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SUMMARY
Decision-making is a cognitive processof central importance for the quality of our lives. Here,we askwhether a
common factor underpins our diverse decision-making abilities. We obtained 32 decision-making measures
from 830 young people and identified a common factor that we call ‘‘decision acuity,’’ which was distinct
from IQ and reflected a generic decision-making ability. Decision acuity was decreased in those with aberrant
thinking and low general social functioning. Crucially, decision acuity and IQ had dissociable brain signatures,
in terms of their associated neural networks of resting-state functional connectivity. Decision acuity was reli-
ably measured, and its relationship with functional connectivity was also stable when measured in the same
individuals 18 months later. Thus, our behavioral and brain data identify a new cognitive construct that under-
pins decision-making ability across multiple domains. This construct may be important for understanding
mental health, particularly regarding poor social function and aberrant thought patterns.
INTRODUCTION

Effective decision-making underpins a range of activities that

span economic performance and social adaptation. A computa-

tional characterization of decision-making processes is also

considered important in advancing an understanding of psychi-

atric disorders (Scholl and Klein-Fl€ugge, 2018). Yet, unlike tradi-

tional cognitive constructs such as intelligence, the distribution

and covariation of decision-making characteristics in the popu-

lation is unknown, while the reliability of behavioral tasks typically

used to measure these abilities has been questioned (Brown

et al., 2020; Enkavi et al., 2019; Hedge et al., 2020). Likewise,

although there is a growing knowledge regarding the neural un-

derpinnings of decision-making ability, there is a relative dearth

of knowledge in relation to adolescence and early adulthood, a

crucial period for brain maturation (Giedd, 2004; Whitaker

et al., 2016). Thus, there is an increasing urgency in understand-

ing the neural basis of cognitive development in young people,

including its relationship with brain connectivity (Sripada et al.,

2020). An added motivation here is the observation that a high
Neuron 109, 1–1
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proportion of psychopathology emerges during adolescence

and early adulthood (Paus et al., 2008).

Decision-making reflects a complex interplay between mul-

tiple processes that bear on evaluating options and choosing

a course of action. These processes are well characterized

within a reinforcement-learning framework (Dolan and Dayan,

2013; Kable and Glimcher, 2009 Phelps et al., 2014; Sutton

and Barto, 1998). Here, a distinction is made between a reli-

ance on learning how beneficial an action has been in the

past, or alternatively the exploitation of an accurate model

of an environment, in order to infer the consequences of

each action. Computationally, this encompasses model-free

control, accurate model learning (Feher da Silva and Hare,

2020), and model-based evaluation (Daw et al., 2005; Dolan

and Dayan, 2013). Model-based and model-free influences

trade off at different levels in different individuals (Eppinger

et al., 2017; Kool et al., 2017).

A more subtle source of decision variability is the impact of

Pavlovian heuristics, reflecting a propensity to attach value to

specific actions by mere association with whether they lead to
6, June 16, 2021 ª 2021 The Authors. Published by Elsevier Inc. 1
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reward or punishment (de Boer et al., 2019; Guitart-Masip et al.,

2012; Moutoussis et al., 2018). This conflict is also evident when

individuals balance a need to harvest rewards against potential

dangers inherent in acting within an uncertain environment

(Bach et al., 2020; Loh et al., 2017; O’Neil et al., 2015). This en-

genders a conflict between motivational drives (e.g., approach

versus avoidance) that need resolution in order to enact effective

decisions.

There is much variability in decision-making across individ-

uals. One source of this variability pertains to uncertainty in

decision outcomes, where a tolerance of uncertainty can drive

preferences for risky but, on average, good options (Christopou-

los et al., 2009; Payzan-LeNestour et al., 2013). Likewise, individ-

ual variability in decision-making is seen also in the temporal

domain, where individuals balance exploiting an immediately

available safe option against the possibility of greater, possibly

uncertain, future benefit (Badre et al., 2012; Sutton and Barto,

1998). Finally, as many decisions are enacted in a social context,

understanding the intentions and emotions of others is often

crucial for making decisions and impacts on characteristics

such as one’s propensity to cooperate with others (Fett et al.,

2012; Hula et al., 2015; Luo et al., 2018).

Although the above emphasizes discrete factors as influ-

encing decision-making, we hypothesized that there would

also be covariation across decision-making abilities within the

population, implying shared variance along latent dimensions.

