,R) of
the form (15) and probabilistic structures (up to tomographic equivalence) FG/H is one-to-
one.

iv. When (G,H) does not form a Gelfand pair then some representations (Γ, V,R) of the form
(15) have infinitely-many tomographically inequivalent probabilistic structures FG/H associ-
ated to them.

This theorem is proven in Appendix D.4.
Parts i. and iii. entail that for a dynamical structure (G,H) which form a Gelfand pair one

can classify all possible probabilistic structures F (up to equivalence) by finding the irreducible
representations Γ of G such that ΓG|H has a trivial representation.

Parts iii. and iv. tell us that for Gelfand pairs all inequivalent probabilistic structures are char-
acterised by different representations of G. Therefore for Gelfand pairs all probabilistic structures
are in one-to-one correspondence with representations of the dynamical group, up to restriction of
effects. For non-Gelfand pairs there are inequivalent probabilistic structures which are associated
to the same representation of G.

The one-to-one correspondence between probabilistic structures and representations for Gelfand
pairs is a direct consequence of the existence of an invertible transformation which commutes with
group action for all invariant H-vectors (see Corollary 5 in Appendix C). For real irreducible
representations which are also complex irreducible this is just the identity (by Schur’s lemma),
however for real irreducible of complex type (i.e. which are complex reducible) the linear space
of transformations which commutes with all H-invariant vectors is two dimensional. As shown
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in Lemma 10 there are no real irreducible representations of quaternionic type which have an
H-invariant vector when (G,H) Gelfand.

We observe that this theorem does not guarantee that for a given representation Γ of the
form (15) the associated OPF set F separates the pure states. For instance the trivial representa-
tion Γ : G→ GL(R), Γ(g) = IR for all g ∈ G is such that any vector v ∈ R is H-invariant, and the
state space obtained for any choice of non-zero reference vector v is trivial: Ωx = v for all x ∈ X.

4 Rigidity of dynamical structures
In this section we analyse which probabilistic structures can be continuously deformed 2. We first
study which dynamical structures (G,H) have probabilistic structures which are arbitrarily close.
Following this we show that these probabilistic structures can be continuously deformed. In order
to do so, we define an operational distance between probabilistic structures in terms of how difficult
is to discriminate them.

Obviously, one can always smoothly deform a probabilistic structure by restricting the set of
OPFs; for example, by adding noise to the measurements 3. However, all these variants have the
same set of mixed states, or in other words, the same equivalence classes of ensembles of pure
states {(pi, xi)}i. We call all these probabilistic structures tomographically equivalent because,
in estimation processes with multiple measurements, they agree on the set of mixed states. In
each tomographically-equivalent class of probabilistic structures there is a privileged element: the
unrestricted probabilistic structure. This F includes all linear maps Λ : V → R that map pure
states to probabilities Λ : Ω(X) → [0, 1]. In order to avoid considering trivial deformations
(i.e. those which leave the space of mixed states unchanged), in this section, we only consider
unrestricted probabilistic structures.

A probabilistic structure F0 for which every other probabilistic structure F1 of the same linear
dimension is at a finite bounded distance is called rigid. In other words, once the dimension of the
space of mixed states is fixed, there is a finite bound on the minimal error when discriminating
between probabilistic structures compatible with that dimension.

Theorem 2 tells us that if a dynamical structure (G,H) is a Gelfand pair then the set of
unrestricted probabilistic structures is countable. We prove that each finite-dimensional proba-
bilistic structure of a Gelfand pair (G,H) is rigid. We show that for non-Gelfand pairs there exists
probabilistic structures F0 which are not rigid, and which can be continuously deformed to other
probabilistic structures of the same linear dimension.

4.1 Distance between inequivalent probabilistic structures
For a given dynamical structure (G,H) (with X ∼= G/H) there is a natural notion of distance
between probabilistic structures FX . The distance between two OPFs f0 ∈ F0

X and f1 ∈ F1
X is

given by:

dist(f0, f1) = max
x∈X
|f0(x)− f1(x)| . (16)

This distance is directly related to the minimal error made when discriminating between f0 and
f1. We define the distance between two probabilistic structures F0

X and F1
X as:

D(F0,F1) = max
f 0∈F0

X

min
f 1∈F1

X

dist(f0, f1) , (17)

which informs us about the error that we make when certifying that a system behaves according
to F0

X and not F1
X in the optimal experimental setting f0 ∈ F0

X . Note that D is not symmetric
and hence it is not a metric distance. We introduce the symmetrised distance:

Dsym(F0,F1) = max{D(F0,F1), D(F1,F0)} , (18)

2Here by continuity we do not mean in the sense of a continuous map between topological spaces, but rather in
the sense that there exists a connected path between the two probabilistic structures being deformed.

3Adding noise to a measurement {Λfi}i consists of replacing each effect Λfi by (1− λ)Λfi + λΛu for some noise
parameter λ ∈ [0, 1]
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which is a metric distance. The following theorem (proven in Appendix E.1) provides us with a
lower bound on the distance between certain pairs of probabilistic structures F0 and F1.

Theorem 3. Let the dynamical structure (G,H) be a Gelfand pair, and let F0 and F1 be two
unrestricted probabilistic structures of (G,H). If F0 has an irreducible representation of dimension
d0 which does not appear in F1 then

D(F0,F1) ≥ 1
4d0 . (19)

Now we recall that for Gelfand systems, two unrestricted probabilistic structures are equal if
and only if they have the same irreps in their decomposition. Hence, the above theorem implies
that, for Gelfand systems, each pair of unrestricted probabilistic structure can be discriminated by
finite means.

4.2 Rigid and non-rigid probabilistic structures
Theorem 3 tells us that, if we fix a dynamical structure consisting of a Gelfand pair (G,H), then
the hypothesis that “the observed data is generated by a particular probabilistic structure F0 of
(G,H)”, in opposition to “the observed data is not generated by F0”, can be tested with finite
means. We now look at the property of rigidity of probabilistic structures, i.e. which probabilistic
structures are such that every other probabilistic structure of the same linear dimension is at a
finitely bounded distance.

Theorem 4. Let F0 of dimension dimR[F0] = d0 be an unrestricted probabilistic structure of
(G,H) with associated representation ΓG.

i. If every pair of H-invariant vectors in R[F0] is related by an invertible transformation which
commutes with ΓG then F0 is rigid and any other inequivalent probabilistic structure F1
such that dimR[F1] = d0 is at distance:

Dsym(F0,F1) ≥ 1
4(d0 − 1) , (20)

ii. If there is a pair of H-invariant vectors in R[F0] that are not related by any invertible
transformation which commutes with ΓG then F0 is non-rigid and for any ε > 0 (ε � 1)
there is an inequivalent probabilistic structure F1 with dimR[F1] = d0 at distance

Dsym(F0,F1) ≤ 2ε . (21)

This theorem is proven in Appendix E.2.
For Gelfand pairs all irreducible spherical representations ΓG are such that all pairs of H-

invariant vectors are related by invertible transformations which commute with ΓG, hence all
probabilistic structures for Gelfand pairs are rigid. For non-Gelfand pairs there exist probabilistic
structures F0 which have associated representations such that for all pairs of H-invariant vectors
there is no invertible transformation relating them which commutes with ΓG. Hence we have the
following corollary:

Corollary 1. Let D = (G,H) be a dynamical structure.

1. If (G,H) is a Gelfand pair, then every unrestricted probabilistic structure FG/H is rigid.

2. If (G,H) is not a Gelfand pair, then there exist probabilistic structures FG/H which are not
rigid, which are those with associated representations ΓG which admit H-invariant vectors
related by invertible transformations which do not commute with ΓG.

In Lemma 4 we show that these probabilistic structures can be continuously deformed to other
probabilistic structures of the same linear dimension. Deformation of probabilistic structure is de-
fined in Section 4.4 where deformation maps between different probabilistic structures are explicitly
characterised.

Before studying the general case we provide an example of a non-rigid probabilistic structure
and how to continuously deform it.
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4.3 Continuous deformation of probabilistic structures: an example
In this section we analyse a dynamical system (G,H) that is not a Gelfand pair. Hence, some of its
probabilistic structures can be continuously deformed, giving rise to varying statistical properties.
This is an interesting feature of GPTs that has not been explored in the literature.

Definition 13 (The deformable state space). Consider the set of pure states ΩX = {UΩx0U
† :

∀U ∈ SU(3)} generated by the adjoint action of G = SU(3) on the reference state

Ωx0 =

 α1 0 0
0 α2 0
0 0 α3

 , (22)

where the three real coefficients αi are different (αi 6= αj for all i, j) and add up to one
∑
i αi = 1.

This state space has stabiliser subgroup

H =


 eiφ1 0 0

0 eiφ2 0
0 0 e−i(φ1+φ2)

 : ∀φ1, φ2 ∈ R

 ∼= S (U(1)×U(1)×U(1)) . (23)

We observe that the embedding of the pure states is given Ω : X → V where V is the real
space of 3 × 3 Hermitian matrices. In this representation outcome probabilities are given by
effects (i.e. linear functionals of the states Ωx), hence they are given by the trace inner product:
Λf (Ωx) = tr (Hf Ωx) whereHf a Hermitian matrix. The unit effect Λu is linear functional evaluating
to 1 on all Ωx, hence Λu(Ωx) = tr(Ωx).

The case with two equal coefficients is equivalent to the familiar three-level quantum system,
(α1, α2, α3) = (1, 0, 0), which has stabiliser subgroup H ∼= S (U(2)×U(1)) [51] different than
our example (23). This illustrates how we cannot deform quantum theory without changing its
stabiliser subgroup and hence changing its dynamical structure (G,H). By contrast, the above-
defined family of state spaces can be deformed without changing the stabiliser nor the dynamical
structure.

The pair (SU(3),S (U(2)×U(1))) is a Gelfand pair [51], whereas (SU(3),S (U(1)×U(1)×U(1))
is not. To show this we need to find a single irreducible representation Γ of G such that the restric-
tion Γ|H to the subgroup H has more than one trivial subrepresentation. Take the adjoint action of
G (see Definition 13) acting on the full complex space of complex matrices; this representation de-
composes into a trivial representation of G (acting on the subspace spanned by the identity matrix)
and the adjoint representation acting on the complementary subspace. This subspace is spanned
by the trace 0 complex matrices and carries an irreducible representation of G ∼= SU(3) (the adjoint
representation). We observe that all diagonal matrices are invariant under the adjoint action of the
subgroup H defined in Equation (23), and as such the space of H-invariant vectors is spanned by
the trace 0 diagonal matrices. This is a 2 dimensional subspace of the full space of trace 0 matrices
carrying the irreducible representation of G implying that (SU(3),S (U(1)×U(1)×U(1)) is not a
Gelfand pair.

We know that the three-level quantum system has three perfectly distinguishable states. The
following theorem tells us that this is not the case for above-defined state spaces.

Theorem 5. All state spaces introduced in Definition 13 have two perfectly distinguishable states
and no more.

Proof. In the following proof we write x instead of Ωx (similarly X instead of ΩX).
Let us start by assuming the existence of three perfectly distinguishable states x1, x2, x3 ∈ V .

