A meta-analysis of the prevalence of biliary anatomical variants: development of a comprehensive prevalence-based classification system

Boris V. Janssen^{1,2,3}, Stijn van Laarhoven¹, Mohamed Elshaer¹, Hanqing Cai⁴, Raaj Praseedom¹, Tengyao Wang⁴, Siong-Seng Liau¹

Affiliations:

¹University Department of Surgery, Addenbrooke's Hospital and University of Cambridge, UK ²Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands ³Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands ⁴Department of Statistical Science, University College London

Corresponding author:

Siong-Seng Liau, MA (Cantab), MBChB (Ed), MD (Ed, Distinc.), FRCS (Ed & Eng), FACS Department of Surgery, University of Cambridge Addenbrooke's Hospital and University of Cambridge, UK Box 202, Level E9, University Department of Surgery University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK. Telephone number: +44 1223247709 E-mail: ssl30@medschl.cam.ac.uk

Conflict of interest: None declared Word count: 1249 Category of submission: Rapid research communication

INTRODUCTION

Liver resection is the gold standard treatment for primary liver malignancies and selected liver metastatic disease. Advances in surgical and anaesthetic techniques allowed surgeons to perform complex hepatic resections with low mortality¹ and paved the way for advances in living donor liver transplantation (LDLTs), which has seen a substantial increase in certain parts of the world. Thorough understanding and preoperative knowledge of liver anatomy, including anatomical variants of vasculature and biliary system is paramount². Complications that arise when a surgeon is unaware of their existence can be severe with adverse impact on patient outcomes^{3,4}. Historically, anatomical biliary variants (ABVs) were often underappreciated and the prevalence is inconsistently reported in the literature. To address this, we performed a systematic review and meta-analysis to provide a comprehensive overview of ABV distribution. Furthermore, we constructed a prevalence based, clinically relevant classification system, that highlights the prevalence of surgically relevant ABVs.

METHODS

This systematic review was performed and reported according to PRISMA guidelines⁵. Data was retrieved from MEDLINE and EMBASE until the 9th of September 2019. Our search strategy is detailed in supplementary table S1. Literature was considered eligible for inclusion if it was: A) published original research, B) classifying biliary variants according to the first four or first five variants as shown in figure 1, C) using data from unselected patients. From included studies, country of publication, year of publication, visualisation method, classification method, population, and classification distribution, were collected. Literature selection and data collection were completed independently by two assessors (B.J., S.v.L.) with discrepancy resolved by discussion. No a-priori review protocol was registered.

Data were converted to a single classification system based ABV prevalence (figure 1) and the commonly used classification systems⁶⁻⁹. Supplementary table S5 details how the other commonly used classifications overlap our proposed system. Because not all studies reported the presence of the variant in which the cystic duct (CD) joins the right sectoral duct (RSD) (5th variant), the primary analysis focuses on four anatomical variants. For this analysis, variants other than these four were categorized as 'other'. To assess the prevalence of the 5th variant, we performed a separate analysis of studies reporting on the 5th variant. We also performed populational analyses categorizing studies into ethnic/regional subgroups based on a previously reported system^{10,11}, which are detailed in supplementary table S2. Regional subgroups were assigned based on the location of the study groups.

A multinomial logistic mixed effect model, with study heterogeneity captured by a random intercept, was used to estimate the overall proportion of each anatomical type across all studies. Ninety-five percent confidence intervals were used for the estimated proportion of each anatomical type using a parametric bootstrap with 10,000 repetitions. Here, parametric bootstrapping (Efron, 1985) is a technique that uses the estimated distribution (i.e. multinomial mixed-effect logistic model) to generate additional synthetic data in order to estimate the confidence intervals of parameter estimates. For homogeneous studies, a multinomial logistic regression without random effects was used to obtain both the estimated proportion and associated confidence intervals. Analyses were performed using custom code written in R (v 3.6.0).

RESULTS

Our search identified 2443 studies. After removal of duplications, 1709 studies remained and a further 1640 were excluded due to non-relevance. Of the remaining 69 studies, 34 were considered eligible for inclusion. By assessing the references in these 34 studies, 3 more studies were included. This resulted in a final inclusion of 37 studies, covering a population of 12684. Supplementary figure 1 provides a PRISMA flow chart for article inclusion. Table 1 shows the data generated from each included study and supplementary table S3 provides the references of included articles.