This is analogous to the structure of intelligence, where a cornu-

copia of abilities co-varies with latent dimensions such as gen-

eral and domain-specific intelligence (van der Maas et al.,

2006). On this basis, we employed a broad-ranging decision-

making battery and administered it to 830 14- to 24-year-olds

living in the community (Kiddle et al., 2018). The battery included

tasks tapping into sensitivity to gains and losses (most tasks in

Table 1), the extent to which model-based influences dominate

choice evaluation (Table 1, task D but also tasks C, E, and F), a

propensity to take risks and exhibit impulsivity (tasks B, C, E,

and G), and an ability to make beneficial social judgements

(tasks E and F). We hypothesized that these four domains would

correspond to latent dimensions of decision-making ability

across tasks.We used computational modeling and key descrip-

tive statistics to extract relevant metrics from the tasks (Bach

et al., 2020; Fett et al., 2012; Moutoussis et al., 2011, 2016,

2018; Rigoli et al., 2016; Shahar et al., 2019a). Submitting these

component metrics to factor analysis (see STAR Methods) al-

lowed us to derive latent across-task cognitive constructs un-

derlying decision-making and test for the presence of latent di-

mensions corresponding to the hypothesized cognitive

domains.

We assessed construct stability using the data of 571 of our

participants who performed the decision-making battery a sec-

ond time, at a follow-up 18 months later on average, by charac-

terizing the relationship between the inferred latent cognitive

constructs and external measures such as age, IQ, and mental

health characteristics. Here, we hypothesized that latent dimen-

sions of decision-making would correlate with self-reported psy-

chological dispositions andmental health symptoms. To test this

latter hypothesis, we availed participants’ derived scores for

both general and specific disposition factors (Polek et al.,
2 Neuron 109, 1–16, June 16, 2021
2018) as well as concurrent mental health symptoms (St Clair

et al., 2017).

Crucially, we characterized the neural circuitry underpinning

latent decision-making factors. To achieve this, we analyzed

functional connectivity from resting-state functional magnetic

resonance imaging (fMRI) data (rsFC), providing a metric of

coupling between blood-oxygen-level-dependent (BOLD) time

series from different brain regions or networks (nodes). Patterns

of rsFC are known to behave as dispositions to a large degree

(Finn et al., 2015), including predicting a subject’s cognitive abil-

ities in diverse domains (Dubois et al., 2018; Kong et al., 2019;

Rosenberg et al., 2016; Smith et al., 2015). Thus, we could ask

whether distinct connectivity networks predicted latent deci-

sion-making factors and whether identified connectivity net-

works had stability over time.

We found evidence for a single dimension of covariation in the

population to which multiple decision-making tasks contributed.

This dimension, which we termed ‘‘decision acuity.’’ reflected

speed of learning, an ability to take account of cognitively distant

outcomes, and low decision variability. We found that decision

acuity has a reliability that was much higher than that reported

for typical decision-making tasks (Moutoussis et al., 2018). In

keeping with this, it was associated with distinct patterns of

rsFC. Finally, decision acuity was characterized by a functional

connectivity signature and a relationship to both psychological

dispositions and symptoms that was distinct to that of IQ.

RESULTS

Decision acuity is an important dimension of decision-
making
A total of 830 young people aged 14–24 were tested using a task

battery assessing diverse components of decision-making (Ta-

ble 1). 349 participants underwent brain fMRI at rest, on the

same day as cognitive testing, to assess resting-state functional

connectivity profiles. Scanned participants had no history of

neuropsychiatric disorder and no suspected psychiatric diag-

nosis on SCID interview. 50 participants with DSM-5 major

depressive disorder were included in the non-scanned sample

to compare the structure of their decision-making to the remain-

ing healthy group. The STAR Methods and supplemental infor-

mation provide further detail on this subgroup.

We extracted 32 decision-making measures from the battery,

which we subjected to factor analyses. Exploratory factor anal-

ysis was followed by confirmatory analysis and out-of-sample

testing of the best factor model (see STAR Methods for details

of the factor-analytic approach, including dimensionality estima-

tion and stability analyses).

Working with the larger, baseline sample, we discerned four

stable decision-making factors. Importantly, only the first of

these loaded on measures from multiple tasks. We named

this factor decision acuity, or d, as it loaded negatively on de-

cision variability measures, especially decision temperature,

and loaded positively on measures contributing to profitable

decision-making, such as low temporal discounting and faster

learning rates (Figure 1; Table S1). Thus, participants with high

d had low decision variability in economic-risk, information-

gathering, Go-NoGo, and Two-Step tasks. They had fast



Table 1. Decision-making task battery

Task (with key reference)

Broad (selected)

psychological domains

Computational constructs

assessed

Key individual parameters

and descriptive measures

A. Go-NoGo task (Guitart-

Masip et al., 2012)

Default (Pavlovian)

propensities for action and

ability to modify them

Impact of gains and losses

on choice

Pavlovian biases (i.e.,

propensity to engage in

action in order to obtain

rewards and to abstain from

action to avoid losses).

