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Abstract: Phase-sensitive optical coherence tomography (OCT) is used to measure motion
in a range of techniques, such as Doppler OCT and optical coherence elastography (OCE). In
phase-sensitive OCT, motion is typically estimated using a model of the OCT signal derived
from a single reflector. However, this approach is not representative of turbid samples, such as
tissue, which exhibit speckle. In this study, for the first time, we demonstrate, through theory and
experiment that speckle significantly lowers the accuracy of phase-sensitive OCT in a manner not
accounted for by the OCT signal-to-noise ratio (SNR). We describe how the inaccuracy in speckle
reduces phase difference sensitivity and introduce a new metric, speckle brightness, to quantify
the amount of constructive interference at a given location in an OCT image. Experimental
measurements show an almost three-fold degradation in sensitivity between regions of high
and low speckle brightness at a constant OCT SNR. Finally, we apply these new results in
compression OCE to demonstrate a ten-fold improvement in strain sensitivity, and a five-fold
improvement in contrast-to-noise by incorporating independent speckle realizations. Our results
show that speckle introduces a limit to the accuracy of phase-sensitive OCT and that speckle
brightness should be considered to avoid erroneous interpretation of experimental data.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Phase-sensitive optical coherence tomography (OCT) is widely used to measure motion in a range
of techniques such as Doppler OCT [1] and optical coherence elastography (OCE) [2]. These
techniques are increasingly used in biomedical applications including ophthalmology [3–5] and
oncology [6–8]. In phase-sensitive OCT, the phase difference between OCT signals acquired
at two time points from the same spatial location is calculated either between A-scans [9–12],
B-scans [13–15], or volumetric scans [16] to estimate axial displacement or velocity. Phase
difference can be used, for example, to estimate blood and lymph flow velocity in Doppler OCT
[9,17–22], or to measure mechanical deformation in OCE [23–25]. In addition, phase-sensitive
OCT has been used to study the mechanics of the inner ear [26,27] and to develop new OCT
contrast mechanisms in magnetomotive [28–30], photothermal [31–33] OCT. Changes in phase
measurements are also used in parametric techniques such as polarization-sensitive OCT [34–36].

Importantly, the efficacy of these techniques is largely determined by the precision and accuracy
of the phase difference measurement, where precision is typically defined as the spread between
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multiple measurements from the same location over time and accuracy is defined as how close
measurements are to the true value [37]. In phase-sensitive OCT, precision (i.e., sensitivity to
motion) has been extensively characterized in the context of specular reflections by considering
optical noise [38–40], however, relatively little attention has been given to accuracy. In fact, in
previous studies, precision has been used as a measure of accuracy, which was assumed to be
solely proportional to the OCT signal-to-noise ratio (SNR) at that location. This is because in a
specular reflection, optical noise is the main source of error, which is typically zero-mean [12,41].
This assumption has been extrapolated to turbid samples, such as tissue. However, as OCT is a
coherent imaging modality, the OCT signal in turbid samples gives rise to speckle [42]. Speckle
is typically described as bright or dark, corresponding to regions of relatively high intensity
(constructive interference) or relatively low intensity (destructive interference) in OCT images,
respectively. Whilst the effect of signal decorrelation on sensitivity has been analyzed in speckle
[43], the current noise models do not describe how speckle affects accuracy in phase-sensitive
OCT. As a result, it remains challenging to optimize image quality in applications involving
turbid samples.

In this study, for the first time, we demonstrate how speckle affects the accuracy of phase-
sensitive OCT. Firstly, using a linear systems model, we show that even in the absence of
optical noise, i.e., infinite OCT SNR, phase difference error is non-zero in speckle, which we
show is related to the degree of local interference. Secondly, we describe how the inaccuracy
resulting from speckle affects the distribution of phase difference measurements. To quantify
speckle-induced inaccuracy, we introduce a new metric, speckle brightness, to estimate the
degree of constructive interference at a given location in an OCT image. Using Monte Carlo
modeling, we show that speckle brightness severely affects sensitivity independent of OCT SNR.
For instance, we demonstrate a three-fold degradation in phase difference sensitivity in dark
speckle over bright speckle with identical OCT SNR. We validate our theoretical analysis with
close correspondence with experimental measurements. Furthermore, we demonstrate that the
degradation in sensitivity is dependent on the magnitude of sample motion. Finally, to provide a
practical application of our analysis, we demonstrate how consideration of speckle-dependent
accuracy can improve compression OCE measurements. By averaging 100 independent speckle
realizations to reduce the impact of speckle on phase difference sensitivity, we demonstrate a
ten-fold improvement in strain sensitivity in a homogeneous phantom, and a five-fold increase in
the contrast-to-noise ratio of a phantom containing a stiff inclusion. Our results demonstrate
that speckle has a significant impact on the accuracy of phase-sensitive OCT, and that OCT
SNR alone is insufficient to explain the distribution of phase difference measurements in speckle.
This suggests that speckle brightness should be considered when analyzing and interpreting
phase-sensitive OCT results, and when designing phase-sensitive OCT systems and experiments.