This implies the existence of a three-outcome measurement A1, A2, A3 ∈ V such that tr(Aixj) =
δij . Without loss of generality we can take the three states to be pure xi ∈ X ⊆ V . In the following
analysis we use a V -basis where A1 is diagonal

A1 =

 γ1 0 0
0 γ2 0
0 0 γ3

 . (24)
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The probability of A1 with any state x only depends on the diagonal of the state (in this basis).
Therefore, in what follows, we characterise the projection of conv (X) ⊆ V into the diagonal. A
general state Ux0U

† has diagonal projection

[Ux0U
†]ii =

∑
j

Uijαj [U†]ji =
∑
j

|Uij |2αj . (25)

The unitarity of U implies that |Uij |2 is a doubly stochastic matrix, and Birkhoff’s theorem tells
us that |Uij |2 is a mixture of the six permutation-matrices of three elements. Conversely, the
six permutation matrices can be written as |Uij |2. This, together with the convexity of the state
space, implies that the projection of convX into the diagonal is the convex set generated by the
six extreme points

yσ =

 ασ(1)
ασ(2)
ασ(3)

 , σ ∈ S3 , (26)

where S3 is the group of permutations of 3 elements. These six points (also denoted y1, y2, . . . , y6)
are depicted in Figure 1.

Let us show that each of the three pairs of opposite lines in Figure 1 are indeed parallel. For
example:

y1 − y2 =

 α1
α2
α3

−
 α1

α3
α2

 ∝
 0

1
−1

 , (27)

y6 − y3 =

 α2
α3
α1

−
 α2

α1
α3

 ∝
 0

1
−1

 , (28)

y5 − y4 =

 α3
α1
α2

−
 α3

α2
α1

 ∝
 0

1
−1

 . (29)

Condition tr(A1xj) = δ1j implies that the scalar product (γ1, γ2, γ3) ·yσ takes the value zero for
two permutations σ and the value 1 on at least one permutation. However, as shown in Figure 1,
the only outcome that tells apart states y1 from y4, y5 is A1, which gives probability one for states
y1, y2 and zero for y4, y5. It is worth mentioning that the vectors y1, y2, y4, y5 correspond to four
pure states with zero off-diagonal components. Hence, the outcome probabilities of these pure
states can be calculated by only looking at the diagonal projection (i.e. the figure).

The figure also shows that, no matter how we choose the direction A2, the states y4, y5 (or y1, y2)
cannot be perfectly distinguished. This proves the non-existence of three perfectly distinguishable
states in this family of state spaces. Of course, this argument breaks down for the three-level
quantum system, when the projection becomes a triangle instead of an hexagon.

The state spaces under consideration (Definition 13) have a remarkable property that is not
present in quantum theory. This property is sometimes called “violation of no-simultaneous en-
coding” [65] and it is very similar to “information causality” [66]. This property allows to perfectly
encode one bit of information (e.g. y1, y2 versus y4, y5) and simultaneously imperfectly encode an-
other bit (y1, y5 versus y2, y4). Although only one of the two bits can be retrieved, there is a sense
in which this system encodes more than one bit of information despite having only two perfectly-
distinguishable states. Different choices of (α1, α2, α3) will give different success probability when
optimally guessing the second bit. This is a statistical feature that distinguishes inequivalent values
of (α1, α2, α3) within the family of state spaces of Definition 13.

4.4 Continuous deformation of probabilistic structures: the general case
In the following we only consider systems up to tomographic equivalence, where two systems are
tomographically equivalent if and and only if they have the same equivalence classes of ensembles
(i.e. the same mixed states). For a given set of pure states X each equivalence class of probabilistic
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Figure 1: This six-sided figure is the projection onto the diagonal of a generic state space of the family introduced
in Definition 13. The extreme points y1, . . . , y6 are the six permutations of the vector (α1, α2, α3), which can
be represented in a two-dimensional plane because of the normalisation condition

∑
i
αi = 1. In the generic

case (α1, α2, α3) the figure has two types of sides with alternating length, and for certain values of (α1, α2, α3)
the six sides have equal length. In the quantum case (α1, α2, α3) = (1, 0, 0) the short sides have zero length
zero and the figure becomes a triangle. The outcome A1 (A2) has probability 0 or 1 in the solid (dotted) lines.

structures F̄X induces a map Ω : X → V (where V ∼= Rn) by Theorem 1. We will define a
deformation of a probabilistic structure for X as a map between different images ΩX of Ω-maps for
X (since there is a one-to-one correspondence between equivalence classes of probabilistic structures
F̄X and images ΩX of Ω-maps) satisfying certain conditions which we will formalize with the aid
of some further definitions. We only consider equivalence classes of probabilistic structures which
separate X.

For a given dynamical structure (X,G) let us call F the space of all images ΩX (equivalently
the space of equivalence classes of probabilistic structures F̄X). For a given d ∈ R+

0 let us call Fd
the space of all ΩX whose linear span is isomorphic to Rd (equivalently the space of equivalence
classes of probabilistic structures F̄X such that R[F̄X ] ∼= Rd). We observe that Fd might be the
empty set (if there are no representations of G of the form of Equation (15) acting on Rd). For a
Gelfand dynamical structure all Fd are countable sets, whilst for non-Gelfand pairs there exist Fd
which are uncountable.

The symmetrised distance defined in Equation (18) turns Fd into a metric space. This metric
induces a topology on Fd.

We are interested in continuously deforming probabilistic structures, namely how to contin-
uously vary one set of mixed states into another (i.e. one probabilistic structure into another)
whilst keeping the linear dimension fixed. First we define a general transformation between sets
of embedded pure states ΩX .

Definition 14 (Trivial Ω-transformation map). For two systems S0
X =

(
X, F̄0

X

)
and S1

X =(
X, F̄1

X

)
with associated maps Ω0 : X → V 0 and Ω1 : X → V 1 we define the trivial Ω-

transformation map M0→1 : F → F, M0→1 : Ω0
X 7→ Ω1

X (where it acts as M0→1 : Ω0
x 7→ Ω1

x,
∀x ∈ X).

These trivial Ω-transformation maps allow us to map between any two probabilistic structures
in F. A deformation of probabilistic structure is a specific map between probabilistic structures
such that the linear dimension of the space of mixed states is unchanged.

Definition 15 (Deformation map). For two systems S0
X =

(
X, F̄0

X

)
and S1

X =
(
X, F̄1

X

)
with
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associated maps Ω0 : X → V 0 and Ω1 : X → V 1 where V 0 ∼= V 1 ∼= Rd a trivial Ω-transformation
map M0→1 : Fd → Fd, M0→1 : Ω0

X 7→ Ω1
X is a deformation map.

Lemma 3. A non-trivial deformation map M0→1 : Ω0
X 7→ Ω1

X (Ω0
X 6= Ω1

X) cannot be extended to
a linear transformation on spanR(Ω0

X).

Proof. Since F̄0
X and F̄1

X separate X, Ω0
X and Ω1

X are homeomorphic. Let us prove by contradiction
and assume that M0→1 is linear when extended to spanR(Ω0

X). Let us call M̃0→1 : spanR(Ω0
X) →

spanR(Ω1
X) this linear extension of M0→1. We observe that M̃0→1 has a trivial kernel since no

element of Ω0
X is in the kernel, hence no element of spanR(Ω0

X) is either. Moreover the image of
M̃0→1 is spanR(Ω1

X): any element in spanR(Ω1
X) is a linear combination

∑
i αiΩ1

xi of elements in
Ω1
X , and hence by linearity of M̃0→1

∑
i αiΩ1

xi is the image under M̃0→1 of the linear combination∑
i αiΩ0

xi in the domain spanR(Ω0
X). Hence M̃0→1 is an invertible linear transformation which

takes conv(Ω0
X) to conv(Ω1

X) and conv(Ω0
X) ∼= conv(Ω1

X). This contradicts the assumption that
Ω0 and Ω1 are induced by tomographically inequivalent probabilistic structures.

A non-trivial deformation mapM0→1 cannot be extended to the spaces of mixed states conv
(
Ω0
X

)
and conv

(
Ω1
X

)
, which are not isomorphic as convex sets. For such systems one can use the map

M0→1 to deform the probabilistic structure F0
X to F1

X to change the space of mixed states from
conv

(
Ω0
X

)
to conv

(
Ω1
X

)
whilst preserving the linear dimension.

We observe that if we consider the general trivial Ω-transformation maps (i.e. the linear di-
mension of the two state spaces is no longer required to be the same) then some of these maps
do linearly extend to spanR(Ω0

X) when Ω0
X 6= Ω1

X . An example of such a map is the projection
from a system S0

X with an associated representation Γ0 which is reducible to a system S1
X with

an associated representation Γ1 which is a sub-representation of Γ0, i.e. Γ0 ∼= Γ1 ⊕ Γ2 for some
representation Γ3 of G.

Definition 16 (Continuous deformation of probabilistic structure). A probabilistic structure F̄0
X

can be continuously deformed to another probabilistic structure F̄1
X if there is a continuous function

γ : [0, 1]→ Fd, γ(t) = ΩtX in Fd with t ∈ [0, 1] such that γ(0) = Ω0
X and γ(1) = Ω1

X . Here continuity
is defined with respect to the usual topology on [0, 1] ⊂ R. γ defines a connected path in Fd.

We observe that the connected path γ(t) defines a family of deformation mapsM0→t : Ω0
X 7→ ΩtX

for every t ∈ [0, 1].
In other words Ω0

X can be continuously deformed to Ω1
X if there exists a connected path between

the two passing through a continuum of different ΩtX (each spanning a linear space of the same
dimension). If there is no such path between the two then Ω0

X cannot be continuously deformed
to Ω1

X .
In the following theorem we show the relation between the rigidity of a probabilistic structure

and the possibility of continuously deforming a probabilistic structure.

Lemma 4. Any non-rigid probabilistic structure F̄0
G/H can be continuously deformed into an-

other (non-rigid) probabilistic structure F̄1. Any rigid probabilistic structure F̄0
G/H cannot be

continuously deformed to another probabilistic structure.

This lemma is proven in Appendix E.3. Together with Corollary 1 this lemma implies the
following corollary.

Corollary 2. If (G,H) is a Gelfand pair, then no probabilistic structure can be continuously
deformed. If (G,H) is a non-Gelfand pair then it has probabilistic structures which can be con-
tinuously deformed.

We now provide an explicit construction of a continuous deformation of a probabilistic structure
whose associated representation has inequivalent H-invariant vectors; for an arbitrary non-Gelfand
pair (G,H).