Reward sensitivity,

equivalent to decision

temperature.

Instrumental learning rate in

the appetitive and aversive

domains.

1. Pavlovian bias.

2. and 3. Reaction times for

action choices in the context

of threat versus opportunity.

4. Sensitivity to outcomes.

5. General bias for action

rather than non-action.

6. Motivation-independent,

‘‘irreducible,’’ variability in

decision-making.

7. and 8. Learning rates in the

appetitive and aversive

contexts.

B. Economic preferences

task (Symmonds et al., 2011)

(NB: administered at

baseline only)

Risk taking/impulsivity

Impact of gains and losses

on choice

Baseline taste for gambling.

Risk avoidance (preference

for outcome distributions of

low variance).

9. Overall preference for

gambling over known

returns.

10. Preference weight for

variance, compared to the

mean, of an outcome

distribution, named

‘‘economic risk preference.’’

11. Effect of outcome

distribution asymmetry

(skewness) on preferences.

12. Sensitivity to expected

value of outcomes.

C. Approach-avoidance

conflict task (Bach

et al., 2014)

Risk taking/impulsivity

Impact of gains and losses

on choice

Ability for complex planning

Willingness to expose

oneself to different levels of

risk for the sake of amassing

rewards.

Ability to learn about time-

dependent hazards and plan

efficient sensorimotor

sequences to minimize risk.

13.–15. Factor-analytic

scores summarizing

variance over a

comprehensive set of

behavioral measures in the

task. Approximately

corresponding to sensitivity

to overall level of threat,

sensitivity to the time

dependency of threat, and

overall performance.

D. Two-step task (Daw

et al., 2011)

Ability for complex planning

Impact of gains and losses

on choice

Strength of ‘‘model-free’’

(i.e., based on directly

learned values of actions)

versus ‘‘model-based’’ (i.e.,

explicitly estimating the

future consequences of

actions) decision-making.

16. Model-basedness:

tendency to shift in decisions

as a consequence of a

different decision beingmore

advantageous according to

the transition probabilities

inherent in the task.

17. Learning rate.

18. Perseveration tendency.

19. Reward sensitivity.

20. Eligibility trace

(propensity of learning to

affect not just the current

state but also others related

to it).

(Continued on next page)
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Table 1. Continued

Task (with key reference)

Broad (selected)

psychological domains

Computational constructs

assessed

Key individual parameters

and descriptive measures

E. Information gathering task

(Moutoussis et al., 2011)

Risk taking/impulsivity

Ability for complex planning

Impact of gains and losses

on choice

Assessment of whether

future decisions will be more

advantageous if one gathers

more information.

21. Information sampling

noise, which determines not

only decision variability but

also effective depth of

planning.

22. Subjective cost of every

piece of information asked

for when experimenter

imposes no such price

explicitly.

23. and 24. Ditto if a fixed,

external price-per-step is

imposed.

F. Multi-round investor-

trustee task (Fett et al., 2012)

Understanding the

preferences of others (social

cognition)

Ability for complex planning

Impact of gains and losses

on choice

Overall strategies used to

elicit cooperation and avoid

being exploited by one’s

anonymous task partner.

25. Initial trust (i.e., the

amount given by the investor

to the trustee before they

have any specific information

about them).

26. Cooperativeness:

average degree to which

investor and trustee tended

to respond to reductions (or

increases) in each other’s

contributions in kind.

27. Responsiveness:

average magnitude of

responding to the partner’s

change in contribution.

G. Interpersonal-discounting

task (Moutoussis et al., 2016)

Understanding the

preferences of others (social

cognition)

Risk taking/impulsivity

Baseline inter-temporal

discounting; shift in

discounting preferences

upon exposure to peers’

preferences.

28. Basic hyperbolic

temporal discounting

coefficient.

29. Relevance of others’

observed preferences to the

self.

30. Discounting taste

uncertainty, i.e., uncertainty

about one’s own tastes in

this domain.

31. Decision variability over

choosing for others.

32. Irreducible

decision noise.

ll
OPEN ACCESS Article

Please cite this article in press as: Moutoussis et al., Decision-making ability, psychopathology, and brain connectivity, Neuron (2021), https://doi.org/
10.1016/j.neuron.2021.04.019
reaction times and high learning rates in the Go-NoGo task.