2. Background

2.1. Phase difference error in speckle

In this section, we illustrate the origin of phase difference error in speckle and demonstrate
that, even for infinite OCT SNR, phase difference error can be non-zero. We model the OCT
signal in the axial direction as a point-spread function (PSF) convolved with a field of point
scatterers. Details of the OCT complex PSF [44], and how to determine displacement from the
phase difference between OCT scans at the same location [12] are provided elsewhere but are
summarized here for completeness. The one-dimensional (1-D) OCT PSF is given by [45]:

h(z) = A0exp
(︃
−2

z2

w2
z

)︃
exp(−2ik0z), (1)

where A0 is a scaling factor for the amplitude; wz is the 1/e2 resolution of the OCT field amplitude;
k0 is the central wavenumber of the OCT source, k0 = 2π/λ0; and λ0 is the central wavelength.
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We model the sample, η(z), as an ensemble of point scatterers:

η(z) =
N∑︂
i

Riδ(z − zi), (2)

where N is the total number of scatterers; Ri is the scatterer reflectivity; and δ(z – zi) is the Dirac
delta function at location zi. A model for the initial (reference) OCT scan, sR(z), is:

sR(z) = h(z) ∗ η(z), (3)

where ∗ denotes the convolution operation. If the sample undergoes an axial displacement, uz,
the resulting OCT scan of the displaced scatterers, sD(z) becomes:

sD(z) = h(z) ∗ η(z − uz). (4)

The phase difference, ∆ϕ, between Eqs. (3) and (4) can be calculated from the Kasai estimator
[46]:

∆ϕ = ∠sR(z)sD(z) = ∠[h(z) ∗ η(z)][h(z) ∗ η(z − uz)], (5)

where sR(z) represents the complex conjugate of sR(z). In this model, a specular reflector can
be treated as a single scatterer with reflectivity R0, and location z0. The corresponding phase
difference is given by:

∆ϕ = ∠R0h(z0)R0h(z0 − uz)

= ∠R2
0A2

0exp

{︄
−2

[︄
z2
0

w2
z
+
(z0 − uz)

2

w2
z

]︄}︄
exp(2ik0uz)

= 2k0uz

, (6)

Equation (6) can be rearranged to express uz in terms of the phase difference and λ0, which
yields the commonly used equation for axial displacement in phase-sensitive OCT [12]:

uz =
∆ϕλ0
4πn

, (7)

sample refractive index, n, has been added to convert optical path length to physical distance.
However, in turbid samples, the sample will typically contain many single scattering events
within the PSF resolution, resulting in speckle, so applying Eq. (7) to the Kasai estimator between
the reference and displaced samples only yields an approximation to uz.

In Fig. 1, we illustrate the degradation in accuracy caused by speckle when using this model
by simulating three scenarios. In each scenario, the sample is translated a known distance
(corresponding to a known phase difference), and the measured phase difference is compared to
the known phase difference to characterize accuracy. Firstly, in Fig. 1(a), we translate a single
scatterer to represent a specular reflection. Secondly, in Fig. 1(b), we translate five scatterers,
arranged to generate mostly constructive interference to represent bright speckle. Thirdly, in
Fig. 1(c), we translate five scatterers, arranged to generate mostly destructive interference to
represent dark speckle. We show the physical scatterer locations and corresponding OCT intensity
in each case. We define the PSF in Eq. (1) with A0 = 1; a full width at half maximum (FWHM)
axial resolution= 4.8 µm (wz = 4.8/

√
ln(2)); and λ0 = 1.3 µm to match the experimental conditions

that are described in Section 3.2. In all cases, Ri = 1, and each scatterer is translated by 0.325 µm,
corresponding to a π radians phase difference through Eq. (7). The phasor representations of
the OCT signals evaluated at z= 0 (denoted by the vertical dotted gray lines in Figs. 1(a), 1(b)
and 1(c)) for both the reference and translated scatterers are shown for the specular reflection,
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bright speckle, and dark speckle cases, in Figs. 1(d), 1(e) and 1(f), respectively. The phase
difference between the reference and translated OCT signal in the single scatterer case is π, i.e.,
0% error, as expected, given the absence of noise in this model. However, in the bright speckle
case (Fig. 1(e)), the phase difference is ∼3.12 radians, corresponding to an error of ∼0.02 radians,
or ∼0.6%. In dark speckle (Fig. 1(f)), the phase difference is ∼2.50 radians, resulting in a larger
error of ∼0.64 radians, or ∼20.3%.

Fig. 1. The impact of speckle on the accuracy of phase-sensitive OCT. Reference and
translated scatterer locations, and corresponding OCT intensity, of (a) a single scatterer
(specular reflector), (b) five scatterers constructively interfering (bright speckle), and (c) five
scatterers destructively interfering (dark speckle) undergoing a π radian phase shift. Phasor
representations of the reference and translated OCT signals evaluated at z= 0 for (d) a single
scatterer, (e) five scatterers in bright speckle, and (f) five scatterers in dark speckle.

In the speckle cases, Figs. 1(b) and 1(c), the phase measured at z= 0 comprises the complex
summation of all scatterers, with their amplitudes being dependent on their relative distance
from z= 0 in the PSF. The key to the inaccuracy arising from speckle is that displacement
of the scatterers relative to z= 0 leads to a modulation in their amplitudes. Despite each
individual phasor rotating by π radians, the total rotation of the phasor sum is not exactly π
radians due to the change in amplitudes. Figure 1(e) suggests that even with strong constructive
interference, where the signal closely resembles a specular reflection, there may still be an
error. Figure 1(f) demonstrates that, in regions of destructive interference (dark speckle), as
the contributions from each scatterer are initially cancelling each other out, small changes in
amplitude significantly change the weighting of each scatterer in the final phase difference
measurement. This significantly reduces the accuracy of the phase difference measurement in
regions of dark speckle. In the following section, we demonstrate how this inaccuracy affects the
probability distribution function (PDF) of phase difference measurements in speckle.