The main meta-analysis, based on 12684 patients, showed estimated average ABV proportions of type 1 of 65.9%, type 2 of 14.2%, type 3 of 11.7%, type 4 of 6.5%, and 'other' group proportion of 1.7%. Twenty-one studies (n=8204) reported on the ABV type 5, for which meta-analysis showed a proportion of 0.6%. All ABV types are shown in Figure 1. Within the 'East-Asia' region (n=5683), the estimated average ABV type 1 proportion is 69.6%, type 2 is 10.8%, type 3 is 12.0%, type 4 is 6.3% and 'other' group type is 1.2%. Within the 'Europe, North-America & Oceania' region (n=324), the estimated average ABV type 1 proportion is 59.3%, type 2 is 17.6%, type 3 is 12.7%, type 4 is 10.0% and 'other' group type is 0.5%. Within the 'Mediterranean-Basin' region (n=273), the estimated ABV type 1 proportion is 64.9%, type 2 is 14.3%, type 3 is 12.8%, type 4 is 6.6% and 'other' group type in 1.5%. Within the 'Mediterranean-Basin' region (n=273), the estimated ABV type 1 proportion is 63.5%, type 2 is 16.1%, type 3 is 11.2%, type 4 is 6.2% and 'other' group type is 2.8%. Within the 'South-Asia' region (n=522), the estimated average ABV type 1 is 56.9%, type 2 is 21.8%, type 3 is 9.6%, type 4 is 5.6% and 'other' group type is 6.1%. Supplementary table S4 details the results from the meta-analyses.

DISCUSSION

In our new prevalence-based classification system, type 1 is characterized by the RPSD joining the RASD forming the RHD. This is considered standard anatomy and is found in 65.9% of the population. This ABV should not pose a problem during surgical interventions. Type 2 where the RASD/RPSD (2A/2B) drains into the LHD, is found in 14.2% and is relevant during left hepatectomy and LDLT involving right lobe. Type 3, the trifurcation of the RASD, RPSD and LHD, is found in 11.7%, and also relevant during LDLT setting. In type 4 the RPSD that drains into the CHD, found in 6.5%, and is commonly referred to as a low insertion of the RPSD, and is relevant in cholecystectomies where it can be mistaken for the CD. Type 5 is characterized by the RPSD into which the CD drains, is found in 0.6%, and is crucial in cholecystectomies where it can be inadvertently injured if mistaken for CD. 'Other' ABVs represent 0.5% of variants which do not fit in the first 5 types.

Our novel classification has advantages over the existing systems. First, it aims to inform uniform reporting of intrahepatic biliary anatomy, creating a common ground for clinicians to clearly convey the presence of ABVs. Secondly, it focuses on clinical implications of ABVs with naming of distinct, prevalent ABV groups that have impact on surgical intervention, and is therefore clinically useful. This simplifying of variants based on prevalence and clinical implication is aimed at making our classification system comprehensive yet simple to use. Further, we devised our system by amalgamating the merits of previously described classification systems.

Several population differences appear to exist. When comparing the 'East-Asia' population to the 'Middle-East and North-Africa' population, type 1 seems more common whilst type 2 is less common in 'East-Asia'. Insight into the distributions of variants between populations serves as an aid for surgeons in their respective localities to benefit from our novel classification system.

We acknowledge the limitations of our findings. First, whilst the overall estimates are likely accurate representations of the underlying averages, subgroup analyses are less robust as the study size gets considerably smaller in subgroups. Second, heterogeneity within subgroups suggest that other influencing variables may exist and have not fully assessed (e.g. gender, multiple ethnic origins within a study sample). As our regional subgroup classification is based largely on geography, it does not take into account the multi-ethnic nature of studied populations. Therefore, there is potential for bias.

This systematic review provides the most comprehensive overview of intrahepatic biliary anatomical variants to date. We highlight the presence of regional differences. Additionally, we propose a clinically focused, prevalence-based classification system based on meta-analysis of a large pooled dataset whilst incorporating the merits of previous classification systems.