Note that a decision temperature parameter can always be

re-written as the inverse of reward (and/or loss) sensitivity.

Hence, the prominent role of negatively loading temperature

parameters in d supports our a priori hypothesis that reward

sensitivity constitutes an important shared characteristic

across tasks.

In the baseline sample, we confirmed that d correlated with

profitable decision-making by estimating a measure of aggre-

gate task performance, based on net points won across tasks

and separate from components of d (Pearson r = 0.50, p <

1e�10; see supplemental information, part C, for details).

Remarkably, d predicted this aggregate measure of perfor-

mance independently from IQ, providing supportive evidence
4 Neuron 109, 1–16, June 16, 2021
for convergent validity with directly measured task performance.

In fact, the effect of IQ on performance depended on its shared

variance with d (the caveat here being that performance in tasks

and d share common-method variance).

The other three factors derived from this analysis addressed

within-task behavior rather than hypothesized global decision-

making constructs and were thus of peripheral interest here.

The second selected the delegated inter-temporal discounting

task (D), the third the information-gathering task (E), and the

fourth the economic risk preference task (C) (Figure S2). As ex-

pected, given that each task had a unique focus, constituent

cognitive measures showed high uniqueness scores across all

factors. 22 of the 32 measures had uniqueness > 80%

(Figure 1B).



Figure 1. Decision acuity

(A) Decision acuity common factor over cognitive

parameters, based on the validated four-factor so-

lution. Measure labels are shortened versions of

descriptions in Table 1, and letters in brackets are

task labels referring to Table 1. The top half of var-

iables load positively, while gray vertical lines give a

visual indication of which measures are important,

being the thresholds used for inclusion of variables

in the confirmatory analyses.

(B) Decision acuity was strongly correlated between

baseline and follow-up, as expected for a disposi-

tional measure. Mauve is the regression line, and

black is the identity line.
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Developmental features of decision acuity
We first examined how d depended on age, a key indicator of

development. We used linear mixed effects (LME) analysis with

participant as random effect, two measurement time points of

decision acuity and IQ, and one (baseline) score per participant

for dispositions, self-reported sex and socioeconomic variables.

LME analysis modeled age both longitudinally and cross-

sectionally. This analysis showed that the d varied in the same

manner with age within or across participants (beta = 0.24,

SE = 0.022, p � 0.0 [undetectable]), suggesting that d increased

with development. d was stable from baseline to follow-up,

although slightly less so than IQ was (Wechsler Abbreviated

Scale of Intelligence, WASI) (r = 0.68, p � 0.0 for d; 0.77, p �
0.0 for WASI IQ; 95% CI for the difference = �0.135 to �0.044;

Figure 1B). These estimates give a conservative estimate of

discriminant validity of d versus IQ D = 0.76, which is satisfactory

(<0.85) (Voorhees et al., 2016). d increased with testing wave (ef-

fect size = 0.38, p � 0.0). We found no evidence here, or in sub-

sequent analyses, for more complex models of age (curvilinear

effects or interactions with sex).

We confirmed that both matrix and vocabulary raw IQ sub-

scores robustly correlated with d (fixed-effect betas = 0.088,

0.179, SE = 0.008, 0.018, p � 0.0). However, inclusion of raw

IQ scores did not affect the significance of age as a regressor

(age beta = 0.121, SE = 0.020, p � 0.0). Therefore, not only did

decision acuity increase with age in our sample but so did the

component that was independent of IQ abilities, suggesting

that IQ and d developed in parallel with age. Together, IQ sub-

scores and age accounted for r2adj = 0.31 of the variance in

d at baseline.

With respect to self-reported sex, d scores for males were

higher than those of females at baseline (t test p = 8.6e–5, ef-

fect size = 0.27). However, if both IQ subscores and age were

entered in LME, the correlation between d and self-reported

sex was no longer significant. Thus, any uncorrected sex

dependence is likely to be due to participant self-selection.

That is, among males, more participants of higher IQ volun-

teered relative to among females. d showed no significant
age 3 sex dependence (controlling for

IQ, sex p = 0.39, age 3 sex p = 0.21).

As to socioeconomic factors affecting

the development of d, we noted an in-

crease with parental education (p =
0.0051, beta = 0.19, SE = 0.067) but no significant association

with neighborhood deprivation (p = 0.09).

Mental health factors and their association with
decision acuity
Next, we examined the relationship between d and both psycho-

logical dispositions and symptoms. Note that in our study,

involvingmainly healthy adolescents and young adults, symptom-

atology refers to the nature and extent of self-reported mental

health symptoms rather than diagnosable clinical disorders.