2.2. Impact of speckle inaccuracy on the phase difference distribution

In this section, we show that, due to the inaccuracy from speckle, the OCT SNR alone is
insufficient to describe the PDF of phase difference in speckle. As optical noise varies temporally,
its effect on the phase difference PDF can be characterized by acquiring multiple measurements
in the same spatial location over time [40]. The analysis in Section 2.1, consistent with existing
literature, suggests that phase difference measured in a specular reflection is accurate. That is,
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the noise distribution of the phase difference caused by OCT SNR is zero-mean. Therefore, in
a specular reflection, provided the system is shot-noise limited, and the OCT SNR >> 1, the
phase difference PDF should closely follow a Gaussian distribution around the true mean with a
standard deviation, σ∆ϕ, given by the approximation [47]:

σ∆φ =
1

√
SNR

. (8)

In this case, the phase difference PDF is dependent only on the OCT SNR. A problem associated
with extrapolating Eq. (8) to speckle is that, as described in Section 2.1, speckle introduces a
fundamental inaccuracy to phase difference measurements. We show that the inaccuracy from
speckle is unbiased by comparing the mean value of experimental measurements between a
specular reflection and speckle in Section 1 of Supplement 1. Importantly, the inaccuracy for a
single realization is temporally invariant. Therefore, whilst the phase difference distribution in a
specular reflection, and a single speckle realization, is characterized by the OCT SNR (Eq. (8)),
the inaccuracy in speckle will broaden the distribution of phase difference measured in multiple,
independent, speckle realizations. This concept is illustrated below in Fig. 2 for several speckle
realizations with the same OCT SNR.

In Fig. 3, we show the effect of speckle on the phase difference PDF. As the approximation in
Eq. (8) is based on a phasor with a given noise distribution, it does not matter whether the cluster
of phasors are measured from the same location over time, or from multiple locations at the same
time [47]. We can therefore analyze the distribution of phase difference between points with the
same OCT SNR from different speckle realizations. We measure the phase difference in pixels at
the same location between two consecutive B-scans. In Fig. 3, in both simulation and experiment,
we plot histograms of phase difference for three cases: (1) the same spatial location over time in
a specular reflection; (2) the same spatial location over time in speckle; and (3) different spatial
locations in speckle, each with the same OCT SNR. Detailed descriptions of the simulation and
experiment setup are provided in Sections 3.1 and 3.2, respectively. In Fig. 3, in each case, we
analyze 200 measurements with an effective OCT SNR of 20± 1 dB. The effective OCT SNR
(ESNR) was calculated using the approach developed previously [43]:

ESNR = [(1 + SNR−1
1 )(1 + SNR−1

2 ) − 1]−1. (9)

Fig. 2. Illustration of the impact of speckle inaccuracy on the phase difference distribution for
multiple, independent, speckle realizations. The green dotted lines represent the distribution
of the OCT signal based on optical noise. The red dotted lines represent the distribution of
the OCT signal based on optical noise and speckle.

The red curves in Fig. 3 are Gaussian PDFs with σ∆ϕ= 0.01 predicted using Eq. (8) for an OCT
SNR of 20 dB. The mean was subtracted from each histogram to compare each case more clearly.
In Figs. 3(a) and 3(d), in simulation and experiment, respectively, we show the phase difference

https://doi.org/10.6084/m9.figshare.14381690
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Fig. 3. Histograms of 200 phase difference measurements with an effective OCT SNR of
20± 1 dB acquired in (a), (d) a single spatial location in a specular reflection over time; (b),
(e) a single spatial location in speckle over time; and (c), (f) independent speckle realizations.
(a)–(c) are from simulation and (d)–(f) are from experiment.

histograms from the same spatial location over time in a specular reflector. As expected, in
both cases, the standard deviation closely matches the prediction of Eq. (8). The slightly larger
standard deviation in experiment compared to simulation is attributed to mechanical noise from
translating the sample and from laterally scanning the OCT beam. In Figs. 3(b) and 3(e), in
simulation and experiment, respectively, we show the phase difference histogram from the same
spatial location over time in speckle. Here, as the speckle realization remains fixed, we are
effectively measuring the impact of optical noise. As expected, in both cases, the standard
deviation also closely matches the prediction of Eq. (8). In Figs. 3(c) and 3(f), in simulation and
experiment, respectively, we show the phase difference histograms from independent speckle
realizations, with each measurement having the same OCT SNR. Here, we can clearly see that
the measured standard deviation is significantly greater than that predicted from Eq. (8). This
suggests that OCT SNR alone is insufficient to describe the phase difference standard deviation
in speckle. Whilst the inaccuracy introduced by speckle appears to be zero-mean, it manifests as
a degradation to phase difference sensitivity. Like Section 2.1, this effect is likely to be worse
in dark speckle where the phasors are destructively interfering. In the following sections, we
introduce a metric to quantify the degree of constructive interference at a given location in
speckle, speckle brightness, and study the relationship between speckle brightness and phase
difference sensitivity.

