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Complexity is a natural feature of biological systems. For example, a human can be characterised by a vast
amount of information, packed in a super-network that is, in principle, a network of networks [1]. For each human
cell, the total amount of DNA, if measured in bases, has an informational length of the 3.2 Gb. However, in total, we
have approximately 1012 cells, and in each of them, even neglecting mosaic mutations, the genotype information is
multiplied by the epigenome, transcriptome, proteome and metabolome profiles, which are organized in a huge and
very dynamic connectome. Each tissue can be represented by a graph or network and connected to other networks,
resulting in a super-network containing a huge number of features describing a complex biological system. When the
biological system ages, or approaches a diseased state, the bodies adaptation to maintaining homeostasis is reflected
in the changes of this super-network.

Due to the fascinating progress in multi-omic experimental techniques, we are getting access to increasingly huge
quantities of biological data. But it is clear, that the amount of information and, more importantly, the complexity of
its organisation, exceeds our analytical capability. The situation is even more complicated, because, for example, as
noted by Gorban et al. in the analysis of cancer omics data, underlying changes may occur in different places of the
network. A possible solution to the challenging problem of identifying biomarkers and disease-precursors is in graph
theory, using well-described topological descriptors to identify changes in network structure that represent disease.
In this sense, the “shape” of the network is used, rather than specific molecular biomarkers. However, a real break-
through can only occur if we are able to define the behaviour of the networks to a relevant stimulus (e.g. disease), in
a generic way, for example, based on the fundamental laws of thermodynamics.

Representing high-dimensional biological data in the form of a graph and linking features by biological and
thermodynamic laws seems to be a very promising approach to deal with overwhelming complexity of biological
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Figure 1: Parenclitic and synolytic networks as particular types of a correlation graph: (A) (Original parenclitic network [3]). This is a network
where only the control group was considered as the basis for determining the normal state on the plane of two signs (based on control group the
linear regression was built, the deviation of the control points from it was calculated and the distribution of such deviations was constructed). For
each new sample, the edge weight was first determined as the absolute value of z-score, and then binarized (if z-score is greater than 3, then the
edge is present in the sample network, otherwise there is no edge). (B) (KDE-parenclitic network [4]). This is a network in which again only the
control group was considered as the basis for determining the normal state on the plane of two signs (for the control group, the KDE2D density was
built, then a function was calculated that converts the density values into an analogue distance (so that the points located in the area of the highest
density have the minimum weight); the distance outside the grid was continued (for more details, see [4]). For each new sample, the edge weight
was first determined as the value of the entered distance, and then converted to binary form (if the distances are greater than a threshold, then the
edge is present in the sample network, otherwise there is no edge). (C) SVM-weighted synolytical network. This is a network in which both groups
participate in defining normal and abnormal states. On the plane of two features, with the help of the radial SVM, the best boundary separating the
classes is drawn. Automatically, each point in such a model gets a value for the probability of belonging to each class. For each new sample, the
edge weight is determined as the probability of belonging to a group of cases.

systems. However, one can utilise this approach only if we have information about how features and attributes are
connected biologically. If we do not have such information, we must use more sophisticated methods to represent a
complex system in the form of the graph in high dimensional space. Such methodology is provided by correlation
graphs which are carefully reviewed in fascinating and inciteful detail in the review by Gorban and co-authors [2]. This
paper considers two types of correlation graph. Firstly, where edges correspond to the correlations between attributes
of different people, with populations represented as a network and secondly, where edges correspond to different time
intervals between data belonging to the same person. Most importantly, the authors reviewed and discussed a link
between changes in the topology and laws of a general theory of adaptation and thermodynamics. In particular, it is
discussed that preceding a network crash or critical state, there is a detectable redistribution of resources within the
system resulting in the strengthening of correlations, breaking of topological symmetry and increase of fluctuation
variances.

In this comment we would like to draw attention to alternative methods to represent high dimensional data in the
form of the graph if a-priori we do not have established connections. There are several other methods that we will
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briefly mention here.
First of all, correlation-prediction graphs can be used as a marker of survival and have been constructed to represent

the gene methylation profiles of individuals [5, 6]. Secondly, there is an algorithm, first described by Zanin and
Bocaletti, able to establish links between parameters/nodes without any a-priori knowledge of their interactions [3]
using residual distances from linear regression models constructed between every pair of analytes to construct a graph.
They termed this approach a “parenclitic” network representation, from the Greek term for “deviation“. Parenclitic
networks have been successfully applied to problems of the detection of key genes and metabolites in different diseases
[3, 7–9] see [10] for a review and [11] for a discussion of applications for brain research. In [12] we have applied
this methodology to implement machine learning classification to identify signatures of cancer development from
human DNA methylation data. Thirdly, based on the understanding that the interactions of two features (at least
in biological systems) often cannot be described by a linear model, it was proposed to use 2-dimensional kernel
density estimation (2DKDE) to model the control distribution [4]. Finally, in [13] we have introduced a variation of
parenclitic networks, that can be called synolytic from the Greek word for “ensemble“. In principle, these networks
can be considered an ensemble of classifiers in a graph form and thus are a kind of correlation network where the
correlation is in the changes between two classes (e.g. disease and non disease). The difference to original parenclitic
networks is visualized in the Fig. 1. These networks have been successfully used to detect age related trajectories in
Down’s syndrome [13] and for prediction of survival for severely ill Covid-19 patients [14].

All these network approaches could be described as variations of correlation networks with different levels of
dimensionality. In other words, an ensemble of different correlation graphs can be used to characterise the same
complex biological system. This ensemble of graphs as a classifier can provide us with more efficient diagnostic
methods than single classifiers. The motivation behind combining the classifiers as an ensemble is based on the
classical Condorcet’s Jury theorem stating that the probability of a given group of individuals (classifiers) arriving at a
correct decision (correct class label) based on a majority vote, increases with the total number of voters. The theorem
requires that one of the two outcomes should be correct, and each voter has an independent probability p > 1/2
of voting for the correct decision. The assumption that the votes are independent is not always easy to satisfy but
a common approach is to train the classifiers on different subsets of the data. A further advantage of combining
classifiers into an ensemble is a gain in robustness to noise that may accompany the data.

Designing an optimal aggregation scheme for combining multiple classifiers remains challenging [15] despite
a number of methodologies suggested. It is very promising to exploit these different methodologies to construct
correlation graphs and use them as an ensemble to develop new diagnostic tools. It would be especially valuable to
link topological features of these graphs with universal phenomena, explainable with thermodynamic laws as it was
discussed in [2], thus providing a generalisation that can greatly benefit their ability to predict disease.
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