Thus, we used factor scores validated specifically for our sample

(Polek et al., 2018; St Clair et al., 2017), which indicated that dis-

positions and symptoms in our sample were well described by bi-

factor models. Each bifactor model comprises a superordinate

‘‘general factor’’ and subordinate ‘‘specific factors.’’ Dispositions

comprise a general social functioning factor (‘‘sociality’’) and four

specific factors: social sensitivity, sensation seeking, effortful con-

trol, and suspiciousness. Symptoms comprise a general distress

factor, a.k.a. ‘‘p factor’’ (Caspi et al., 2014; Patalay et al., 2015),

and five specific factors: mood, self-confidence, worry, aberrant

thinking, and antisocial behavior.

d was significantly predicted by dispositions, over and above

its relationship with intelligence. We first regressed all symptom

disposition factor scores against d, allowing all factors to

compete in explaining variance in LME models with participant

intercept as random effect. d was significantly and positively

related to the general disposition factor, sociality (p = 0.0002,

standardized beta, a.k.a. bz = 0.36, SE(bz) = 0.096). In models

that included raw IQ scores and age, both variables significantly

predicted d and improved model fit (Baysian Information Crite-

rion, a.k.a BIC = 4,873 versus 5,083 without IQ). Importantly, in-

clusion of IQ strengthened the significance of sociality (p =

0.0001, bz = 0.32, SE(bz) = 0.084; see Table 2).

Among symptom scores, dwasmost strongly associated with

aberrant thinking, which draws on schizotypy and obsessional-

ity. Covarying for IQ, but not dispositions, showed that d signifi-

cantly decreased with higher aberrant thinking (p = 0.016,

beta = �0.16, SE = 0.066), higher general distress (p = �0.048,
Neuron 109, 1–16, June 16, 2021 5



Table 2. Key steps in regression analyses

Independent variable

A. Symptoms only (p value

for fixed effects beta; time-

dependent LME)

B. Dispositions only (p value

for beta; baseline only)

C. Symptoms and dispositions

(p value for fixed effects beta;

time-dependent LME)

General symptom factor:

General distress

0.048* – 0.390

Self-confidence specific

factor (SF)

0.351 – 0.316

Antisocial behavior SF 0.381 – 0.912

Worry SF 0.014* – 0.875

Aberrant thinking SF 0.016* – 0.074#

Mood SF 0.813 – 0.871

General disposition factor:

Adaptive sociality

– 0.0018** 0.0001***

Social sensitivity – 0.656 –

Sensation seeking – 0.987 –

Effortful control – 0.959 –

Suspiciousness – 0.014* –

Age <0.0001*** 0.0002*** <0.0001***

Vocabulary IQ (raw score) <0.0001*** <0.0001*** <0.0001***

Matrix IQ (raw score) <0.0001*** <0.0001*** <0.0001***

*significant at p = 0.05.

**significant at p = 0.005.

***significant at p < 0.001.
#trend level significance at p = 0.05.
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beta = �0.12, SE = 0.057), but lower worry (p = 0.014, beta =

0.16, SE = 0.063). However, covarying for sociality (with or

without other dispositions) reduced the significance of aberrant

thinking, to trend level (p = 0.074, beta = �0.10, SE = 0.053),

and abolished the relationship with other symptom dimensions

(symptom general factor: distress, p = 0.82, others ranging

from p = 0.35 to 0.99). By itself, IQ was significantly correlated

to aberrant thinking (matrix p = 0.013, vocabulary p = 0.0001)

and less so general distress (matrix p = 0.012, vocabulary p =

0.47). Again, all analyses linearly accounted for age and did not

benefit from more complex models of age.

Patterns of brain connectivity are associated with
decision acuity differently from IQ
Out of 313 healthy subjects who were scanned at baseline, we

discarded baseline scans without acceptable imaging data qual-

ity (3), whoseME-ICA denoising did not converge (4), or who had

excessive motion while scanning (8), leaving 298 baseline scans

for analysis. A further three subjects were removed from ana-

lyses involving IQ scores as they did not complete the IQ tests,

leaving 295 subjects for analysis. A population-average parcella-

tion of brain data was obtained using independent component

analysis in our sample, resulting in 168 networks (nodes) within

each of which activity was highly correlated. Patterns of connec-

tivity between nodes were then estimated as partial correlation

values, or resting-state functional connectivity (rsFC). We then

used rsFC values as features in sparse partial least-squares

(SPLS) analyses to predict decision acuity and composite IQ.