3. Methods

3.1. Simulation

To extend the model described in Section 2.1 to account for the attenuation of samples, we
scale the scatterer magnitudes according to the Beer-Lambert law [48–50], which states that the
backscattered OCT intensity, I(z), as a function of depth, z, is proportional to the reflectance,
R(z)= ρ exp(−2µtz) where ρ and µt are the backscattering and attenuation coefficients, respectively
[51]. Values of ρ= 0.074 and µt = 0.003 mm−1, were chosen to match experimental conditions,
detailed in Section 3.2. The density of scattering potentials was ∼5 per OCT axial resolution
(FWHM) to ensure a fully developed speckle pattern [52]. The OCT intensity FWHM= 4.8
µm (wz = 4.8/

√
ln(2)); λ0= 1.3 µm A0 = 1; and optical noise was simulated by adding complex
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Gaussian white noise with variance, σ2 = 0.0008, to match the OCT SNR in experiment. Sample
translation was modeled by adding a displacement to the scatterer locations. Phase difference
was evaluated between complex OCT A-scans of the reference and displaced scatterer locations.
255 million phase difference measurements are analyzed in simulation in each case in Sections
4.1,4.2.

3.2. Experiment procedure

To provide experimental validation of the simulation, a homogeneous phantom and a phantom
containing a stiff inclusion were fabricated using Elastosil silicone elastomers [53] with controlled
optical and mechanical properties. The phantoms were 3 mm thick cylinders with diameters
of 15 mm. The mechanical properties were controlled by selecting different elastomers and
varying the ratio of the catalyst, curing agent and silicone oil. The stress-strain relationship of
each silicone was characterized using a custom-built uniaxial compression testing apparatus
as detailed previously [54]. The stiffnesses of the bulk in both phantoms was 21 kPa, and the
stiffness of the inclusion, was 625 kPa, measured at 15% strain. The inclusion was fabricated
as a rectangular prism with a cross-sectional geometry of 250×250 µm and a length of 10 mm.
The optical scattering properties were controlled by evenly mixing titanium dioxide particles
(Sigma-Aldrich, Germany) (mean diameter ∼1 µm) into the silicone. The concentration of
scatterers in the homogeneous phantom was 10 mg/ml. The concentration of scatterers in the
inclusion phantom were 0.5 mg/ml in the bulk and 2.5 mg/ml in the inclusion to obtain good
optical contrast.

Phase-sensitive OCT measurements were performed using a fiber-based spectral domain OCT
system (Telesto 220, Thorlabs Inc., USA). The light source is a superluminescent diode with
λ0= 1300 nm and a 3-dB spectral bandwidth of 170 nm. The measured axial resolution in air is
4.8 µm (FWHM). The scan lens (LSM03, Thorlabs Inc., USA) has a measured lateral resolution
in air of 7.2 µm (FWHM). In each case, the sample was placed below a 65 mm diameter imaging
window (Edmund Optics Inc., USA), where the imaging window is fixed to a ring actuator
(Piezomechanik GmbH, Germany). The system was operated in common-path where the imaging
window itself, a partial reflector, acted as the reference reflection. For the results in Sections
4.1,4.2, for the case of translation, the sample was placed with an air gap separating the sample
and the imaging window at a five-degree angle from normal to the imaging window surface
to remove unwanted reflections from the air/sample interface. To introduce displacement, the
sample was kept stationary and the reference reflector (imaging window) was translated by
applying a voltage to the ring actuator. An illustration of this setup is shown in Fig. 4(a). For the
results in Sections 4.3–4.4, to perform compression OCE, the sample was placed normal to the
imaging window, and a 15% bulk strain was applied using a motorized translation stage to ensure
uniform contact between the rigid plate, phantom, and imaging window. Silicone oil was used
to lubricate the sample boundaries. The imaging window, fixed to the ring actuator, transfers
the compressive load to the phantom. Local axial strain is calculated from the gradient of axial
displacement with depth using 1-D weighted-least squares (WLS) linear regression [13]. The
OCE setup is illustrated in Fig. 4(b).

In all cases, the ring actuator was driven by a 10 Hz square wave synchronized with the B-scan
acquisition such that the B-scans in each pair were acquired at different translation/compression
levels. One B-scan pair was acquired at each lateral y-location and phase difference was calculated
between the B-scans in each pair. In Sections 4.1–4.3, scans comprised 1000 A-scans per B-scan
and 1000 B-scan pairs per volume over a 1×1 mm (x,y) field of view. Assuming a group refractive
index of n= 1.4, the resulting (x,y,z) voxel size was 1×1×2.5 µm. In Section 4.4, scans comprised
2000 A-scans per B-scan and 2000 B-scan pairs per volume over a 5×5 mm (x,y) field of view,
resulting in an (x,y,z) voxel size of 2.5×2.5×2.5 µm.
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Fig. 4. Phase-sensitive OCT experiment setup. Illustrations of the experiments for (a)
translating the sample, and (b) compression OCE.

3.3. Speckle brightness

From Section 2, speckle brightness, i.e., the amount of constructive interference in the OCT
signal, can vary from zero (fully dark speckle), to fully constructive (fully bright speckle).
Therefore, we want to quantify speckle brightness to investigate its effect on phase difference.
An intuitive approach to measure speckle brightness is to compare the measured OCT amplitude
to the maximum possible amplitude at each spatial location. The maximum OCT amplitude in
speckle can be determined in simulation by convolving the distribution of scatterers with the OCT
point-spread function (PSF) envelope, i.e., by ignoring the phase of the constituent responses.
In this case, speckle brightness can be quantified by dividing the measured OCT amplitude by
the maximum possible amplitude, yielding a measure from 0 (darkest speckle) to 1 (brightest
speckle). We describe this approach in simulation in Section 2 of Supplement 1. However,
this approach is impractical outside of simulation as it requires prior knowledge of the exact
location and reflectivity of each sub-resolution scatterer. To quantify the degree of interference
in experiment, we instead propose a metric based on the normalized Rayleigh distribution. This
metric does not provide a direct measure of the degree of constructive interference; however, it
has the advantage of only requiring the total OCT signal, and hence can be applied when the
exact location and reflectivity of the sample scatterers are unknown. We provide a comparison
between the metrics in simulation and experiment in Section 2 of Supplement 1 and show a
positive association between the two. Throughout the remainder of this paper, we refer to the
method used in experiment simply as “speckle brightness”.