References

- Cescon M, Vetrone G, Grazi GL, et al. Trends in perioperative outcome after hepatic resection: analysis of 1500 consecutive unselected cases over 20 years. *Ann Surg.* 2009;249(6):995-1002.
- 2. Bismuth H, Balzarotti R, Majno P. Liver Surgical Anatomy. In: *Extreme Hepatic Surgery and Other Strategies*. Springer; 2017:3-18.
- Martin AN, Narayanan S, Turrentine FE, et al. Clinical Factors and Postoperative Impact of Bile Leak After Liver Resection. J Gastrointest Surg. 2018;22(4):661-667.
- Yamashita Y, Hamatsu T, Rikimaru T, et al. Bile leakage after hepatic resection. *Ann Surg.* 2001;233(1):45-50.
- 5. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med.* 2009;6(7):e1000097.
- Huang TL, Cheng YF, Chen CL, Chen TY, Lee TY. Variants of the bile ducts: Clinical application in the potential donor of living-related hepatic transplantation. *Transplantation Proceedings*. 1996;28(3):1669-1670.
- Choi JW, Kim TK, Kim KW, et al. Anatomic variation in intrahepatic bile ducts: an analysis of intraoperative cholangiograms in 300 consecutive donors for living donor liver transplantation. *Korean journal of radiology : official journal of the Korean Radiological Society.* 2003;4(2):85-90.
- 8. Couinaud C. Etudes anatomiques et chirurgicales. *Paris: Mason.* 1957:400-409.
- 9. Ohkubo M, Nagino M, Kamiya J, et al. Surgical Anatomy of the Bile Ducts at the Hepatic Hilum as Applied to Living Donor Liver Transplantation. *Annals of Surgery*. 2004;239(1):82-86.
- Rawshani A, Svensson A-M, Rosengren A, Zethelius B, Eliasson B, Gudbjornsdottir S. Impact of ethnicity on progress of glycaemic control in 131 935 newly diagnosed patients with type 2 diabetes: a nationwide observational study from the Swedish National Diabetes Register. *BMJ Open.* 2015;5:e007599-e007599.
- Rotimi CN, Jorde LB. Ancestry and disease in the age of genomic medicine. *N Engl J Med.* 2010;363(16):1551-1558.

FIGURES

Figure 1. Prevalence based classification system of anatomical biliary variants (ABVs)

[Image excluded because of file size (146MB)]

Legend: RA = right anterior, RP = right posterior, R = right hepatic duct, L = left hepatic duct, CHD = common hepatic duct

TABLES

Table 1. Included literature and proportions of anatomical biliary variants (ABVs)

Author	Country of publication	Region	Year of publication	Visualisation method	Population (n)	Type 1 (n)	Type 2 (n)	Type 3 (n)	Type 4 (n)	Other (n)	
										Type 5	Other
Yoshida et al.	Japan	EA	1996	Cholangiography	1094	739	88	194	66	5	2
Huang et al.	Taiwan	EA	1996	Unknown	958	600	105	182	56	15	0
Cheng et al.	Taiwan	EA	1997	Cholangiography	210	137	31	35	6		1
Kim et al.	South-Korea	EA	2002	Cholangiography	532	403	29	58	42	0	0
Nakamura et al.	Japan	EA	2002	Cholangiography	120	78	19	11	10		2
Choi et al.	South-Korea	EA	2003	Cholangiography	300	197	38	32	19	6	8
Kitagawa et al.	Japan	EA	2003	Cholangiography	180	113	26	36	5		0
Limanond et al.	USA	ENAO	2004	Cholangiography and	26	19	1	5	1	0	0
Ohkubo et al.	Japan	EA	2004	MRCP* Surgical specimen	110	80	13	6	5		6
Varotti et al.	USA	ENAO	2004	Cholangiography	77	43	16	11	7		0
Chen et al.	USA	ENAO	2005	MDCT	56	33	10	7	5		1
Wang et al.	USA	ENAO	2005	cholangiography CT cholangiography	62	35	11	7	9		0
Song et al.	South-Korea	EA	2007	Cholangiography and	111	67	8	9	22	2	3
Sirvanci et al.	Turkey	MENA	2007	MRCP* Cholangiography and	62	43	9	9	3	0	1
Karakas et al.	Turkey	MENA	2008	MRCP* MRCP					11	0	0
Cucchetti et al.	Italy	MB	2011	Cholangiography	112	61	24	16	16		3
Kim et al.	South-Korea	EA	2011	Cholangiography	200	129	24	28			
Abdelgawad et	Egypt	MENA	2011	MRCP	875	492	108	227	43 1		5 0
al. Tawab et al.	Turkey	MENA	2012	MRCP	20	16	2	1	8	2	0
Yaprak et al.	Egypt	MENA	2012	Cholangiography and	106	67	18	11	16	1	8
Barsoum et al.		MENA	2012	MRCP MRCP	200	126	37	12	2	0	0
	Egypt				50	30	15	3			
Mariolis- Sapsakos et al.	Greece	MB	2012	Cadaveric	73	48	15	7	2	1	0
Thungsuppawatt anakit et al.	Thailand	EA	2012	MRCP	163	106	15	28	9		5
Lyu et al.	Taiwan	EA	2012	MRCP	465	307	60	42	41		15
Uysal et al.	Turkey	MENA	2014	MRCP	1011	803	42	81	73		12
Deka et al.	India	SA	2014	Cholangiography	299	173	52	24	20	7	23
Al-Jiffry et al.	Saudi-Arabia	MENA	2015	Cholangiography	177	104	31	19	12	2	9
Takeishi et al.	Japan	EA	2015	CT cholangiography	407	306	37	39	25		0
Nayman et al.	Turkey	MENA	2012	MRCP	2143	1329	245	202	149	1	217
Taghavi et al.	Iran	MENA	2016	ERCP	362	163	48	78	13	0	60
Sarawagi et al.	India	SA	2016	MRCP	223	124	62	26	9	2	0
Hussein et al.	Egypt	MENA	2016	Cholangiography	248	150	44	28	16	3	7
Kitami et al.	Japan	EA	2016	CT cholangiography	158	123	19	8	5		3
Adatape et al.	Turkey	MENA	2016	MRCP	1041	693	126	133	52	;	37
Bauschke et al.	Germany	ENAO	2017	Cholangiography and					6		0
Ulger et al.	Turkey	MENA	2018	MRCP MRCP	103 200	67 103	17 49	15 24	2 16		2 8
Al-Muhanna et	Saudi-Arabia	MENA	2019	ERCP and MRCP	150	84	43	20	2	1	0