We used cross-validation and out-of-sample predictive testing

to prevent overfitting. Predictive accuracy was assessed as
6 Neuron 109, 1–16, June 16, 2021
Pearson’s correlation coefficient between true scores and

model-predicted values. We report associations between

predicted and observed decision acuity after correcting for

scanner-related and other covariates. This ensures that it is the

information carried by the functional connectivity alone that pre-

dicts cognitive abilities. (See STAR Methods for details; Figure 2

illustrates the structure of the predictive testing.)

Scores for d predicted on the basis of functional connectivity,

dpr, significantly correlated with measured d controlling for de-

mographic and imaging-related covariates (see STAR Methods

for details; r = 0.145, p < 10�6). The correlation between

measured IQ and IQ predicted on the basis of rsFC using all con-

nections was lower but also significant (r = 0.092, p = 9e–5).

To interpret the neuroanatomical structure of the predictive

model, we first partitioned the nodes into anatomically meaning-

ful ‘‘modules’’ using a community detection algorithm (Blondel

et al., 2008) and then asked howwell each of thesemodules pre-

dicted d. The community detection algorithm clustered the no-

des into disjoint communities or modules based on the strength

of their intrinsic connectivity, to some extent analogous to large-

scale functional networks. As shown in Figure 2, we obtained the

following modules: anterior temporal cortex including the medial

temporal lobe (ATC); frontal pole (FPL); frontoparietal control

network (FPN); left dorsolateral prefrontal cortex (LDC); medial

prefrontal cortex (MPC); orbitofrontal cortex, medial and lateral

(OFC); opercular cortex (OPC); posterior cingulate cortex

(PCC); posterior temporal cortex (PTC); right dorsolateral pre-

frontal cortex (RDC); subcortical (SUB); salience network

(SAN); somatosensory and motor areas (SMT); and visual re-

gions (VIS). We fitted a different SPLS model to the subset of



Figure 2. Structure of predictive testing
Flow diagram of the nested cross-validation pipeline used to estimate how strongly decision acuity (similarly for IQ) could be predicted from brain data.

Essentially, a predictive model was derived from training folds and then applied to the brain data from test folds to derive predicted values for the decision acuity

for each individual. This could then be comparedwith the experimentally derived decision acuity. In our study, NB = 200, NF1 = 20, NF2 = 10, NR = 5, andNP = 100. X

corresponds to the rsFC features and y to the scores predicted (d or IQ).
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connections involving the nodes in each module, including both

intra- and intermodular connections.

The correlation between measured and predicted d scores

was significant for the FPN, MPC, OFC, OPC, PCC, SMT,

and VIS modules after correction for multiple tests (Figure 4A;

Table 2), with the strongest correlations for OFC, PCC, and

SMT. For the PCC and SMT modules, the correlation coeffi-

cients exceeded to a small degree the correlation for a model

employing all possible connections. This can best be explained

as a result of feature selection. In the full model, it is harder to

select just the right features and protect against over-fitting, re-

sulting in a greater penalty in predictive accuracy. On the other

hand, the model trained on a smaller set of features alone is

less likely to overfit. This paradoxical increase in accuracy for

a model with less features is known to be stronger when the

number of observations is small, relative to the number of fea-

tures (Chu et al., 2012), which is the case in our dataset. The

different modules comprised diverse numbers of nodes, but

there was no significant association between the number of

model features and the correlation between observed and pre-
dicted scores (d: r = 0.356, p = 0.193; IQ composite scores: r =

�0.158, p = 0.574).

Out of 235 subjects who were scanned at follow-up, adhering

to the same criteria as for the baseline data, we discarded those

without acceptable imaging data quality (4), whose ME-ICA

denoising did not converge (5), and who presented with exces-

sive motion (3), leaving 223 subjects available for analysis. We

applied the model trained on the baseline data to the follow-up

data (see STAR Methods) for the modules where the prediction

was significant at baseline. Importantly, the prediction of a sub-

ject at follow-up did not involve their own rsFC baseline data, as

this would inflate the estimate of predictive performance. The

baseline model predicted significantly the follow-up d values

based on the follow-up connectivity data when using either all

the connections or those with networks in the FPN, MPC,

OFC, and SMT modules, controlling for demographic and imag-

ing-related covariates, and correcting for multiple tests (Fig-

ure 4B; Table 3).