To define speckle brightness, we assume that there are three contributions to the OCT amplitude:
speckle, attenuation, and optical noise. In a homogeneous sample, the total attenuation is assumed
to be constant for a given depth, z. The OCT amplitude, |S(z)|, for a particular depth, resulting
from speckle, can be treated as a random variable sampled from a Rayleigh distribution with
spread parameter, αz [47,52,55]. The maximum likelihood estimate of αz at each depth is given
by:

αz ≈

⌜⃓⎷
1

2N

N∑︂
i=1

|S(zi)|
2 (10)

where N is the total number of measurements at a given depth, zi. We can use αz at each depth to
normalize |S(zi)|. Optical noise is modeled as zero-mean additive Gaussian white noise, whose
statistics are independent of spatial location. For the purposes of speckle brightness, the primary
influence of optical noise is to introduce noise into the measurements of |S(zi)|, and hence of αz.
We define speckle brightness (SB) as the normalized OCT amplitude:

SB(zi) =
|S(zi)|

αz
. (11)

Speckle brightness follows a normalized Rayleigh distribution (i.e., with spread parameter
equal to 1), and is theoretically in the range [0, ∞] and practically [0, 5] in the results shown in

https://doi.org/10.6084/m9.figshare.14381690
https://doi.org/10.6084/m9.figshare.14381690
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Section 4. Speckle brightness is positively associated with OCT SNR, however there are still a
wide range of speckle brightness values for any given OCT SNR, and vice versa.

In Fig. 5, we illustrate that points in an OCT image can have equivalent OCT SNRs, but
different amounts of constructive interference. Figures 5(a) and 5(b) show OCT SNR, and
speckle brightness, B-scans, respectively, of the homogeneous phantom. In Figs. 5(c) and 5(e),
we show magnified views of the region denoted by the blue squares in Figs. 5(a) and 5(b). In
these regions, speckle is clearly visible. As this region is close to the sample surface, little
attenuation has occurred, and the average OCT SNR is high. In the magnified regions, the green
arrows indicate an example location with an OCT SNR of ∼25 dB, and low speckle brightness
(∼0.51), representing a region of dark speckle. In Figs. 5(d) and 5(f), we show magnified views of
a region deeper into the sample denoted by the yellow squares in Figs. 5(a) and 5(b), respectively.
In these magnified regions, the light blue arrows indicate an example location with an OCT SNR
of ∼25 dB and high speckle brightness (∼4.25), representing bright speckle. This illustrates
how regions of dark speckle, particularly towards the surface of a turbid sample, can still have a
high OCT SNR. Whilst the points indicated by the arrows in Fig. 5 have the same OCT SNR,
there is likely to be reduced accuracy and sensitivity in the dark speckle case. However, with
the OCT SNR alone, the two locations cannot be distinguished. In the following section, we
investigate the relationship between speckle brightness and phase difference sensitivity for points
with equivalent OCT SNRs.

Fig. 5. OCT SNR (a) and speckle brightness (b) B-scans of a homogeneous phantom in
experiment. (c) and (e) are magnified regions of the blue squares in (a) and (b), respectively.
(d) and (f) are magnified regions of the yellow squares in (a) and (b), respectively. Green
arrows indicate regions with an OCT SNR of 25 dB and low speckle brightness. Light blue
arrows indicate regions with an OCT SNR of 25 dB and high speckle brightness. Scale bars
represent 100 µm in (a)–(b) and 20 µm in (c)–(f).

4. Results

4.1. Fixed translation and different OCT SNRs

In Fig. 6, we show the relationship between phase difference sensitivity and speckle brightness for
a turbid sample undergoing translation. In simulation and experiment, we translate a homogeneous
phantom 1.3 µm and compare points with the same OCT SNR and different speckle brightness.
Figures 6(a)–6(c) show histograms of phase difference versus speckle brightness for points in
simulation with an OCT SNR of 15± 1 dB, 20± 1 dB, and 25± 1 dB, respectively. Similarly, in
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Figs. 6(d)–6(f), we show histograms of phase difference versus speckle brightness for points in
experiment with an OCT SNR of 15± 1 dB, 20± 1 dB, and 25± 1 dB, respectively. The color
scale in Fig. 6 represents the number of measurements in each histogram bin divided by the total
number of measurements. Here, simulation and experiment are in close agreement. In each
case, the phase difference distribution decreases in width as speckle brightness increases. This
demonstrates that phase difference sensitivity degrades as speckle brightness decreases.

Fig. 6. Histograms of phase difference versus speckle brightness for points with an SNR of
15± 1 dB, 20± 1 dB, and 25± 1 dB in simulation (a)–(c), and experiment (d)–(f) for a fixed
translation of 1.3 µm (∆ϕ= 4π radians).