Abbreviations: EA = 'East Asia', ENAO = 'Europe, North America & Oceania', MB = 'Mediterranean Basin', MENA = 'Middle East & North Africa', SA = 'South Asia', MRCP = Magnetic resonance cholangiopancreatography, MDCT = Multiple detector computed tomography, CT = Computed tomography. *Cholangiogram data is extracted for studies that provide data on both cholangiogram and MRCP.

SUPPLEMENTARY MATERIAL

Supplementary table S1. Search overview

Search overview	Results (n)			
Databases used				
- Ovid MEDLINE between 1946 and September 09, 2019.				
- Ovid EMBASE between 1974 and September 09, 2019.				
Search strategy for both databases				
1. Bile duct.mp. or exp Bile Ducts/				
2. Biliar*.mp.				
3. (Bile* adj3 (Tract* or Tree*)).mp. [mp=title, abstract, original title, name				
of substance word, subject heading word, floating sub-heading word,				
keyword heading word, organism supplementary concept word, protocol				
supplementary concept word, rare disease supplementary concept word,				
unique identifier, synonyms]				
4. variat*.mp.				
5. variant*.mp.				
6. exp Anatomic Variation/ or variation.mp.				
7. exp Anatomy/ or Anatom*.mp.				
8. 1 or 2 or 3				
9. 4 or 5 or 6				
10. 7 and 8 and 9				
Total references from EMBASE + MEDLINE search imported in EndNote	2443			
- MEDLINE	947			
- EMBASE	1496			
Duplicates removed in EndNote	- 494			
Remaining studies imported in Rayyan.qcri				
Duplicates removed in Rayyan.qcri				
Total of studies eligible for title and abstract screening				
Total duplicates removed				

Supplementary table S2. Countries in the regional subgroups used for this analysis