To assess whether d and IQ can be predicted by specific

rsFC patterns or, alternatively, whether both are underpinned
Neuron 109, 1–16, June 16, 2021 7



Figure 3. Brain networks

Modules detected by the community structure algorithm. The 168 nodes of the parcellation were clustered in 14 modules with high average rsFC among

their nodes. ATC, anterior temporal cortex including the medial temporal lobe; FPL, frontal pole; FPN, frontoparietal control network; LDC, left dorsolateral

prefrontal cortex; MPC, medial prefrontal cortex; OFC, orbitofrontal cortex, medial and lateral; OPC, opercular cortex; PCC, posterior cingulate cortex;

PTC, posterior temporal cortex; RDC, right dorsolateral prefrontal cortex; SUB, subcortical; SAN, salience network; SMT, somatosensory and motor

areas; VIS, visual regions.
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by similar patterns of neural connectivity, we controlled the

partial correlation coefficients between dpr and d, on top of

the nuisance covariates previously included, for IQ. In a com-

plementary manner, we controlled the partial correlation be-

tween IQpr and IQ, on top of the nuisance covariates, for d. Af-

ter correction for IQ composite scores, and correcting for

multiple comparisons, the correlation between d and dpr re-

mained significant for OPC, PCC, and SMT (Figure 5A; Table

2), suggesting that these modules reflect decision acuity

over and above their relation to IQ. On the other hand, the cor-

relation between IQpr and IQ was significant for OPC and PTC

after controlling for d (Figure 5B; Table 3), suggesting that

these modules reflect IQ over and above their relation to de-

cision acuity. These analyses demonstrate that decision acu-

ity and IQ have distinguishable and specific signatures in

functional connectivity networks: decision acuity taps on the

default mode, salience, and sensorimotor networks, whereas

IQ taps on the salience network but also on temporal net-

works associated with language processing.
8 Neuron 109, 1–16, June 16, 2021
DISCUSSION

To our knowledge, this is the first study characterizing a dimen-

sional structure in core decision-making from an epidemiologi-

cally informed sample of adolescents and young adults. We

found that decision-making performance could be described

by a broad construct receiving contributions from multiple do-

mains of cognition. We termed this decision acuity, d. In our

sample, d showed satisfactory longitudinal stability, increased

with age and with IQ. d also had specific associations with

mental health measures, over and above IQ. Decision acuity

was related to brain function, showing a temporally stable asso-

ciation with rsFC, involving networks previously implicated in de-

cision-making processes. Moreover, rsFC patterns associated

with d and IQ were distinguishable and specific despite showing

a degree of overlap.

Decision acuity had an interpretable structure, reflecting a fa-

cility for good decision-making. Decision acuity increased as

decision variability lessened, evidenced by its loadings on



Figure 4. Observed versus predicted decision acuity by testing wave

Model predictive performance for each of the functional modules.

(A) Coefficient for the correlation between observed d and dpr predicted by models trained on all connections and the connections involving nodes in each

module.

(B) Correlation between observed d and dpr predicted by models trained on the baseline data. Only modules for which the prediction was significant at baseline

are shown here. All the models included as covariates demographic and imaging-related factors (brain volume, scanning site, head motion; see STARMethods).

The whiskers indicate the intervals containing the lower 95% probability mass (corresponding to one-tailed tests) for the null distribution, obtained via permu-

tation of the subjects to derive the significance of the correlation between predicted and measured scores (see STAR Methods). The correlation is significant

(uncorrected) when it falls above the whisker. *significant uncorrected; **significant with FDR correction for the 15 tests.

ATC, anterior temporal cortex including the medial temporal lobe; FPL, frontal pole; FPN, frontoparietal control network; LDC, left dorsolateral prefrontal cortex;

MPC, medial prefrontal cortex; OFC, orbitofrontal cortex, medial and lateral; OPC, opercular cortex; PCC, posterior cingulate cortex; PTC, posterior temporal

cortex; RDC, right dorsolateral prefrontal cortex; SUB, subcortical; SAN, salience network; SMT, somatosensory and motor areas; VIS, visual regions.
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decision-noise-like parameters across all tasks that provided

such measures. The most prominent loadings were inverse tem-

perature parameters, also known as reward sensitivities. By defi-

nition, high temperature (a.k.a. reduced reward sensitivity)

agents are less motivated about relevant outcomes, supporting

our hypothesis that reward sensitivity loaded on an important

common factor. However, d also received substantial contribu-

tions from measures that did not directly reflect reward sensi-

tivity but characterized good decision-making. These included

low temporal discounting, fast reaction times, high learning

rates, baseline trust in others, low propensity for retaliation,

low propensity to show a Pavlovian bias, and low lapse rates.

Such non-temperature constructs may also be linked to decision

variability, albeit less directly.