In Fig. 7, we plot the standard deviation of phase difference as a function of speckle brightness
at set OCT SNR values for the data presented in Fig. 6. The phase difference was binned in
increments of 0.1 speckle brightness, and the standard deviation was computed for each bin.
We set a criterion that each bin must contain at least 200 phase difference error measurements
to minimize errors resulting from insufficient sampling, which resulted in plots with speckle
brightness ranging from 1 to 5. The equivalent standard deviation in terms of displacement,
σD, is also provided. In Fig. 7, the solid and dashed curves from simulation and experiment,
respectively, are from measurements in speckle, while the red, blue, and yellow dot-dashed lines
represent the expected sensitivity (Eq. (8)) for measurements in a specular reflection with an
OCT SNR of 16 dB, 21 dB, and 26 dB, respectively. In each case, the phase difference standard
deviation decreases with increasing speckle brightness and is greater than the expected standard
deviation from the OCT SNR alone. For example, for points with an SNR of 20± 1 dB, sensitivity
degrades from ∼0.14 radians (∼15 nm) to ∼0.39 radians (∼40 nm), corresponding to a ∼2.67
times lower sensitivity between bright and dark speckle. In each case, the sensitivity begins to
approximate that of a specular reflector for high speckle brightness.

4.2. Fixed OCT SNR and different translations

In Fig. 8, we demonstrate that phase difference sensitivity degrades with increasing translation
and, furthermore that this degradation is more pronounced in dark speckle than in bright speckle.
In simulation and experiment, we translate the homogeneous phantom 1.3 µm, 2.3 µm, and
3.9 µm, corresponding to phase differences of 4π, 7π, and 12π, respectively. In each case, we
analyze points with an OCT SNR of 20± 1 dB. Like Section 4.1, we compute the standard
deviation of the phase difference error in bins in increments of 0.1 speckle brightness, with
bin widths of 0.1, but only if there are at least 200 measurements in each bin. We plot the
phase difference standard deviation as a function of speckle brightness for each translation. The
equivalent standard deviation in terms of displacement, σD, is also provided. Here, simulation
and experiment are in close agreement, and for each translation, sensitivity improves as speckle
brightness increases from 1 to 4. In Fig. 8, the solid and dashed curves from simulation and
experiment, respectively, are from measurements in speckle, while the black dot-dashed line
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Fig. 7. Plots of phase difference standard deviation versus speckle brightness for measure-
ments with OCT SNRs of 15± 1 dB, 20± 1 dB, and 25± 1 dB and a fixed translation of 1.3
µm (∆ϕ= 4π radians).

represents the expected sensitivity (Eq. (8)) for measurements in a specular reflection with an
OCT SNR of 21 dB. Like Fig. 7, in each case, the phase difference standard deviation decreases
with increasing speckle brightness and is greater than the expected standard deviation from the
OCT SNR alone. As the translation increases, the curves shift upwards and the degradation
in sensitivity is greater in dark speckle than in bright speckle. For example, for the 3.9 µm
translation, phase difference sensitivity degrades from ∼0.38 radians (∼40 nm) to ∼1.07 radians
(∼110 nm), corresponding to a ∼2.85 times degradation in sensitivity between bright and dark
speckle compared to the ∼2.67 times degradation at a lower translation of 1.3 µm.

Fig. 8. Plots of phase difference standard deviation versus speckle brightness for translations
of 1.3 µm (∆ϕ= 4π radians), 2.3 µm (∆ϕ= 7π radians) and 3.9 µm (∆ϕ= 12π radians) and
a fixed OCT SNR of 20± 1 dB.
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4.3. Improving strain sensitivity in OCE

In Fig. 9, we demonstrate how incorporating independent speckle realizations can improve strain
sensitivity in compression OCE beyond what would be expected to result from an improvement
in OCT SNR. In compression OCE, axial strain is typically estimated from the gradient of axial
displacement versus depth over a sliding window of length 50–100 µm to alleviate the effect of
noise [13]. One approach to reduce speckle and improve displacement (and strain) sensitivity is
to spatially average B scan pairs in a homogenous sample. To illustrate this, in Fig. 9, we perform
compression OCE on a homogeneous phantom and compare depth profiles from the center A-scan
of an (x,z) B-scan generated using three approaches: (1) no averaging; (2) temporally averaging
100 B-scan pairs with the same speckle realizations; and (3) spatially averaging 100 B-scan pairs,
acquired 10 µm apart, with independent speckle realizations. The mean OCT amplitude, OCT
SNR, and phase difference are computed across pixels at the same B-scan location. The methods
used to compute the mean OCT amplitude, OCT SNR and phase difference are described in detail
in Section 3 of Supplement 1. A 1-D WLS strain fit length of 50 µm was used in all the results
shown in Fig. 9. To first establish a baseline measurement, Figs. 9(a)–9(d) show depth profiles of
the OCT SNR, speckle brightness (SB), displacement (D), and strain, respectively, of the center
A-scan acquired from a single B-scan pair. As the sample is mechanically homogeneous, we
would expect a constant rate of change in displacement, and hence a constant strain, with depth.
However, due to optical noise and speckle, we instead observe a large variation in strain.

Fig. 9. Effect of averaging independent speckle patterns on strain estimation. (a) OCT SNR,
(b) speckle brightness, (c) displacement, and (d) strain A-scans made with no averaging. (e)
OCT SNR, (f) speckle brightness, (g) displacement, and (h) strain A-scans made by averaging
100 A-scan pairs with the same speckle pattern. (i) OCT SNR, (j) speckle brightness, (k)
displacement, and (l) strain A-scans made by averaging 100 A-scan pairs with independent
speckle patterns.