Regional subgroup	Countries in regional subgroup			
East Asia	Bhutan, Brunei, Cambodia, China, Indonesia, Japan, Laos, Malaysia, Mongolia, Myanmar, Nepal, North Korea, Philippines, Singapore, South Korea, Thailand, Timor-Leste, Vietnam			
Europe, North America & Oceania	Australia, Austria, Belgium, Bulgaria, Canada, Czechia, Estonia, France, Germany, Hungary, Ireland, Latvia, Liechtenstein, Lithuania, Luxembourg, Monaco, Netherlands, New Zealand, Papua New Guinea, Poland, Romania, Slovakia, Slovenia, Switzerland, United Kingdom, United States of America			
Southern Slavic countries, Russia & Central Asia	Afghanistan, Albania, Armenia, Azerbaijan, Belarus, Bosnia and Herzegovina, Croatia, Georgia, Kazakhstan, Kyrgystan, Moldova, Montenegro, North Macedonia, Russia, Serbia, Tajikistan, Turkmenistan, Ukraine, Uzbekistan			
Latin America & Caribbean	Antigua and Barbuda, Argentina, Bahamas, Barbados, Belize, Bolivia, Brazil, Chile, Colombia, Costa Rica, Cuba, Dominica, Dominican Republic, Ecuador, El Salvador, Grenada, Guatemala, Guyana, Haiti, Honduras, Jamaica, Mexico, Nicaragua, Panama, Paraguay, Peru, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, Suriname, Trinidad and Tobago, Uruguay, Venezuela			
Mediterranean Basin	Andorra, Spain, Italy, Greece, Cyprus, Holy See, Malta, Portugal, San Marino			
Middle East & North Africa	Algeria, Bahrain, Cabo Verde, Chad, Egypt, Iran, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Mali, Mauritania, Morocco, Niger, Oman, Palestine State, Qatar, Saudi Arabia, South Sudan, Sudan, Syria, Tunisia, Turkey, United Arab Emirates, Yemen			
Nordic countries	Denmark, Finland, Iceland, Sweden, Norway			
South Asia	Bangladesh, India, Maldives, Pakistan, Sri Lanka			
Sub-Saharan Africa	Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Central African Republic, Comoros, Congo- Brazzaville, Côte d'Ivoire, Democratic Republic of the Congo, Djibouti, Equatorial Guinea, Eritrea, Eswatini, Ethiopia, Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, Kenya, Lesotho, Liberia, Madagascar, Malawi, Mauritius, Mozambique, Namibia, Nigeria, Rwanda, Sao Tome and Principe, Senegal, Seychelles, Sierra Leone, Somalia, South Africa, Tanzania, Togo, Uganda, Zambia, Zimbabwe			
Non-classified countries	Fiji, Kiribati, Marshall Islands, Micronesia, Nauru, Palau, Samoa, Solomon Islands, Tonga, Tuvalu, Vanuatu			

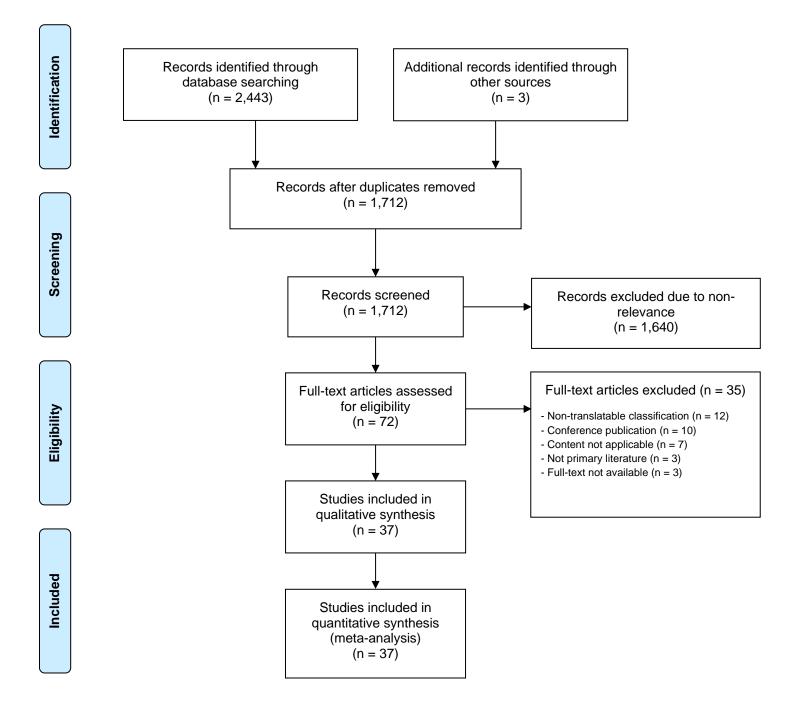
These regional subgroups are based on research by Rawshani et el. and Rotimi et al.^{1,2}.

 Rawshani A, Svensson A-M, Rosengren A, Zethelius B, Eliasson B, Gudbjornsdottir S. Impact of ethnicity on progress of glycaemic control in 131 935 newly diagnosed patients with type 2 diabetes: a nationwide observational study from the Swedish National Diabetes Register. BMJ Open. 2015;5:e007599-e007599.
Rotimi CN, Jorde LB. Ancestry and disease in the age of genomic medicine. N Engl J Med. 2010;363(16):1551-1558.