Example 1 (Continuous deformation). Consider a non-Gelfand pair (G,H), and an irreducible
spherical representation Γ acting on V ∼= Rd with inequivalent H-invariant vectors v0

H and v1
H

(which always exists for a given non-Gelfand pair). Any vector in span(v0
H , v

1
H) is H-invariant,
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moreover any two vectors in span(v0
H , v

1
H) which are not proportional will generate inequivalent

state spaces under ΓG. Let us take two inequivalent normalised H-invariant vectors v0
H and v1

H .
Let us call Ω0

X = {Γgv0
H |g ∈ G} and Ω1

X = {Γgv1
H |g ∈ G} the two embedded sets of pure states

generated from these two reference vectors. Consider a rotation R ∈ GL(span(v0
H , v

1
H)) such that

Rv0
H = v1

H . For a given state v0
gH = Γgv0

H ∈ Ω0
X and v1

gH = Γgv1
H ∈ Ω1

X we have the relation:

v1
gH = ΓgRv0

H = ΓgRΓg−1v0
gH . (30)

Hence there is a map m(g) = ΓgRΓg−1 between the two points v0
gH ∈ Ω0

X and v1
gH ∈ Ω1

X , for all
points gH ∈ X ∼= G/H. The deformation map is then:

M0→1 : Ω0
X → Ω1

X , (31)
M0→1 : v0

gH 7→ m(g)v0
gH = v1

gH . (32)

Since this map is g-dependent (i.e. its action depends on each extremal point v0
gH) it is not linear

and cannot be extended to the mixed states.
Let us define ΩtX to be the state space generated by the H-invariant reference vector vtH =

R(t)v0
H for t ∈ [0, 1] and mt(g) = ΓgR(t)Γg−1 . Then the deformation map from Ω0

X to ΩtX is given
by:

M0→t : Ω0
X → ΩtX , (33)

M0→t : v0
gH 7→ mt(g)v0

gH = vtgH . (34)

The family of deformation maps M0→t (for t ∈ [0, 1]) defines a connected path γ(t) = M0→tΩ0
X =

ΩtX in Fd (see the proof of Lemma 4 in Appendix E.3). Hence the probabilistic structure associated
to Ω0

X can be continuously deformed to the probabilistic structure associated to Ω1
X .

Remark 4. The possibility of continuously deforming a probabilistic structure without altering
its dynamical structure (and without restricting effects) is a very peculiar feature that is not found
in any of the known GPTs (such as boxworld and quantum theory over the field of reals, complex
or quaternions) to the best of our knowledge. Moreover we posit that this is a typical feature of
GPT systems, in that, most dynamical structures (G,H) are not Gelfand pairs. If a probabilistic
structure can be continuously deformed then the probabilities can be fine-tuned to suitably describe
the observed statistics, and hence, make the theory more difficult to falsify. Hence, the fact that
the probabilistic structure of a theory cannot be smoothly deformed makes the falsifiability of the
theory more straightforward. We believe that this is a desirable property of a theory. If we consider
a dynamical structure (G,H) being a Gelfand pair then we can be sure that any of its probabilistic
structures will be straightforwardly falsifiable. Finally, it is important to mention that a dynamical
structure (G,H) cannot be continuously deformed due to the group and sub-group structures of G
and H. That is, adding a single element to G or H will generate lots of new elements via products
and inverses. And hence, the probabilistic structure is the only part of a theory that, a priori,
could be continuously deformed.

5 Gelfand pairs and two point homogeneity
In Theorem 2 we have singled out dynamical structures corresponding to Gelfand pairs as being
of interest, namely for the convenient property that their probabilistic structures can be classified
via the associated group representations. This implies that there are countably many of them, and
that they cannot be continuously deformed. This rigidity is a highly desirable property for a funda-
mental theory of physics, because it does not allow for ad hoc parameter adjustment, and is thereby
easier to falsify. Apart from this, one may also ask whether there are other informational/physical
motivations for considering Gelfand pairs. One such reason may be the following.

Definition 17 (Two-point homogeneous action [67]). A group G acts two-point homogeneously
on a metric space (X,dist) if for every pair of points (x1, x2) and (x′1, x′2) in X with dist(x1, x2) =
dist(x′1, x′2) there is an element g ∈ G such that gx1 = x′1 and gx2 = x′2.
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X G/H
Sd SO(d)/SO(d− 1)

PRd = Sd/{±I} O(d)/(O(d− 1)×O(1)) ∼= SO(d)/S(O(d− 1)×O(1))
PCd SU(d)/S(U(d− 1)×U(1)) ∼= U(d)/(U(d− 1)×U(1)
PHd Sp(d)/(Sp(d− 1)× Sp(1))
PO3 F(4)/Sp(9)

Table 1: List of all two-point homogeneous spaces which are connected and compact. Here PO3 is the projective
space of octonionic planes known as the Cayley plane.

Two-point homogeneity implies transitivity, since for any points x1 and x2 we have dist(x1, x1) =
dist(x2, x2) and hence there exists an element such that gx1 = x2. The following is a very remark-
able result.

Lemma 5 (Prop 2.2 [68]). If G acts two-point homogeneously on a metric space X and H is the
stabilizer of a point, then (G,H) is a Gelfand pair.

The requirement of two-point homogeneity restricts us to dynamical structures corresponding
to Gelfand pairs. We observe that this requirement requires an additional metric structure to be
imposed on the dynamical structure. A natural metric on GPT state spaces is the following.

Lemma 6. (Pure-state metric distance.) The distance between any pair of pure states x, x′ ∈ X
defined by

dist(x, x′) = sup
f∈FX

[f(x)− f(x′)] (35)

is bounded dist(x, x′) ≤ 1, it satisfies the metric axioms:

1. dist(x, x′) = 0 if and only if x = x′,

2. dist(x, x′) = dist(x′, x),

3. dist(x, x′′) ≤ dist(x, x′) + dist(x′, x′′),

and it is G-invariant

4. dist(gx, gx′) = dist(x, x′) for all g ∈ G.

Therefore we conclude that two-point homogeneous state spaces are Gelfand pairs. It is remark-
able that the purely dynamical property of two-point homogeneity implies that all probabilistic
structures are rigid.

However we note that not all Gelfand pairs (G,H) give rise to a homogeneous space X ∼= G/H
which is two-point homogeneous. Indeed the classification of all the compact and connected two
point homogeneous symmetric spaces was given in [67]. These are listed in Table 1.

The full classification of all finite dimensional probabilistic structures for the compact connected
two point homogeneous spaces G/H (where all pairs (G,H) corresponding to such spaces are
given in Table 1) directly follows from the classification of all irreducible spherical representations.
Equivalently these are the irreducible subspaces of the function space C(G/H,C) (continuous
functions from G/H to C) under the action of G, where a specific basis for an irreducible subspace
is given by spherical harmonics. This is a generalisation of the well known spherical harmonics for
L2(S2), where the irreducible representation labelled by l has a basis Ylm(θ, φ) spanning a 2l + 1
dimensional subspace.

The (G,H) spherical irreducible representations for these pairs are characterised by a condition
on the highest weights given by the Cartan-Helgason Theorem [69, 70](see [71, Theorem 11.4.10.].
Explicit characterisations of these (G,H) spherical irreducible representations (either in terms of
the highest weights or other methods) for the pairs in Table 1 can be found in the literature.
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6 Grassmannian systems
In this section we introduce a family of non-classical systems which generalise the dynamical
structure of quantum systems, and make use of Theorem 2 to provide a full classification of these
systems.

The pure states of finite dimensional quantum systems are given by PCd. This is the set of all
one dimensional subspaces of Cd. We now consider systems with pure states given by the set of
all k-dimensional subspaces W ⊆ Cd. This set is known as a Grassmann manifold Gr(k,Cd):

Gr(k,Cd) = {W ⊆ Cd,dim(W ) = k} . (36)

Hence PCd ∼= Gr(1,Cd). Since SU(d) acts transitively on Gr(k,Cd) it can also be expressed as
follows (re-parametrising k = m and d = m+ n):

Gr(m,Cm+n) ∼= SU(m+ n)/S(U(m)×U(n)) (37)

Here the embedding of S(U(m)×U(n)) into SU(m+ n) is the direct sum embedding:

S(U(m)×U(n)) =
{(

eiθA 0
0 B

)
: A ∈ U(m), B ∈ U(n), eiθm detAdetB = 1

}
. (38)

Similarly one can define Grassmann manifolds over R and H, generalising the dynamical struc-
tures of quantum theory over R and H. These are:

Gr(m,Rm+n) ∼= SO(m+ n)/S(O(m)×O(n)) , (39)
Gr(m,Hm+n) ∼= Sp(m+ n)/(Sp(m)× Sp(n)) . (40)

In the next section we will make use of Theorem 2 to classify all possible probabilistic structures
for each dynamical structure which is a complex Grassmann manifold.

6.1 Full classification of all probabilistic structures for complex Grassmann manifolds
Theorem 2 states that for a dynamical structure (G,H) corresponding to a Gelfand pair, every
probabilistic structure is in one-to-one correspondence with a spherical representation of (G,H).
Hence the first step in classifying probabilistic structures for the Grassmann dynamical structure
Gr(m,Cm+n) ∼= SU(m+n)/S(U(m)×U(n)) is to determine whether (SU(m+ n),S(U(m)×U(n)))
form a Gelfand pair.

Lemma 7.
1. (SU(m+ n),S(U(m)×U(n)) form a Gelfand pair.

2. The spherical representations (SU(m+n),S(U(m)×U(n)) have a real structure.

The first part of the lemma is found in [72, Corollary 3] and the second part is proven in
Appendix F. This lemma entails (using Theorem 2) that all probabilistic structures FX where
X ∼= SU(n + m)/S(U(m) × U(n)) are in one-to-one correspondance with the spherical represen-
tations (SU(m + n),S(U(m) × U(n)). Irreducible spherical representations are typically defined
over C, and in general the irreducible representations of a group G over C are not in one-to-one
correspondence with those over R. Part 2. of the lemma allows us to classify the real irreducible
spherical representations of (SU(m+ n),S(U(m)×U(n))) by studying the irreducible spherical
representations over C.

The restriction of representations of SU(m + n) to S(U(m) × U(n)) has been studied in [72].
We summarise the result below. Representations of SU(m + n) are labelled by a partition λ of
an integer k in m + n − 1 parts (often represented as a Young diagram). One can construct the
associated irreducible representation by applying the Schur functor Sλ to (Cm+n) [73, Proposition
15.15]

Lemma 8. The representations of SU(n+m) which have a trivial representation when restricted
to S(U(n)×U(m)) are of the following form: When m = n:

λ = (2b1, b1 + b2, ..., b1 + bm, b1 − bm, ..., b1 − b2, 0) . (41)
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When n ≥ m+ 1:

λ = (2b1, b1 + b2, ..., b1 + bm, b1, ...., b1︸ ︷︷ ︸
n−m times

, b1 − bm, ..., b1 − b2, 0) . (42)

In each case b1 ≥ b2 ≥ ... ≥ bm ≥ 0. We have added a redundant 0 entry; with it λ has length
m+ n.

6.2 Quartic quantum theory over R,C and H
Quartic quantum theory over C, introduced in [47], is a theory which contains some of the systems
classified above. In this theory systems SQuart

k,C (k ∈ Z, k > 2) have pure states given by the Grass-

man manifold Gr(k,Ck2) and a probabilistic structure FQuart
k,C given by the adjoint representation.