To demonstrate the effect of temporally averaging the same speckle realizations, Figs. 9(e)–9(h)
show depth profiles of the OCT SNR, speckle brightness, displacement, and strain, respectively,
of the center A-scan of a B-scan generated by temporally averaging 100 B-scan pairs. These
depth profiles are acquired in the same spatial location as those presented in Figs. 9(a)–9(d). In
the temporal averaging case, there is a slight increase in OCT SNR. However, the distribution of
bright and dark speckle in the speckle brightness profile in Fig. 9(f) remains largely unchanged.
Whilst temporal averaging reduces the effect of optical noise, the displacement measurements in

https://doi.org/10.6084/m9.figshare.14381690
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dark speckle remain constrained around an inaccurate mean value. Hence, there is negligible
improvement in displacement and strain sensitivity.

To demonstrate the effect of averaging independent speckle realizations, Figs. 9(i)–9(l) show
depth profiles of the OCT SNR, speckle brightness, displacement, and strain, respectively, of the
center A-scan of a B-scan generated by spatially averaging 100 B-scan pairs, acquired 10 µm
apart, with independent speckle realizations. Importantly, we average the same number of optical
noise realizations as in the temporal averaging case, such that any observed difference is due
to averaging the effect of speckle. In the spatial averaging case, we observe a homogenization
of speckle brightness with depth. Consequently, we observe a significant improvement in both
displacement and strain sensitivity in Figs. 9(k) and 9(l), respectively, compared to the temporal
averaging case.

In Table 1, we quantify the improvement in strain sensitivity for both averaging methods. In
each case, strain sensitivity is computed as the standard deviation of 200 strain measurements
along the x-dimension at a constant depth. Strain sensitivity is computed at three depths: 125 µm,
250 µm and 375 µm. The results in Table 1 show that temporal averaging leads to a negligible
improvement in strain sensitivity at each depth. In comparison, averaging independent speckle
realizations leads to a ten-fold improvement in strain sensitivity at depths of 125 µm and 250 µm
and an eight-fold increase at 375 µm.

Table 1. The effect of different averaging methods on strain sensitivity.

Strain sensitivity (mε)
Depth (µm) No averaging Temporally averaging 100 B-scan pairs Spatially averaging 100 B-scan pairs

125 1.40 1.39 0.14

250 1.64 1.61 0.16

375 1.83 1.75 0.23

4.4. Improving contrast-to-noise in OCE

In Fig. 10, we demonstrate how incorporating independent speckle realizations can improve
the contrast-to-noise ratio (CNR) in compression OCE, as shown in an inclusion phantom.
The inclusion has a square cross section and was fabricated as a long rectangular prism in the
y-dimension. Therefore, we can average independent speckle realizations by spatially averaging
along the y-dimension. In Section 4.3, we demonstrated how temporal averaging does little to
improve strain sensitivity when averaging the same speckle pattern. Therefore, in Fig. 10, we
only compare two cases: (1) no averaging; and (2) spatially averaging 100 B-scan pairs with
independent speckle patterns. A strain fit length of 50 µm was used in both cases. Figures 10(a)
and 10(b) show an (x,z) OCT B-scan, and strain elastogram, respectively, of the inclusion phantom
generated with no averaging. Figures 10(c) and 10(d) show an (x,z) OCT B-scan and strain
elastogram, respectively, of the inclusion phantom generated by spatially averaging 100 B-scan
pairs.

The strain CNR was computed using an approach used previously [56]:

CNR =
|µinc − µbulk |√︂
σ2

inc + σ
2
bulk

, (12)

where µinc and µbulk are the mean strain values taken from a 200×200 µm region in the inclusion
and bulk respectively, and σinc and σbulk are the standard deviations of the strain measurements
in each of the corresponding regions. The CNR measured in Fig. 10(b) was 0.93. Averaging
multiple independent speckle realizations decreases speckle contrast [57] to improve the ability
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Fig. 10. The effect of averaging independent speckle realizations on strain elastograms of
an inclusion phantom. (a) OCT SNR and (b) strain elastogram of an inclusion phantom
generated with no averaging. (c) OCT SNR and (d) strain elastogram of the same inclusion
phantom generated by averaging 100 B-scan pairs with independent speckle realizations.
Scale bars represent 250 µm.

to distinguish the inclusion in the OCT SNR in Fig. 10(c), and the measured CNR in Fig. 10(d)
was 4.67, representing a greater than five-fold increase in strain CNR.

5. Discussion

In this study we have presented, for the first time, the mechanism by which speckle affects
the accuracy of phase-sensitive OCT beyond that predicted from the OCT SNR alone. The
relationship between phase and displacement is assumed to be linear, which is valid for a specular
reflector. However, in speckle, the relationship between phase and displacement becomes
non-linear, reducing accuracy, where this effect worsens in regions of destructive interference
(i.e., dark speckle). In this study, we have shown how this effect can be modeled using a PSF with
a linear phase field where the addition of phasors from multiple scatterers sums to a non-linear
relation between phase and displacement. This deleterious effect of speckle has prevented
the exceptional phase-sensitivity of OCT to be experimentally realized in turbid tissues. In
fact, several previous studies have observed some form of this phenomenon. For example, in
Doppler OCT, Walter and Koch reported “phase cancellation” at combinations of axial and
lateral motion when the intensity of the backscattered signal was still high [58]. In addition, in
compression OCE, Zaitsev et al. described decorrelation of the OCT signal due to sub-pixel shifts
of scatterers between loaded and unloaded OCT scans which caused artificially low estimates of
local sample strain [59]. Here, we have demonstrated that these errors are likely to be present in
any phase-sensitive detection scheme which exhibits speckle and arise from the changes in the
relative weighting of each of scatterer during motion. This will impact image quality in turbid
media, including most biological tissues, and should be carefully considered when designing
detection and computational schemes.