Supplementary table S3. Included studies

Number	Reference
1	Huang TL, Cheng YF, Chen CL, Chen TY, Lee TY. Variants of the bile ducts: Clinical application in the potential donor of living-related hepatic transplantation. Transplantation Proceedings. 1996;28(3):1669-1670.
2	Ohkubo M, Nagino M, Kamiya J, et al. Surgical Anatomy of the Bile Ducts at the Hepatic Hilum as Applied to Living Donor Liver Transplantation. Annals of Surgery. 2004;239(1):82-86.
3	Cucchetti A, Peri E, Cescon M, et al. Anatomic Variations of Intrahepatic Bile Ducts in a European Series and Meta-analysis of the Literature. Journal of Gastrointestinal Surgery. 2011;15(4):623-630.
4	Song GW, Lee SG, Hwang S, et al. Preoperative evaluation of biliary anatomy of donor in living donor liver transplantation by conventional nonenhanced magnetic resonance cholangiography. Transpl Int. 2007;20(2):167-173.
5	Sirvanci M, Duran C, Ozturk E, et al. The value of magnetic resonance cholangiography in the preoperative assessment of living liver donors. Clin Imaging. 2007;31(6):401-405.
6	Karakas HM, Celik T, Alicioglu B. Bile duct anatomy of the Anatolian Caucasian population: Huang classification revisited. Surg Radiol Anat. 2008;30(7):539-545.
7	Tawab MA, Ali TFT. Anatomic variations of intrahepatic bile ducts in the general adult Egyptian population: 3.0- T MR cholangiography and clinical importance. The Egyptian Journal of Radiology and Nuclear Medicine. 2012;43(2):111-117.
8	Yaprak O, Demirbas T, Duran C, et al. Living donor liver hilar variations: surgical approaches and implications. Hepatobiliary Pancreat Dis Int. 2011;10(5):474-479.
9	Barsoum NR, Samie AA, Adel L, Asaad RE. Role of MRCP in assessment of biliary variants in living donor liver transplantation. The Egyptian Journal of Radiology and Nuclear Medicine. 2013;44(2):131-136.
10	Deka P, Islam M, Jindal D, Kumar N, Arora A, Negi SS. Analysis of biliary anatomy according to different classification systems. Indian J Gastroenterol. 2014;33(1):23-30.
11	Taghavi SA, Niknam R, Alavi SE, Ejtehadi F, Sivandzadeh GR, Eshraghian A. Anatomical Variations of the Biliary Tree Found with Endoscopic Retrograde Cholagiopancreatography in a Referral Center in Southern Iran. Middle East J Dig Dis. 2017;9(4):201-205.
12	Sarawagi R, Sundar S, Gupta SK, Raghuwanshi S. Anatomical Variations of Cystic Ducts in Magnetic Resonance Cholangiopancreatography and Clinical Implications. Radiology Research and Practice. 2016;2016 (no pagination)(3021484).
13	Al-Muhanna AF, Lutfi AM, Al-Abdulwahhab AH, et al. Magnetic resonance and retrograde endoscopic cholangiopancreatography-based identification of biliary tree variants: are there type-related variabilities among the Saudi population? Surg Radiol Anat. 2019;41(8):869-877.
14	Hussein AM, Botros SM, Abdelhafez AH, Mahfouz M. Biliary tree variations as viewed by intra-operative cholangiography - Comparing Egyptian versus international data. Egyptian Journal of Radiology and Nuclear Medicine. 2016;47(4):1283-1292.
15	Kitami M, Takase K, Murakami G, et al. Types and frequencies of biliary tract variations associated with a major portal venous anomaly: analysis with multi-detector row CT cholangiography. Radiology. 2006;238(1):156-166.
16	Varotti G, Gondolesi GE, Goldman J, et al. Anatomic variations in right liver living donors. Journal of the American College of Surgeons. 2004;198(4):577-582.
17	Adatepe M, Adibelli ZH, Esen OS, Imamoglu C, Yildirim M, Erkan N. Anatomic Variations of Biliary Ducts: Magnetic Resonance Cholangiopancreatography Findings of 1041 Consecutive Patients: Bile Ducts and MRCP. European Surgery - Acta Chirurgica Austriaca. 2016;48(5):296-303.
18	Chen JS, Yeh BM, Wang ZJ, et al. Concordance of second-order portal venous and biliary tract anatomies on MDCT angiography and MDCT cholangiography. AJR Am J Roentgenol. 2005;184(1):70-74.
19	Kitagawa Y, Nimura Y, Hayakawa N, et al. Intrahepatic segmental bile duct patterns in hepatolithiasis: a comparative cholangiographic study between Taiwan and Japan. J Hepatobiliary Pancreat Surg. 2003;10(5):377-381.
20	Wang ZJ, Yeh BM, Roberts JP, Breiman RS, Qayyum A, Coakley FV. Living donor candidates for right hepatic lobe transplantation: Evaluation at CT cholangiography - Initial experience. Radiology. 2005;235(3):899-904.
21	Nakamura T, Tanaka K, Kiuchi T, et al. Anatomical variations and surgical strategies in right lobe living donor liver transplantation: Lessons from 120 cases. Transplantation. 2002;73(12):1896-1903.