For example the state space for the system k = 2 can be generated by taking reference state:

ρ =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , (43)

applying the SU(4) dynamical group in the adjoint representation:

UρU† , (44)

and taking the convex hull of the Gr(2,C4) manifold embedded in V = Herm
(
C4) (the real linear

space of Hermitian matrices on C4).
One problematic feature of quartic quantum theory is that it does not have well defined com-

position [25, 47], and as such is just a collection of systems rather than a full theory.
We can similarly introduce two theories (without composition): real quartic quantum theory and

quaternionic quartic quantum theory where systems are given by SQuart
k,R :=

(
Gr(k,Rk2),FQuart

k,R

)
and SQuart

k,H =
(

Gr(k,Hk2),FQuart
k,H

)
, where R[FQuart

k,R ] and R[FQuart
k,H ] are acted on by the adjoint

representation of SO(k2) and Sp(k2) respectively. In both cases the states space for the system
associated to k = 2 can be generated by taking the reference state ρ above acting with the adjoint
representation of the dynamical group and taking the convex hull.

7 Discussion

7.1 Comparison to previous work
7.1.1 The generalised quantum mechanics of Mielnik

The OPF framework presented in this work is similar to the ‘Group theoretical model’ of [10].
The novel aspects of this work include Theorem 2 which, building on the framework, establishes
a correspondence between probabilistic structures and group representations. We find specific
conditions on transitive dynamical structures which make this correspondence one-to-one (namely
that the dynamical group and stabilizer subgroup form a Gelfand pair). Moreover Mielnik studies
examples with the same pure states as quantum theory, but different dynamical groups. We study
(and classify) systems which have different pure states and dynamics.

7.1.2 Classification of all alternatives to the measurement postulates of quantum system

Theorem 2 is a generalisation of the classification theorem of [51], where the dynamical structure
is no longer constrained to be that of quantum systems. We also find the necessary and sufficient
conditions for which dynamical structures have probabilistic structures which are in one-to-one
correspondence with group representations.
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Figure 2: Map of the space of transitive non-classical systems with compact pure states X = G/H. ‘Rigid’
and ‘Non rigid’ are notions defined in this paper. ‘2 point hom.’ stands for two point homogeneous. For
a field F, GrF is the family of systems with pure states given by the Grassmann manifold Gr(Fd,Fk) for all
2 < d < ∞, k < d. PFd is the family of systems with pure states given by projective space over Fd for all
1 < d < ∞, hence PFd := Gr(Fd,F1). QTF is quantum theory over F whilst QuF is quartic quantum theory
over F. ‘EJAs’ labels special Euclidean Jordan Algebras (EJA) and ‘EJAe’ the exceptional EJA. Vd is the
d−sphere in the standard embedding in Rd+1 whilst Sd is the family of systems with pure states given by Sd

(hence embeddings of Sd in Rk where k not necessarily equal to d + 1). This map does not capture all the
relations, namely there are ‘coincidences’ like the qubit being both in QTC and Vd.

7.2 Mapping the space of GPT systems
In the GPT formalism a theory is considered to be a set of systems together with some composition
rules. Quantum theory for example is the set of systems QTC := {SQuant

d }inf
d=2 together with the

standard tensor product composition rule and partial trace. We note that QTC alone is not a
theory, just a set of systems.

In this work we also consider sets of systems which are not expected to form theories; these
are sets of systems which share a common dynamical structure. For example the set of systems
with shared dynamical structure

(
PC2,SU(2)

)
form a sub-family of systems, and the set of systems

which contain all systems with dynamical structure
(
PCd,SU(d)

)
(d > 2) form a family of systems.

In this work we have introduced new families of systems (see Sections 5 and 6) which generalise
previously known systems. In Figure 2 we map out the space of transitive systems with compact
pure states including the new families of systems introduced in this work.

The advantage of the methods introduced in this work are two-fold: firstly we can generate
examples of non-classical systems and secondly we can systematically classify non-classical systems,
thus providing us with a fuller picture of non-classical systems lying beyond quantum theory.

7.3 The search for alternative theories and the issue of composition
The tools presented in this work allow us to systematically search for non-classical systems. How-
ever it is not certain that these systems compose in a non-trivial manner (existence of entangled
states and measurements). For example it is shown in [53] that the only full theory with systems
having the same dynamical structure as quantum theory is quantum theory itself. In [48] it is
shown (under certain additional assumptions such as local tomography) that the only systems
corresponding to d-balls which compose non-trivially are for d = 3. However, removing the re-
quirement of local tomography allows for d-balls to compose non-trivially in at least some cases,
including those of real and quaternionic bits [35] (where a category in which arbitrary d-balls
combine via a monoidal product is also described, though the acceptability of these composites
is less clear). Out of the family of systems classified in section 6 it is known that one of them
(quartic quantum theory) does not compose under the assumption of local tomography and the
requirement that the theory remain quartic [25, 47]. The question remains open as to whether
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any of the systems with pure states given by Grassmann manifolds compose non-trivially, with or
without the assumption of local tomography

8 Conclusion

In this work we have introduced the OPF framework which is used to characterise systems
in GPTs. By separating the dynamical and probabilistic components of systems this framework
provides new insight into non-classical systems. It allows us to consider families of systems which
share a common dynamical structure. We introduce the notion of a rigid dynamical structure
and show that for such structures one can classify all probabilistic structures using representations
of the dynamical group. A key feature of rigid dynamical structures is that they do not admit
continuous deformation of probabilistic structure.

Moreover we introduced multiple new families of non-classical systems, such as the complex
Grassmann systems. Many of these families contain known non-classical systems, as well as provid-
ing infinitely many examples of non-classical systems which were not known. As well as exploring
the space of non-classical systems by finding new examples, we mapped out this space in a more
systematic manner by introducing families of systems which share a dynamical structure.

The present work has limited itself to single systems. In general it is not a given that these
systems can be made to compose in a non-trivial way (i.e. with entangled states). Future work
will involve extending the OPF framework to include composition (along the lines of [52, 53])
and determining whether any of the new families of systems presented in this work can compose
in a non-trivial manner. Finding such examples would provide new non-classical theories whose
informational properties could be characterised and contrasted to quantum theory. Alternatively
a proof that none of the Grassmann systems can compose would lend credence to the proposition
that there are few fully compositional general probabilistic theories.
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A Notation

SX System with pure states X
Sym(X) Symmetric group on set X
Diff(X) Group of diffeomorphisms on manifold X
Ωx Image of Ω map for en element x
ΩX The set Ωx,∀x ∈ X
conv (ΩX) Convex hull of ΩX
{(pi, xi)}i Ensemble of pure states
{(pi, xi)}i 7→

∑
i piΩxi Mixed state representation of an ensemble

FX set of OPFs (outcome probability functions) for system with pure states X
R[FX ] R[FX ] := {f̃(x)|f̃(x) = αf1(x) + βf2(x), α, β ∈ R, f1, f2 ∈ F}
f 7→ Λf Extension of an OPF to ensembles/mixed states
(Γ, V,F) Representation Γ : G→ GL(V ) of a group G on linear space V over F
m(V, Vi) Multiplicity of the sub-representation Vi in the representation V
HomG(V,W ) Linear space of G-equivariant maps from V to W
WC Complexification of a real representation W
VR Restriction to reals of a complex representation V
C(X,F) Continuous functions X → F for a topological space X and a field F
F[G/H] Vector space of functions G/H → F for G,H finite
VG G-module (carrier space of a representation of G)
IV Identity operator on V
V̄ Complex conjugate vector space
v̄ Complex conjugate of a vector v

B Background group theory and group representation theory
We briefly outline a few concepts from group representation theory which will be needed for the
proofs.

B.1 Representation theory basics
Definition 18 (Group representation). A representation of a group G is a homomorphism ρ : G→
GL(V ), where V is a finite dimensional vector space. When G is a Lie group this is a continuous
map. V is called the carrier space of the representation, or a G-module.

Let us denote by Hom(V,W ) the space of linear maps V →W .

Definition 19 (Intertwining operators). Let (ρ, V ) and (σ,W ) be representations ofG. An element
T ∈ Hom(V,W ) is called an intertwining operator if T ◦ ρ = σ ◦ T . We denote the linear space of
all such maps HomG(V,W ).

HomG(V,W ) is a subspace of Hom(V,W ).
Theorem 6 (Schur’s Lemma). Let (ρ, V,C) and (σ,W,C) be irreducible representations of G over
C. Then dim HomG(V,W ) = 1 when ρ ∼= σ and dim HomG(V,W ) = 0 otherwise.

This implies that HomG(V, V ) = CIV for irreducible V . Schur’s Lemma also has important con-
sequences for reducible representations. For instance consider the case where dim(HomG(V,W )) =
1 where V is irreducible and W is reducible. Then Schur’s Lemma entails that W must contain
the irreducible representation V exactly once, and that HomG(V,W ) = CIV .

B.2 Left regular and C(G) representations
Definition 20 (Left regular representation (finite group)). The left regular representation of a
finite group G is given by:

ρ : G→ GL(C[G]) , (45)
ρg |g′〉 = |gg′〉 , (46)
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where C[G] is a complex linear space spanned with orthonormal basis {|g〉}g∈G.

Here the action of G on C[G] is just permutation of the basis vectors.

Definition 21 (Left regular representation (compact group)). The left regular representation of
a compact topological group G is given by:

ρgf(g′) = f(g−1g′) , (47)

where f ∈ C(G,C).

ρ is a continuous homomorphism: ρgρhf(g′) = ρhf(g−1g′) = f(h−1g−1g′) = f((gh)−1g′) =
ρghf(g′).

B.3 Restricted and induced representations
B.3.1 Restricted representation

Definition 22 (Restricted representation). The restriction of a representation (ρ, V ) of a group
G to a subgroup H is a representation of H on V with operators ρ(h) : V → V for all h ∈ H. It
is denoted ρ|H .

In general the restriction of an irreducible representation G will give a reducible representation
H.

Example 2. Consider the fundamental representation of SO(3) on R3 and restrict to the subgroup
SO(2) with matrices: 1 0 0

0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 . (48)

This is a reducible representation of SO(2) containing the trivial and fundamental representation.

B.3.2 Induced representation

Definition 23 (Induced representation: G and H finite). A representation ρ : H → GL(V ) of a
subgroup H of G induces a representation of G given by the right regular representation of G on:

IndGH(V ) = {φ : G→ V |φ(hg) = ρ(h)φ(g),∀h ∈ H, g ∈ G} . (49)

The carrier space IndGH(V ) is the space of functions G→ V which are H-equivariant. We can
write it as IndGH(V ) ∼= HomH(G,V )

Definition 24 (Induced representation: G locally compact and H closed). A representation ρ :
H → GL(V ) of a subgroup H of G induces a representation (σ, IndGH(V )) of G:

IndGH(V ) = {φ : G→ V |φ(gh−1) = σ(h)φ(g),∀h ∈ H, g ∈ G, φ continuous} . (50)

The action of G on IndGH(V ) is given by σ(g)φ(g′) = φ(g−1g′) where σ : G→ GL(IndGH(V )).

B.4 Frobenius reciprocity
Theorem 7 (Frobenius reciprocity). [74, Theorem 7.47] Take G a finite group and H a subgroup
or G a Lie group and H a closed subgroup of G. Given V a representation of H and W a
representation of G, then as vector spaces

HomG(W, IndGH(V )) ∼= HomH(W|H , V ) . (51)

We define C[G/H] (with G,H finite) to be the space of functions G/H → C which forms a
vector space under pointwise addition and scalar multiplication. It carries a representation of G,
inherited from the action of G on G/H. For G/H a topological space, C(G/H,C) is the vector
space of continuous functions G/H → C, also carrying a representation of G.
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Corollary 3. For (G,H) finite the irreducible representation W occurs in C[G/H] with mul-
tiplicity equal to the multiplicity of the trivial representation in W|H . For (G,H) compact the
irreducible representation W occurs in C(G/H,C) with multiplicity equal to the multiplicity of
the trivial representation in W|H .