The results in Section 4 show, that due to speckle, even points with high OCT SNR can be
inaccurate. This is likely to affect image quality in many applications of phase-sensitive OCT,



Research Article Vol. 29, No. 11 / 24 May 2021 / Optics Express 16964

including Doppler OCT and OCE, where the OCT SNR alone is typically used to both infer
accuracy and sensitivity. For example, weighted averaging techniques are used to improve image
quality in OCE [13], where the optimal weights are the inverse variance of the data points [60].
Accordingly, based on the approximation developed from a specular reflector in Eq. (8), the
weights are chosen to be the OCT SNR. However, our results show that points with high OCT
SNR and low speckle brightness will introduce a bias, reducing the efficacy of weighted averaging
techniques, and hence reduce image quality. This is likely to be problematic in applications of
optically heterogeneous samples such as the retina, cell cultures, and adipose [2]. It is important
to note that if the fit length of displacement is small enough such that the effect of attenuation is
negligible, such as reasonably uniform tissues, then any change in OCT SNR will predominately
be from speckle. In such a case, it is unlikely to matter whether the displacement is weighted by
either the OCT SNR or speckle brightness as the magnitude of the weights only matters within
the fitting window.

In applications that naturally develop independent speckle patterns with multiple acquisitions,
such as flow imaging [1], temporal averaging can be used to reduce the effect of speckle. However,
in applications involving temporally invariant speckle patterns, such as many forms of OCE,
the effect of speckle cannot be reduced by temporal averaging because measurements in dark
speckle are constrained around an inaccurate mean value. The results in Sections 4.3 and 4.4
demonstrate a significant improvement in sensitivity and CNR in OCE with no loss in system
resolution [61] by spatially averaging independent speckle realizations. Whilst this shows the
potential improvement in image quality that can be obtained by incorporating independent
speckle realizations, it is impractical in applications involving heterogeneous samples, such as
tumor margin assessment [6–8] and mechanobiology [62–64]. Whilst many phase-sensitive OCT
systems currently use temporal averaging to improve OCT SNR, our results suggest that a greater
emphasis should be placed on developing systems that can produce independent speckle patterns
with subsequent acquisitions, such as those extensively developed to achieve speckle reduction
in OCT [65–67]. This is likely to improve image quality in applications involving temporally
invariant speckle patterns.

Displacement accuracy in speckle can likely be improved by incorporating spatial averaging.
For example, in this study, the Kasai estimator was used to estimate the displacement at a single
pixel location. However, techniques such as Loupas’s algorithm [68,69], which spatially average
the OCT signal, may improve displacement accuracy by incorporating a greater number of
independent speckle realizations. Similar improvement can be realized in strain. In Section
4, axial strain was computed as the gradient of axial displacement using 1-D WLS regression
over a 50 µm axial fit length. Strain estimation techniques using three-dimensional (3-D) WLS
fitting [63], and the vector method [70], have been demonstrated with improved strain sensitivity
by incorporating independent speckle realizations in the lateral dimensions. However, lateral
averaging will degrade the lateral resolution and likely reduce displacement and strain accuracy
in regions of mechanical heterogeneity. A potential approach to improve image quality without
lateral averaging is to weight measurements by speckle brightness. In the current implementations
of WLS, displacement is weighted by the OCT SNR, and in the vector method, the OCT SNR is
incorporated by performing averaging in the complex domain. However, as points with high
OCT SNR can still be inaccurate, strain estimation algorithms that incorporate both the OCT
SNR and speckle brightness will likely improve strain sensitivity. This presents a promising
avenue to improve image quality in turbid samples in future studies.

The analysis of speckle in phase-sensitive OCT presented here relies on several assumptions
that may limit its accuracy. For example, a single scattering OCT model was used, however
in scans of a turbid sample, multiple scattering events can occur, which have been shown to
distort flow measurements in Doppler OCT [71,72]. Incorporating multiple scattering events
was outside of the scope of this study, and the results in Section 4 show good agreement between
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simulation and experiment, indicating that our 1-D simulation was sufficient to illustrate the effect
of speckle on phase difference accuracy. Furthermore, in volumetric scans of turbid samples,
the speckle pattern exists as a 3-D quantity, and our simulations were an ensemble of A-scans.
In addition, whilst the method to estimate speckle brightness in this study has the advantage of
being applicable in experiment, it requires a homogeneous sample and does not provide a direct
measure of the constructive interference at each location in the OCT scan. Incorporating multiple
scattering events, 3-D sample models, and more accurate estimates of speckle brightness will
likely improve the understanding of how speckle affects image quality in phase-sensitive OCT.

6. Conclusion

We have presented the first study that describes how speckle affects the accuracy of phase-sensitive
OCT beyond the effects from the OCT SNR. We described how the impact of speckle on accuracy
affects phase difference sensitivity, and we investigated the relationship between phase difference
sensitivity and speckle brightness for several OCT SNRs and translations. In each case, the phase
difference sensitivity was poorer than that predicted from the OCT SNR. This suggests that OCT
SNR alone is insufficient to fully explain phase difference sensitivity in speckle and that speckle
brightness is an important factor that should be considered when interpreting phase-sensitive
OCT results. Furthermore, by incorporating independent speckle realizations, we demonstrated a
ten-fold improvement in strain sensitivity and a five-fold improvement in CNR in compression
OCE. The results from this study emphasize the importance of developing phase-sensitive OCT
systems that can produce independent speckle patterns with subsequent acquisitions to improve
image quality in turbid media.
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