- 22 Thungsuppawattanakit P, Arjhansiri K. Anatomic variants of intrahepatic bile ducts in Thais. 2012;6(1):51.
- 23 Uysal F, Obuz F, Ucar A, Secil M, Igci E, Dicle O. Anatomic variations of the intrahepatic bile ducts: analysis of magnetic resonance cholangiopancreatography in 1011 consecutive patients. Digestion. 2014;89(3):194-200.
- 24 Cheng YF, Huang TL, Chen CL, et al. Anatomic dissociation between the intrahepatic bile duct and portal vein: Risk factors for left hepatectomy. World Journal of Surgery. 1997;21(3):297-300.
- 25 Limanond P, Raman SS, Ghobrial RM, Busuttil RW, Lu DSK. The Utility of MRCP in Preoperative Mapping of Biliary Anatomy in Adult-to-Adult Living Related Liver Transplant Donors. Journal of Magnetic Resonance Imaging. 2004;19(2):209-215.
- 26 Abdelgawad MS, Eid M. Biliary tract variants in potential right lobe living donors for liver transplantation: Evaluation with MR cholangiopancreatography (MRCP). Egyptian Journal of Radiology and Nuclear Medicine. 2012;43(1):53-57.
- 27 Mariolis-Sapsakos T, Kalles V, Papatheodorou K, et al. Anatomic variations of the right hepatic duct: results and surgical implications from a cadaveric study. Anatomy Research International. 2012;2012:838179.
- 28 Lyu SY, Pan KT, Chu SY, et al. Common and rare variants of the biliary tree: Magnetic resonance cholangiographic findings and clinical implications. Chinese Journal of Radiology (Taiwan). 2012;37(2):59-67.
- 29 Nayman A, Ozbek O, Erol S, Karakus H, Kaya HE. Magnetic resonance cholangiopancreatography evaluation of intrahepatic bile duct variations with updated classification. Diagnostic and Interventional Radiology. 2016;22(6):489-494.
- 30 Takeishi K, Shirabe K, Yoshida Y, et al. Correlation between portal vein anatomy and bile duct variation in 407 living liver donors. American Journal of Transplantation. 2015;15(1):155-160.
- 31 Ulger BV, Hatipoglu ES, Ertugrul O, Tuncer MC, Ozmen CA, Gul M. Variations in the vascular and biliary structures of the liver: a comprehensive anatomical study. Acta chirurgica Belgica. 2018;118(6):354-371.
- 32 Kim HJ, Kim MH, Lee SK, et al. Normal structure, variations, and anomalies of the pancreaticobiliary ducts of Koreans: a nationwide cooperative prospective study. Gastrointest Endosc. 2002;55(7):889-896.
- 33 Al-Jiffry B. Anatomic variations of intra- and extra-hepatic biliary system in the Kingdom of Saudi Arabia. Saudi Journal for Health Sciences. 2015;4(3):147-150.
- 34 Yoshida J, Chijiiwa K, Yamaguchi K, Yokohata K, Tanaka M. Practical classification of the branching types of the biliary tree: an analysis of 1,094 consecutive direct cholangiograms. Journal of the American College of Surgeons. 1996;182(1):37-40.
- 35 Choi JW, Kim TK, Kim KW, et al. Anatomic variation in intrahepatic bile ducts: an analysis of intraoperative cholangiograms in 300 consecutive donors for living donor liver transplantation. Korean journal of radiology : official journal of the Korean Radiological Society. 2003;4(2):85-90.
- 36 Kim SY, Kim KH, Kim ID, et al. [The Variation of Hepatic Duct Confluence and Asymptomatic Common Bile Duct Stone With Routine Intraoperative Cholangiogram During Laparoscopic Cholecystectomy]. *Korean J Gastroenterol.* 2011;58(6):338-345. doi:10.4166/kjg.2011.58.6.338
- 37 Bauschke A, Altendorf-Hofmann A, Malessa C, et al. [Influence of bile duct anatomy on biliary complications in hepatic right lobe living donors]. Chirurg. 2018;89(3):222-228. doi:10.1007/s00104-017-0514-0