Proof. First observe for (G,H) finite IndGH(C) = C[G/H] and for (G,H) compact IndGH(C) =
C(G/H,C).

Let us consider the case where V is the trivial representation: V ∼= C. Then W|H contains a
trivial representation with multiplicity m(W|H , 1H). Using Schur’s lemma the only H-equivariant
map from W|H to V are identities on the trivial representations. In other words HomH(W|H ,C) =
Cm(W|H ,1H).

Similarly we have that HomG(W, IndGH(C)) = Cm(IndGH(C),W ) where m(IndGH(C),W ) is the mul-
tiplicity of W in IndGH(C). By Theorem 7 we obtain:

m(IndGH(C),W ) = m(W|H , 1) . (52)

C Representations over R
A representation Γ is a homomorphism G → GL(V ) for some vector space V . Typically V is
assumed to be a vector space over C, and many tools in representation theory apply to this case.
Schur’s lemma for instance holds for representations over the complex field, but not always for
those over R. For a Gelfand pair (G,H) the property of having a trivial irreducible representation
when restricted to H which is of multiplicity 0 or 1 holds for representations over C, and not
necessarily R.

In this section we explore some of the subtleties involved in dealing with representations over
R and prove some lemmas which will be needed for Theorem 2. First we present an example to
introduce some of the relevant concepts.

Example 3 (Fundamental representation of SO(2)). Consider the representation of SO(2) over
R2:

Γ(θ) =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
. (53)

This representation is irreducible over R2. However consider this representation acting on C2

(obtained from R2 by allowing complex linear combinations of the basis elements). Then there
exist the following matrices S and S−1:

S =
(
−i i
1 1

)
, S−1 =

(
i
2

1
2

− i
2

1
2

)
, (54)

such that Γ′(θ) = S−1Γ(θ)S, with

Γ′(θ) =
(
e−iθ 0

0 eiθ

)
. (55)

So the irreducible representation over R2 is reducible over C2. Consider once again the irreducible
representation Γ over R. Then this commutes with all matrices proportional to the identity, but
also matrices proportional to J , where J is:

J =
(

0 1
−1 0

)
. (56)

Moreover one can show that only matrices which are linear combinations of J and I commute with
the whole group.
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C.1 Definitions
Definition 25 (Real, complex and quaternionic structure). Consider an irreducible representation
ρ, V with V a complex vector space. Then V has a real structure if there exists an equivariant
anti-linear map j : V → V such that j2 = I, V has a quaternionic structure if there exists an
equivariant anti-linear map j : V → V such that j2 = −I. Otherwise V has a complex structure.

Lemma 9 (Descent map). Given a representation (Γ, V,C) of a group G over a complex space V
equipped with a real structure j the projection V → V j with kernel the j = −1 eigenspace of V is
a descent map. V j : {v ∈ V : j(v) = v} carries a real representation of G.

Proof. Consider V j : {v ∈ V : j(v) = v}. Observe that this set is closed under real linear
combinations, and not complex linear combinations. As such it has the structure of a real vector
space. Moreover V j ⊗R C ∼= V .

Since j(gv) = gj(v), V j carries an action of G. Moreover for v1, v2 ∈ V j we have agv1 + bgv2 =
agj(v1) + bgj(v2) = gj(av1 + bv2) = g(av1 + bv2) for a, b ∈ R. Therefore V j carries a real
representation of G.

Typically j is the conjugation map: j(v) = v̄. We see that it is equivariant when j(gv) = ḡv̄,
i.e. the representation g and ḡ are isomorphic.

Definition 26 (Complexification). A real vector space V has complexification VC := V ⊗C where
VC is a complex vector space. A basis for this complex vector space is v⊗1. dimR(V ) = dimC(VC).

We sometimes write VC ∼= V ⊕ iV .

Definition 27 (Restriction of scalars). A complex vector space V is isomorphic (as a real vec-
tor space) to the real vector space VR. dimR(VR) = 2 dimC(V ). If {ei} is a basis for V , then
{{ei}, {iej}} is a basis for VR.

Consider V a complex vector space and W a real vector space.

(VR)C ∼=C V ⊕ V̄ , (57)
(WC)R ∼=R W ⊕W , (58)

where V̄ is the complex conjugate vector space of V . V̄ has the same elements and addition rule
as V , but scalar multiplication is given by λ · v = λ̄V .

Theorem 8. [73, Theorem 3.37, p.41] For an irreducible representation (ρ,W,R) the action of G
extends naturally to WC. It has one of the following decompositions:

1. WC ∼= V for a complex irreducible representation V if and only if V has a real structure.

2. WC ∼= V ⊕ V̄ for a complex irreducible representation V if and only if V has a complex
structure.

3. WC ∼= V ⊕ V for a complex irreducible representation V if and only if V has a quaternionic
structure.

Every real irreducible representation (ρ,W,R) can be obtained from irreducible complex rep-
resentations of one of the above three forms, by taking the descent map W j

C.

Corollary 4. Consider the set of all irreducible complex representations of a group G, these are the
representations {V ri } of real type, the representation {V cj } complex type and the representations
{V qj } of quaternionic type. The set of all real irreducible representations has a unique representa-
tive element in {V ri }

⋃
{V ci /∗}

⋃
{V qj }, where {V ci /∗} is the set of complex representations where

conjugate representations are equivalent.
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C.2 Lemmas
In the following section G is assumed finite or compact.

Lemma 10. For a Gelfand pair (G,H) all irreducible representations (Γ, V,C) with an H-invariant
subspace have either a real or complex structure.

Proof. For (G,H) finite every representation (Γ, V,C) with an H-invariant subspace occurs exactly
once in the decomposition of C[G/H] by Corollary 3. C[G/H] has a real structure (compatible
with the group action) and decomposes as R[G/H]⊕ iR[G/H] ∼= R[G/H]C.

By Theorem 8 the complexification map R[G/H] → R[G/H]C ∼= C[G/H] sends every real
irreducible representation W in R[G/H] to either:

1. An irreducible representation WC ∼= V in C[G/H] if W is real.

2. A reducible representation WC ∼= V ⊕ V̄ in C[G/H] if W is complex.

3. A reducible representation WC ∼= V ⊕ V in C[G/H] if W is quaternionic.

However since C[G/H] only contains single copies of irreps it cannot contain V ⊕ V and hence no
irrep W can be of quaternionic form.

For (G,H) compact every representation (Γ, V,C) with an H-invariant subspace occurs exactly
once in the decomposition of C(G/H,C) by Corollary 3. C(G/H,C) is the complexification of
C(G/H,R) and the same proof as for the finite case follows through.

Lemma 11. For (G,H) a Gelfand pair and (Γ, V,R) an irreducible representation over R, then
the following holds:

1. If Γ is irreducible over VC then the (real) dimension of the H-invariant subspace in V is the
same as the (complex) dimension of the H-invariant subspace in VC: dimR(HomH(Γ, 1H) =
dimC(HomH(Γ, 1H). It is either 0 or 1.

2. If Γ is reducible over VC then the (real) dimension of the H-invariant subspace in V is twice
that of the (complex) dimension of the H-invariant subspace in VC: dimR(HomH(Γ, 1H) =
2 dimC(HomH(Γ, 1H). It is either 0 or 2.

Proof. 1. VC = V ⊗R C. The H-invariant complex subspace V ′H of VC is 0 or 1 dimensional.
Consider the 1 dimensional case, then V ′H is spanned by a vector v′H = vH ⊗R γ. Now since
V ∼= V jC for the map j(v′) = v̄′, we have that under the descent map the subspace V ′H is
mapped to the (real) one dimensional subspace VH of V , spanned by vH ⊗R γ with γ ∈ R.
Any vector v such that j(v′) = v′ which is not in V ′H will be mapped to a vector in V which
is not H-invariant (since j is equivariant). As such the subspace of all H-invariant vectors
in V is just VH and is one dimensional. The case where V ′H is of dimension 0 is immediate.

2. By Lemma 10 if Γ is irreducible over R but reducible over C then it has a complex structure
and is of the form ρ⊕ρ∗ where ρ and ρ∗ are irreducible. Since (G,H) is a Gelfand pair either
both ρ and ρ∗ contain a one dimensional H-invariant complex subspace or neither do. Let
us consider the case where they both do.

Γ′ =
(
ρ 0
0 ρ∗

)
. (59)

We use a matrix representation where the entries of ρ∗ are the complex conjugates of those
of ρ. Let vi be a basis for V , then

v+
i =

(
vi
v̄i

)
, v−i =

(
vi
−v̄i

)
, (60)

form a basis for V ⊕ V̄ . By also considering the elements:

iv+
i =

(
ivi
iv̄i

)
, iv−i =

(
ivi
−iv̄i

)
, (61)
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we obtain a real basis for V ⊕ V̄ , i.e. any w ∈ V ⊕ V̄ is a real linear combination of the above
vectors.
Let (

v
0

)
, (62)

be an H invariant vector, then so is: (
0
v̄

)
. (63)

All H-invariant vectors are of the form:

vH =
(
αv

β̄v̄

)
, (64)

since the H invariant subspaces in V and V̄ are one dimensional.
Now we consider the change of basis given by matrices S and S−1:

S =
(
−iI iI
I I

)
, S−1 =

(
iI
2

I
2

− iI2
I
2

)
, (65)

and apply SΓ′S−1 to obtain

Γ =
(

ρ+ρ∗
2

i(ρ∗−ρ)
2

i(ρ−ρ∗)
2

ρ+ρ∗
2

)
, (66)

has real valued entries. The action of S on the basis is:

Sv+
i = w+

i =
(
i(v̄i − vi)
vi + v̄i

)
Sv−i = w−i =

(
−i(vi + iv̄i)
vi − v̄i

)
, (67)

Considering the real basis elements we also obtain:

iw+
i =

(
vi − v̄i
i(vi + v̄i)

)
, iw−i =

(
vi + v̄i
i(vi − v̄i)

)
. (68)

Under the real structure j(v) = v̄ the basis vectors w+
i and iw−i are +1 eigenvectors of j,

and form a basis for V j ∼= Rn. The other basis vectors are −1 eigenvectors and form a basis
for iR. Since Γ = Γ̄ we have that j(v) = v =⇒ j(gv) = gv and so the subspace V j is closed
under G.
The image of the H-invariant vectors under S is:

SvH(α, β) = wH(α, β) =
(
−iαv + iβ̄v̄

αv + β̄v̄

)
. (69)

These are invariant under j for β = α. Any such j invariant vector is a real linear combination
of w1

H = wH(α = 1, β = 1) and w2
H = wH(α = i, β = i). As such the H-invariant subspace

in V j is two dimensional with basis vectors written out explicitly as:

w1
H =

(
i(v̄ − v)
v + v̄

)
, (70)

w2
H =

(
v + v̄
i(v − v̄)

)
. (71)
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Corollary 5. For (G,H) a Gelfand pair and Γ an irreducible representation over Rn, then all
H-invariant vectors are related by an invertible transformation which commutes with Γ.

Proof. In the case where Γ is complex irreducible this is immediate from Schur’s lemma. In the
case where Γ is complex reducible, then its complexification is reducible:

Γ′ =
(
ρ 0
0 ρ∗

)
. (72)

By Schur’s lemma all matrices which commute with the whole group are of the form:

M ′(α, β) =
(
αI 0
0 βI

)
. (73)

Using the transformation S of the previous proof one obtains:

M(α, β) = SM ′(α, β)S−1 =
(

α+β
2 I i(β−α)

2 I
i(α−β)

2 I α+β
2 I

)
, (74)

which all commute with Γ. This is real valued for α = β = 1, α = −β = i and all real linear
combinations of these matrices. M(1, 1) = I and M(i,−i) = J where

J =
(

0 −1
1 0

)
(75)

Consider the two basis H invariant vectors w1
H and w2

H of Equation (70). These are related by
−M(i,−i). Therefore all linear combinations of these are related by real linear combinations of
M(1, 1) and M(i,−i).

Corollary 6. For Γ,W an irreducible representation over Rn, then the following holds:

1. If WC is irreducible then HomG(Rn,Rn) = R . The only equivariant homomorphisms are
scalar multiples of the identity.

2. IfWC is reducible into irreducible representations with complex structure then HomG(Rn,Rn) ∼=
R2.

Lemma 12. For a Gelfand pair of finite groups (G,H), the representation of G acting on R[G/H]
contains exactly once every irreducible representation of G which has a trivial sub-representation
when restricted to H and does not contain any other representations.

Proof. By Corollary 3 C[G/H] contains every irreducible representation W with an H invariant
subspace with multiplicity 1, if an irreducible is of complex type then its complex conjugate is
necessarily also in C[G/H], since if W has a H-invariant vector so does W ∗.

We have C[G/H] = R[G/H]C which contains only irreducible representations with complex or
real structures by Lemma 10. Therefore we have:

C[G/H] =
⊕

Vi ⊕
⊕

(Uj ⊕ Ūj) , (76)

where Vj are the irreducible representations of real type, and Uj are irreducible representations of
complex type. There are no degeneracies.

R[G/H] decomposes into real irreducible representations Wi.

R[G/H] =
⊕
i

Wi , (77)

C[G/H] = R[G/H]C = R[G/H]⊗ C =
⊕
i

(Wi ⊗ C) . (78)

Hence every irreducible representation Wi is sent to (Wi)C in C[G/H]. By Theorem 8 these are
of the form V for V irreducible of real type, V ⊕ V̄ for V of complex type and V ⊕ V for V of
quaternionic type, where we know by Lemma 10 that this latter case does not occur.
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Combining the above: ⊕
i

(Wi ⊗ C) ∼=
⊕

Vj ⊕
⊕

(Uk ⊕ Ūk) , (79)

where every real irreducible subspace (Wi ⊗ C) corresponds to either a subspace Vj or (Uk ⊕ Ūk).
Since these occur with multiplicity 1, every (Wi ⊗ C) occurs with multiplicity one in R[G/H]C.
This implies that every Wi occurs with multplicity 1 in R[G/H].

Lemma 13. For a Gelfand pair (G,H), where G compact and H a closed subgroup, the rep-
resentation of G acting on C(G/H,R) contains exactly once every irreducible representation of
G which has a trivial sub-representation when restricted to H and does not contain any other
representations.

Proof. Direct from proof of Lemma 12 replacing C[G/H] with C(G/H,C) and R[G/H] with
C(G/H,R)

D Convex linear state space
In this appendix we derive the convex linear state space associated to a system SX = {X,G,FX}.

Definition 28 (Preparation space). The preparation space of SX = {X,G,FX} consists of the
space of all ensembles {(pi, xi)}i for X finite, which is affinely equivalent to the simplex over the
set X (i.e. with the simplex with |X| extremal points, corresponding to the Dirac measures on X).
When X is a topological space, the preparation space consists of all positive normalised measures
on X, which is the generalised simplex M+

1 (X)

In some treatments [75] a mixture space is considered, where the mixing operation applies
also to ensembles. For example one can take j ensembles {(pji , x

j
i )}i to prepare an ensemble

{(pj , {(pji , x
j
i )}i)}j . In our case we can consider ensembles of ensembles by setting {(pj , {(pji , x

j
i )}i)}j =

{(pjpji , x
j
i )}ij which is an ensemble of pure states and hence in the preparation space. We note that

in a mixture space {(pj , {(pji , x
j
i )}i)}j and {(pjpji , x

j
i )}ij are two distinct elements, even if there can

be no affine functional which separates them, by definition. In the “maximally separated” classical
state space, these two ensembles are always equivalent. Therefore there is no loss of generality
when considering a preparation space, as opposed to a mixture space.

D.1 Proof of Theorem 1
Proof. We consider a system SX = {X,G,FX} where R[FX ] is finite dimensional as a linear
space. We consider only a preparation space of finite ensembles for this proof (one can extend to
continuous ensembles, but for finite dimensional systems this is not necessary). One can extend
the OPFs to the preparation space:

P (f |{(pi, xi)}i) =
∑
i

pif(xi) . (80)

Two ensembles {(pi, xi)}i and {(p′j , x′j)}j where P (f |{(pi, xi)}i) = P (f |{(p′j , x′j)}j) for all f ∈ F
are equivalent ensembles. We can define the linear form Ωx ∈ R[FX ]∗: Ωx(f) = f(x) ∀f ∈ FX .

P (f |{(pi, xi)}i) =
∑
i

pif(xi) = (
∑
i

piΩxi)(f) . (81)

Hence to the ensemble {(pi, xi)}i we associate the mixed state ω =
∑
i piΩxi , which is naturally

an element of R[FX ]∗. Any two indistinguishable ensembles are mapped to the same mixed state.
Now we can map the OPFs to linear functionals Λf in (R[FX ]∗)∗:

Λf (ω) = P (f |ω), ∀ω ∈ conv(ΩX) . (82)
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By assumption Ωx → Ωgx is a continuous group action when G is a continuous group. Moreover
it extends to conv(ΩX) as follows ∑

i

piΩxi
g−→
∑
i

piΩgxi . (83)

This uniquely extends to span(ΩX) ∼= R[FX ]∗ and hence Γ : G → GL(R[FX ]∗) is a group repre-
sentation.

D.2 Proof of Lemma 1
Proof. Let Ω,Γ,Λ be an embedding of SX = {X,G,FX} into (V, V ∗) with V ∼= Rd.

ΩX can be generated by applying Γg to a reference vector Ωx0 for all g ∈ G. Since G is compact
the matrices Γg can be made orthogonal. Hence every Ωx = ΓgΩx0 for some g ∈ G is such that
ΩTxΩx = ΩTx0

Ωx0 . All Ωx are such that u · Ωx = 1 with u the unit effect, therefore ΩX lies in the
affine span of ΩX which is a d− 1 dimensional hyperplane. This is the hyperplane composed of all
v ∈ V such that u · v = 1. Every Ωx can be written as:(

1
Ω̃x

)
(84)

in a basis where the first element corresponds to the subspace spanned by the unit effect. Observe
that ΓG acts trivially on the subspace spanned by the unit effect, and hence decomposes as Γ = 1+Γ̃
where 1 is the trivial representation. Observe that the maximally mixed state ω =

∫
g∈G ΓgΩxdg

for an arbitrary Ωx is invariant under G. Hence it lies fully in the subspace spanned by the unit
effect. Therefore ω can be written as: (

1
ω̃

)
(85)

where ω̃ is the zero vector.
Restricting our attention to the affine span of Ω, i.e. ignoring the unit effect subspace we

observe that the matrices Γ̃ are orthogonal, hence Γ̃gΩ̃x0 lies on a d− 1 sphere centred on ω.
Since ΩX lies on a hypersphere, this implies that no point in ΩX lies inside conv(ΩX), proving

the lemma.

D.3 Proof of Lemma 2
Proof. In the representation in terms of fiducial OPFs the vectors conv(ΩX) are bounded. Moreover
they are closed, since any limit of physically realisable extremal preparations is indistinguishable
from an extremal physical preparation. Hence conv(ΩX) is a closed and bounded subset of R[FX ]∗
(isomorphic to Rn by the assumption of “Possibility of state estimation using a finite outcome
set”), and by the Heine-Borel theorem it is compact in the induced (subspace) topology.

Since conv(ΩX) is bounded this implies that the absolute value of the matrix entries of conv(ΓG)
are also bounded. Moreover we assume that from a physical point of view the space of transforma-
tions conv(ΓG) ⊂ Rn must be topologically closed (in the vector space topology of the space Rn2 of
linear transformations Rn → Rn), since any mathematical transformation which can be arbitrarily
well approximated by physical transformations is indistinguishable from a physical transforma-
tion. This implies that the set conv(ΓG) ⊂ Rn2 is bounded and closed, and hence compact by the
Heine-Borel theorem.

D.4 Proof of Theorem 2
Proof. i. Take S = {X ∼= G/H,F} with (G,H) a Gelfand pair and R[F ] finite. To every x ∈ X we
associated a linear functional Ωx ∈ R[F ]∗. Let us call Γ the representation of G acting on R[F ]∗.
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In general Γ may be reducible:

Γ =
⊕
i

Γi . (86)

We can also decompose states:

Ωx =
⊕
i

Ωix . (87)

We have the following equality:

ΓgΩx = Ωgx . (88)

Since x is stabilized by Hx (where Hx is stabilizer of x: hx = x for all h ∈ Hx) we have

ΓhΩx = Ωx, ∀h ∈ H . (89)

This implies

ΓihΩix = Ωix, ∀h ∈ H . (90)

This implies that each Γi|H has at least one trivial sub-representation.

ii. Let us consider a representation of G acting on a real vector space V :

Γ =
⊕
i

Γi (91)

such that each Γi has at least one H-invariant subspace. Take a reference vector v ∈ V which has
support only in the H-invariant subspaces, and has support in each subspace Vi. By applying ΓG
to v we obtain ΩG/H ∈ V , where we observe that conv

(
ΩG/H

)
has ΩG/H as extremal points, since

ΓG can be expressed in orthogonal matrices and hence ΩG/H ⊂ Sn (a hyper-sphere in the affine
span of the normalised states, centred on the maximally mixed state) as proven in Lemma 1. By
taking the convex set of all linear functionals which give values in [0, 1] we obtain ΛF a probabilistic
structure.

iii. Since (G,H) is a Gelfand pair, all real irreducible representations Vi are such that any pair of
H-invariant vectors are related by an invertible linear transformation Li. For a representation:

Γ =
⊕
i

Γi , (92)

take two H-invariant vectors v and v′ which have support in every irreducible subspace. These are
related by a transformation L: Lv = v′ which commutes with the group action. We call their orbits
under ΓG ΩX and Ω′X . Since L commutes with the group action LΩX = Ω′X . Let us consider the
unrestricted effect spaces for both: ΛF and Λ′F ′ . Λ′F ′(Ω′X) = Λ′F ′(LΩX). The set of all effects on
LΩX is just ΛFL−1, hence Λ′F ′ = ΛFL−1.

iv. Let us take the case where (G,H) is not a Gelfand pair. There exist (complex) irreducible
representations W such that W|H contains more than one trivial sub-representation.