Туре	Proportion (%)	<mark>95% CI (%)</mark>
Overall (n = 11706)		
1	<mark>65.9</mark>	<mark>64.8 – 67.1</mark>
2	<mark>14.2</mark>	<mark>13.1 – 15.4</mark>
3	<mark>11.7</mark>	<mark>10.9 – 12.5</mark>
4	<mark>6.5</mark>	<mark>6.0 – 6.9</mark>
Other	<mark>1.7</mark>	<mark>1.2 – 2.1</mark>
Studies including type 5 anatomy (n = 7226)		
1	<mark>64.6</mark>	<mark>63.0 – 66.2</mark>
2	<mark>15.4</mark>	<mark>13.8 – 17.1</mark>
3	<mark>12.1</mark>	<mark>11.1 – 13.2</mark>
4	<mark>6.6</mark>	<mark>6.1 – 7.2</mark>
5	<mark>0.6</mark>	<mark>0.4 – 0.8</mark>
Other	<mark>0.5</mark>	<mark>0.098 – 0.99</mark>
East Asia (n = 4808)		
<mark>1</mark>	<mark>69.6</mark>	<mark>68.1 – 71.1</mark>
2	<mark>10.8</mark>	<mark>9.9 – 11.8</mark>
<mark>3</mark>	<mark>12.0</mark>	<mark>10.7 – 13.3</mark>
4	<mark>6.3</mark>	<mark>5.5 – 7.2</mark>
Other	<mark>1.2</mark>	<mark>0.7 – 1.7</mark>
Europe, North America & Oceania (n = 221)		
1	<mark>59.3</mark>	<mark>52.9 – 65.7</mark>
2	<mark>17.6</mark>	<mark>11.3 – 24.1</mark>
<mark>- 3</mark>	<mark>12.7</mark>	<mark>6.3 – 19.1</mark>
4	<mark>10.0</mark>	<mark>2.6 – 16.4</mark>
Other	<mark>0.5</mark>	<mark>0 – 6.9</mark>
Mediterranean Basin (n = 273)		
1	<mark>64.9</mark>	<mark>0.597 – 0.707</mark>
2	<mark>14.3</mark>	<mark>0.092 – 0.201</mark>
<mark>- 3</mark> -	<mark>12.8</mark>	<mark>0.077 – 0.187</mark>
4	<mark>6.6</mark>	<mark>0.015 – 0.124</mark>
Other	<mark>1.5</mark>	<mark>0 – 0.073</mark>
Middle East and North Africa (n = 5882)		
1	<mark>63.5</mark>	<mark>61.4 – 65.7</mark>
2	<mark>16.1</mark>	<mark>13.9 – 18.4</mark>
3	<mark>11.2</mark>	<mark>9.9 – 12.5</mark>
4	<mark>6.2</mark>	<mark>5.8 – 6.7</mark>
Other	<mark>2.8</mark>	<mark>1.9 – 3.8</mark>
South Asia (n = 522)		
1	<mark>56.9</mark>	<mark>52.7 – 61.2</mark>
2	<mark>21.8</mark>	<mark>17.6 – 26.2</mark>
3	<mark>9.6</mark>	<mark>5.4 – 13.9</mark>
4	<mark>5.6</mark>	<mark>1.3 – 9.9</mark>
Other	<mark>6.1</mark>	<mark>1.9 – 10.5</mark>

Supplementary table S4. Pooled analyses of proportions of anatomical biliary variants (ABVs)

Our classification	Huang classification	Choi classification	Ohkubo classification	Couinaud classification
1	A1	1	A, D	А
2	A3	ЗA	С	C1, D1, D2
3	A2	2	В	В
4	A4	3B	E	C2
5	A5	3C	-	F
Other	-	4, 5A, 5B, 6	F, G	E1, E2

Supplementary table S5. Comparison of commonly used classification systems.

Supplementary figure 1. PRISMA Flow chart