One can obtain a real irreducible representation from W by one of the three following methods:

(a) Restriction to R of W if W is of real type.
(b) Restriction to R of W ⊕ W̄ if W is of complex type.
(c) Restriction to R of W ⊕W if W if of quaternionic type

In each case the real irreducible representation V obtained is such that it has invariant H-
vectors which are not related by a transformation which commutes with the group representation.
Let us fix a basis and consider the matrices Γg acting on V . Let us pick two H-invariant vectors
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v and v′ such that there is no transformation which commutes with the group action such that
Lv = v′.

We now show that v and v′ can be used (along with ΓG) to define two tomographically inequiv-
alent probabilistic structures, associated with the same carrier space V .

Let us call x0 an element in X stabilised by H and define Ωx0 = v and Ω′x0
= v′. Furthermore

let us define Ωgx0 = ΓgΩx0 for every g ∈ G (and similarly for Ω′gx0
). Observe that for any g1, g2

such that g1x0 = g2x0 we have Ωg1x0 = Ωg2x0 (and similarly for Ω′g1x0
= Ω′g2x0

). This defines the
maps Ω : X → V and Ω′ : X → V . We call ΩX and Ω′X the orbits of Ωx0 and Ω′x0

under ΓG.
We call ΛF ∈ V ∗ the set of all linear functionals giving values in [0, 1] on conv (ΩX) and Λ′F ′ ∈

V ∗ the set of all linear functionals giving values in [0, 1] on conv (Ω′X). Necessarily span(ΛF ′) =
span(Λ′F ′) = V ∗. ΛF and Λ′F ′ define two OPF sets FX and F ′X respectively.

We have constructed two systems (X,G,FX) and (X,G,F ′X) with associated maps (Ω,Γ,Λ)
and (Ω′,Γ,Λ′) respectively, associated to the same representation Γ. We now show that these
two systems are tomographically inequivalent, i.e. the mixed states conv (ΩX) and conv (Ω′X) are
not isomorphic. In other words there is no linear invertible transformation mapping conv (ΩX) to
conv (Ω′X).

Consider an invertible linear transformation such that LΩX = Ω′X (if such a transformation
exists, then it is well defined on the convex hulls and maps conv (ΩX) to conv (Ω′X)). This implies
that LΩx = Ω′gx for some fixed g ∈ G and for all pure states x ∈ X. Let us redefine L 7→ Γg−1

such that the equality LΩx = Ω′x for all x ∈ X holds.
Since the state spaces are transitive we have Ωx = Ωgx0 = ΓgΩx0 for reference state x0, and

Ω′x = Ω′gx0
= ΓgΩ′x0

. Using LΩx = Ω′x ∀x ∈ X we obtain:

LΓgΩx0 = ΓgΩ′x0
,∀g ∈ G . (93)

Moreover from LΩx0 = Ω′x0
we obtain

LΓgΩx0 = ΓgLΩx0 ,∀g ∈ G . (94)

Hence there is a transformation L which commutes with the group action such that LΩx0 = Ω′x0
.

This is in contradiction with the assumption that the two reference states were not related by such
a transformation.

E Deformation of probabilistic structure
E.1 Proof of Theorem 3
Proof. Let Γi : G → GL(V i) be the representation of G associated to F i, let Ωi : X → V i be
the representation of pure states, and let Λi : F i → (V i)∗ be the representation of OPFs, for
i = 0, 1. We can decompose the group action into (real) irreducible representations as Γi =

⊕
j Γij ,

V i =
⊕

j V
i
j , Γij : G → GL(V ij ), where j = 0, 1, . . . Recall that there must be one (and only one)

trivial irrep, which we label by j = 0. Also, we can decompose the representation of pure states
Ωi =

⊕
j Ωij and Ωij : X → V ij , and the representation of OPFs Λi =

⊕
j Λij and Λij : Fj → (V ij )∗.

Within this proof we follow the convention that

〈Ωij(x),Ωij(x)〉j = 1 , (95)

for all i, j, x, where 〈·, ·〉j is a group-invariant scalar product. This scalar product provides an
isomorphism (V ij )∗ ∼= V ij . Using this decomposition we can write any f i ∈ F i as

f i(x) = ci0(f i) +
∑
j≥1
〈Λij(f i),Ωij(x)〉j , (96)

where we define
cij(f i) = 〈Λij(f i),Λij(f i)〉

1/2
j . (97)

Accepted in Quantum 2021-05-11, click title to verify. Published under CC-BY 4.0. 35



Schur’s Lemma tells us that any non-trivial irreducible representation Γ : G → GL(V ) satisfies∫
G
dg Γ(g) = 0. Therefore, only the trivial rep survives the following average

∫
G

dg f i(gx) =
∫
G

dg

ci0(f i) +
∑
j≥1
〈Λij(f i),Γij(g) Ωij(x)〉j

 = ci0(f i) . (98)

Next we use another consequence of Schur’s Lemma, namely that for any pair of (real) inequivalent
irreducible representations Γ : G→ GL(V ) and Γ′ : G→ GL(V ′) we have∫

G

dg 〈Λ,Γ(g)Ω〉 〈Λ′,Γ′(g)Ω′〉 = 0 , (99)

for any vectors Λ,Ω in V and any vectors Λ′,Ω′ in V ′. Also, if the real irreducible representation
Γ : G→ GL(V ) has complexification with real structure then∫

G

dg 〈Λ,Γ(g)Ω〉2 =
∫
G

dg 〈Λ,Γ(g)Ω〉 〈Ω,Γ(g)†Λ〉 (100)

=
∫
G

dg 〈Λ,Γ(g)Ω〉 〈Ω,Γ(g−1)Λ〉 (101)

= 1
d
〈Λ,Λ〉 〈Ω,Ω〉 , (102)

where d is the dimension of V and Λ,Ω are any vectors in V .
The case where the real irreducible representation Γ : G → GL(V ) acts on the complexified

space CV ∼= W ⊕ W̄ as the direct sum of two complex irreducible representations γ ⊕ γ̄, with
complex structure and one being the dual of the other. For what follows we are interested in
elements of W ⊕ W̄ of the form Ω = ω⊕ ω̄ where ω̄ is the complex conjugate of ω, and analogously
for Λ = λ⊕ λ̄. Proceeding as above and using Schur’s Lemma we obtain∫

G

dg 〈Λ,Γ(g)Ω〉2 =
∫
G

dg 〈Λ,Γ(g)Ω〉 〈Ω,Γ(g)†Λ〉 (103)

=
∫
G

dg 〈Λ,Γ(g)Ω〉 〈Ω,Γ(g−1)Λ〉 (104)

=
∫
G

dg
(
〈λ, γ(g)ω〉+ 〈λ̄, γ̄(g)ω̄〉

) (
〈ω, γ(g−1)λ〉+ 〈ω̄, γ̄(g−1)λ̄〉

)
= 2
d
〈λ, λ〉〈ω, ω〉+ 2

d
〈λ̄, λ̄〉〈ω̄, ω̄〉 (105)

where d/2 is the dimension of W (and W̄ ). The structure of the vector Ω implies

〈Ω,Ω〉 = 〈ω, ω〉+ 〈ω̄, ω̄〉 = 2〈ω, ω〉 = 2〈ω̄, ω̄〉 , (106)

and analogously for Λ. Which in turn implies∫
G

dg 〈Λ,Γ(g)Ω〉2 = 1
d
〈Λ,Λ〉〈Ω,Ω〉 . (107)

In summary, the above average is independent of whether the complexification of representation Γ
is reducible or not.

The remaining case, where W has quaternionic structure, need not be considered, because
Lemma 7 proves that it never appears in Gelfand systems. Next we use the identities (99) and
(107), the normalisation convention (95) and definition (97) to calculate the following average∫

G

dg [f i(gx)]2 = ci0(f i)2 +
∑
j≥1

1
dij
〈Λij(f i),Λij(f i)〉 〈Ωij(x),Ωij(x)〉j

=
∑
j

cij(f i)2

dij
, (108)

Accepted in Quantum 2021-05-11, click title to verify. Published under CC-BY 4.0. 36



where dij = dimV ij .
Now, suppose that F0 and F1 are unrestricted and tomographically-inequivalent probabilistic

structures of (G,X). Then, without loss of generality, we assume that irrep Γ0
1 is inequivalent to

irrep Γ1
j for all j. Also, let us choose f0 ∈ F0 so that its corresponding vector Λ0(f0) only has

support on the subspaces j = 0, 1, that is

f0(x) = c0
0(f i) + 〈Λ0

1(f0),Ω0
1(x)〉1 . (109)

This choice is possible because the probabilistic structure F0 is unrestricted. Also, due to the fact
that we are obtaining a lower bound for the distance D(F0,F1), we do not need to maximise over
OPFs f0 ∈ F0, it is enough to pick any one. Next, let us lower-bound the distance between the
chosen OPF f0 ∈ F0 and any given OPF f1 ∈ F1 as

dist(f0, f1) = max
x∈X
|f0(x)− f1(x)| ≥

∫
G

dg
∣∣f0(gx0)− f1(gx0)

∣∣
≥
∫
G

dg
[
f0(gx0)− f1(gx0)

]2
, (110)

for any x0 ∈ X. This bound is independent of whether the probabilistic structures F0 and F1 are
equivalent or not. Now, using Schur’s lemma as in (98) and (108) we obtain

dist(f0, f1) ≥
1∑
j=0

c0
j (f0)2

d0
j

+
∑
j

c1
j (f1)2

d1
j

− 2 c0
0(f0) c1

0(f1)

= c0
1(f0)2

d0
1

+
∑
j≥1

c1
j (f1)2

d1
j

+
[
c0

0(f0)− c1
0(f1)

]2
≥ c0

1(f0)2

d0
1

+
∑
j≥1

c1
j (f1)2

d1
j

, (111)

for any f1 ∈ F1, therefore

D(F0,F1) ≥ min
f 1∈F1

dist(f0, f1) ≥ c0
1(f0)2

d0
1

. (112)

Again, using the fact that we can pick any f0 ∈ F0, we further restrict (109) to

f0(x) = 1
2 + 1

2 〈Ω1(x0),Ω1(x)〉 ∈ [0, 1] , (113)

for any fixed state x0 ∈ X. The above f0 is an OPF because the normalisation condition (95)
implies that it takes values within [0, 1]. This chosen OPF (113) has c0

1(f0) = 1/2, which when
substituted in (112) gives

D(F0,F1) ≥ 1
4d0

1
, (114)

which is the statement of Theorem 3.

E.2 Proof of Theorem 4
E.2.1 Proof of Theorem 4 i.

Proof. Let F0 of dimension dimR[F0] = d0 be an unrestricted probabilistic structure of (G,H)
with associated representation Γ0

G such that all H-invariant vectors are related by invertible trans-
formations which commute with Γ0

G.
Consider two such vectors vH and v′H where v′H = LvH , with L ∈ GL(R[F0]). We can generate

state spaces with extremal points G/H by applying ΓG to the reference states:

ΩG/H = ΓGvH , (115)
Ω′G/H = ΓGv′H = ΓGLvH = LΩG/H . (116)
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Both the state spaces conv
(
ΩG/H

)
and conv

(
Ω′G/H

)
are related by an invertible transformation

and hence are equivalent as convex sets. In other words they correspond to tomographically equiv-
alent probabilistic structures. Since we are only considering unrestricted probabilistic structures
they both generate the same state space corresponding to F0 (the linear transformation L is just a
change of co-ordinates, including rescalings). For probabilistic structures whose H-invariant vec-
tors are all related to each other by invertible transformations which commute with ΓG there is a
unique unrestricted probabilistic structure associated to ΓG.

Therefore the only other probabilistic structures F1 such that dimR[F1] = d0 (if they exist) are
associated to different representations Γ1

G. The largest dimensional irreducible representation they
can differ by is of dimension d0 − 1 (corresponding to the case where either Γ0 or Γ1 consists of a
d0 − 1 dimensional irreducible representation and the trivial and the other representation consists
of the trivial representation and an inequivalent d0−1 irreducible representation or some reducible
representation of total dimension d0 − 1). Therefore by Theorem 3 the distance between the two
probabilistic structures is lower bounded by 1

4(d0−1) . Any other possibility (i.e. both consist of a
trivial representation and different reducible ones would give a lower bound which is higher).

E.2.2 Proof of Theorem 4 ii.

Let F0 of dimension dimR[F0] = d0 be an unrestricted probabilistic structure of (G,H) with asso-
ciated representation Γ0

G such that there are pairs of H-invariant vectors not related by invertible
transformations which commute with Γ0

G. These H-invariant vectors belong to an H-invariant
subspace VH .

Take ΩH ∈ VH and ΩtH = LtΩH where Lt = eiRt with R ∈ gl (VH). Take ΩεH for small ε > 0 .
We then expand:

ΩεH = (I + εR+ ...)ΩH = ΩH + εRΩH +O(ε2) . (117)

We consider a first order approximation and ignore terms of order ε2 and higher.
The image of a point x = gH is ΩgH = ΓgΩH and ΩεgH = ΓgΩεH :

ΩεgH = ΩgH + εΓgRΩH . (118)

Let us take an OPF f0 ∈ F0 with associated effect Λf 0 and an OPF f1 ∈ Fε with associated effect
Λεf 1 :

f0(gH) = Λf 0 · ΩgH ,

f1(gH) = Λεf 1 · ΩεgH .

dist(f0, f1) = max
x∈X
|f0(x)− f1(x)| = max

x∈X
|Λf 0 · Ωx − Λεf 1 · Ωεx| (119)

= max
g∈G
|(Λf 0 − Λεf 1) · ΩgH − εΛεf 1 · (ΓgRΩH)| . (120)

For a fixed f0 we want to find an f1 which minimizes the distance.

min
f 1∈Fε

dist(f0, f1) = min
f 1∈Fε

max
g∈G
|(Λf 0 − Λεf 1) · ΩgH − εΛεf 1 · (ΓgRΩH)| . (121)

We observe that that the transformations Γg and R leave the normalisation degree of freedom
(component in the normalisation subspace V0) unchanged, therefore if we take f0 = u0 then we
can choose f1 = u1 to obtain dist(u0,u1) = 0.

For any effect with support outside the normalisation subspace V0 the expression (121) is not
linear in ΩgH (due to the last term) and as such there is no choice of Λf 1 which will make (Λf 0−Λεf 1)
cancel out with εΛεf 1ΓgRΩH for all g ∈ G, which is needed to make the distance go to 0. Hence
for f0 not proportional to u0 we have the bound:

min
f 1∈Fε

dist(f0, f1) > 0 .
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We observe that every Ωεx is ε close to Ωx, therefore any Λf 0 which is not ε−tight on ΩX (i.e. which
gives values in [0+ ε, 1− ε]) will be valid on ΩεX . Let us minimize the distance minf 1∈Fε dist(f0, f1)
for the choice of f0 not ε−tight. We observe that by choosing Λεf 1 = Λf 0 we obtain:

max
g∈G
|(Λf 0 − Λεf 1) · ΩgH − εΛεf 1 · (ΓgRvH)| = |εΛεf 1 · (ΓgRΩH)| ≤ ε , (122)

which implies that

min
f 1∈Fε

dist(f0, f1) ≤ ε . (123)

Finally if f0 is ε−tight (i.e. has some values in [0, ε] or [1 − ε, 1]), one can take Λf 0 and add ε
noise (i.e. take Λ′f 0 = (1− ε)Λf 0 + εΛu0) in order to obtain an effect Λ′f 0 which is valid on ΩεX :

max
g∈G
|(Λf 0 − Λ′f 0) · ΩgH − εΛ′f 0 · (ΓgRΩH)| (124)

= min
f 1∈Fε

max
g∈G
|ε− εΛεf 1 · (ΓgRΩH)| ≤ 2ε . (125)

Therefore

min
f 1∈Fε

dist(f0, f1) ≤ 2ε . (126)

This, together with Equation (123), implies that

max
f 0∈F0

min
f 1∈Fε

dist(f0, f1) ≤ 2ε . (127)

E.3 Proof of Lemma 4
Proof. Two convex sets S0 and S1 with pure states X linearly embedded in isomorphic spaces
V0 ∼= V1 ∼= Rd (i.e. for which there exist injective maps Ω0 : X → Rd and Ω1 : X → Rd
and Si = conv(Ωi(X))) can be continuously deformed one into the other if there exists a path
connected map M0→t : Ω0

X → ΩtX in the space Fd (of Ω maps with codomain Rd) parametrised
by t ∈ [0, 1]. M0→t

(
Ω1
X

)
= ΩtX is an embedding of X in Rn for every t ∈ [0, 1]. We observe that

M0→t is defined just on the extremal points of Ω0
X (and is invertible), but cannot be extended to

conv
(
Ω0
X

)
by Lemma 3. A connected path on Fd (the space of Ω maps with codomain Rd) is a

continuous map from [0, 1] ⊂ R (with the usual topology) to Fd (with the topology inherited from
the metric Dsym).

We now show that for any non-rigid probabilistic structure one can find probabilistic structures
which can be continuously deformed into one another, whilst rigid probabilistic structures cannot
be continuously deformed.

In the following we make use of the isomorphism X ∼= G/H and label points in X by their
stabilizer subgroup. The point x with stabilizer subgroup H is written as H, and any point x′ = gx
is written as gH.

A probabilistic structure FX is non-rigid if the associated representation Γ contains an ir-
reducible spherical representation Γ with inequivalent H-invariant vectors v0

H and v1
H . Two H-

invariant vectors v0
H and v1

H are inequivalent if they are not related by an invertible transformation
which commutes with ΓG.

We show that a non-rigid probabilistic structure F0
X associated to an irreducible representation

Γ can be continuously deformed. The case of a non-rigid probabilistic structure F0
X associate to

a reducible representation follows since one can deform the full reducible probabilistic structure
by deforming the subspace of F0

X acted on by the irreducible representation with inequivalent
H-invariant vectors.

The embedded pure state Ω0
X associated to F0

X can be generated as Ω0
X = {Γgv0

H |g ∈ G},
where v0

H is an H-invariant vector. Let v1
H be an inequivalent H-invariant vector. Any vector in

span(v0
H , v

1
H) is H-invariant, moreover any two vectors in span(v0

H , v
1
H) which are not proportional

will generate inequivalent state spaces under ΓG. Let us call Ω1
X = {Γgv1

H |g ∈ G} the embedded
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sets of pure states generated from the reference state v1
H . We now show that Ω0

X can be continuously
deformed to Ω1

X .
Consider a rotation R ∈ GL(span(v0

H , v
1
H)) such that Rv0

H = v1
H .

Let us write R(t) = eiKt with R(1) = R for some non-unique generator K.
We now show the existence of a connected path in Fd from Ω0

X to Ω1
X , the two sets pure states

generated by two non-equivalent H-invariant vectors v0
H and v1

H .
Let us define ΩtX the state space generated by the H-invariant reference vector vtH = R(t)v0

H .
We now define γ : [0, 1]→ Fd, where γ(t) = ΩtX . We observe that γ(0) = Ω0

X and γ(1) = Ω1
X .

We now show that γ is a continuous function (where Fd has the topology induced by the metric
Dsym of Equation (18))

γ is continuous at a point t0 ∈ [0, 1] if for every ε > 0 it is the case that if Dsym(Ωt0X ,ΩtX) < ε
(for t ∈ [0, 1]) then we can find a δ such that |t− t0| < δ implies Dsym(Ωt0X ,ΩtX) < ε.

For ε large (but≤ 1) this holds since one can just take δ to be small, in which caseDsym(Ωt0X ,Ω
t0
X) ≤

2δ by the proof of Theorem 4 ii. which is less than or equal to ε.
If ε << 1 (and greater than 0) then setting δ = ε

2 gives |t−t0| < ε
2 which impliesDsym

(
Ωt0X ,ΩtX

)
<

ε using the proof of Theorem 4 ii..
This holds for all t0 ∈ [0, 1] hence γ is a continuous function from [0, 1] to Fd with extremal points

Ω0
X and Ω1

X . Hence there is a connected path from Ω0
X and Ω1

X in the space FD of deformation
maps, meaning that Ω0

X can be continuously deformed to Ω1
X .

In the case where F0
X is a rigid probabilistic structure it is at a finite bounded distance from

every other probabilistic structure in Fd by definition. Consider the associated set of embedded
pure states Ω0

X and take an arbitrary path γ(t) to an arbitrary Ω1
X ∈ Fd. γ(t) is not continuous

at t = 0, since for ε lower than the finite bounded distance from F0
X to any other probabilistic

structure, there is no δ such that |t| < δ implies Dsym
(
Ω0
X ,ΩtX

)
< ε.

F Proof of Lemma 7 part 2
Proof. We make use of Proposition 26.24 of [73] which we translate slightly:

Lemma 14. Any irreducible representation of SU(d) with Dynkin indices j = (j1, ..., jd−1) is
complex if ji 6= jd − i for any i, real if ji = jd−i for all i and n is odd, or n = 4k, or n = 4k + 2
and j2k+1 is even, and quaternionic if ji = jd−i for all i and j2k+1 is odd.

We translate the partitions (41) and (42) into Dynkin indices:
When m = n:

j = (b1 − b2, b2 − b3, ..., 2bm, bm−1 − bm, ..., b1 − b2) (128)

where this has m+ n− 1 entries.
For all i ji = jm+n−i, hence for m+n odd and m+n = 4k these are all real. For m+n = 4k+2

we observe that j2k+1 (the central entry) is 2bm and hence even. This implies the representation
is real.

When n ≥ m+ 1:

λ = (b1 − b2, b2 − b3, ..., bm, 0, ...., 0︸ ︷︷ ︸
times n−m−1

, bm, ..., b2 − b3, b1 − b2) (129)

where this has m+ n− 1 entries.
For all i ji = jm+n−i, hence for m+n odd and m+n = 4k these are all real. For m+n = 4k+2

we observe that j2k+1 (the central entry) is 0 and hence even. This implies the representation is
real.
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