An interesting interpretation of this pattern is that lower-acuity

participants may find it too costly to eliminate computational er-

rors in the fast pace of many tasks. For example, the computa-

tions required tomake decisions about outcomes far in the future

may be hard to perform for low-d agents, resulting in discount-

ing-like behavior. Lapse rates may be understood as ‘‘floor’’ er-

ror rates imposed by computational costs. That is, decision-

making independent of the value of outcomes may take place

when these values are too difficult to compute. Higher decision

variability may also be driven by effective beliefs about the world,

for example, a belief that overvalues exploration. If working out

the correct action is too difficult, trial and error is a brute-force
alternative, providing a compensatory or adaptation strategy in

the face of limited cognitive resources. Overall, the contrast of

noise with precision-enhancing measures in this factor is remi-

niscent of the association between low ability to reach goals

and low policy confidence in active inference (Friston et al.,

2013). The agnostic derivation but interpretable nature of d can

thus be seen as an example of data-driven ontology (Eisenberg

et al., 2019).

One remarkable result of our study is the relatively high reli-

ability of our new construct. This is important because many

behavioral tasks have low test-retest reliability (Enkavi et al.,

2019), an issue that also applies to some of the decision-making

measures used in our battery (Moutoussis et al., 2018; Shahar

et al., 2019a). A discordance in reliability between the individual

decision-making tasks and our decision acuity construct is likely

to stem from the fact that the latter reflects shared variance

across multiple independent measures. Similarly, self-report

surveys previously shown to have high reliability typically involve

multiple questions to assess underlying constructs (Enkavi et al.,

2019), suggesting that, to obtain reliable decision-making mea-

sures, it is useful to use multiple tasks. d also showed satisfac-

tory discriminant validity with respect to IQ, which is evidence

that it provides distinct meaningful information. Nonetheless, it

would be advantageous if individual decision-making measures

were refined to improve their reliability and construct validity,

and an important example here relates to the task assessing
Neuron 109, 1–16, June 16, 2021 9



Table 3. Correlation coefficients between observed and predicted scores

Prediction of d at baseline (Figure 3A) Prediction of d at follow-up (Figure 3B)

Prediction of d at baseline controlling for

IQ (Figure 3C)

Prediction of IQ at baseline controlling for

d (Figure 3D)

Network r p value p value (FDR corr.) r p value p value (FDR corr.) r p value p value (FDR corr.) r p value p value (FDR corr.)

All 0.145 <1e–6 <1e–6** 0.081 0.005 0.018** 0.021 0.241 0.651 �0.054 0.972 1.000

ATC 0.038 0.116 0.158 0.052 0.048 0.102* 0.018 0.304 0.651 �0.169 1.000 1.000

FPL �0.019 0.773 0.773 0.023 0.242 0.363 �0.016 0.712 1.000 0.036 0.130 0.488

FPN 0.059 0.019 0.036** 0.085 0.002 0.012** �0.007 0.605 1.000 �0.045 0.979 1.000

LDC 0.023 0.218 0.273 �0.055 0.943 0.985 �0.051 0.950 1.000 0.069 0.015 0.073*

MPC 0.069 0.004 0.011** 0.118 9.38e–05 7.03e–04** 0.017 0.268 0.651 �0.052 0.960 1.000

OFC 0.143 <1e–6 <1e–6** 0.083 0.006 0.018** 0.032 0.153 0.574 0.013 0.320 0.960

OPC 0.123 6.79e–06 2.04e–05** 0.015 0.333 0.455 0.181 <1e–6 <1e–6** 0.170 <1e–6 <1e–6**

PCC 0.199 <1e–6 <1e–6** �0.049 0.915 0.985 0.104 2.11e–04 0.001** �0.044 0.955 1.000

PTC �0.023 0.769 0.773 0.167 <1e–6 3e–06** �0.035 0.877 1.000 0.113 7.2e–05 5.4e–04**

RDC 0.037 0.047 0.078* �0.072 0.985 0.985 �0.101 1.000 1.000 �0.019 0.727 1.000

SAN 0.034 0.106 0.158 0.004 0.448 0.560 �0.138 1.000 1.000 �0.103 1.000 1.000

SMT 0.159 <1ev6 <1e–6** 0.068 0.010 0.025** 0.107 2.77e–05 2.07e–04** �0.095 1.000 1.000

SUB �0.006 0.577 0.666 0.022 0.229 0.363 �0.020 0.774 1.000 �0.061 0.980 1.000

VIS 0.062 0.012 0.025** 0.033 0.178 0.334 �0.078 0.998 1.000 �0.008 0.606 1.000

Correlation coefficients corresponding to the plots in Figures 4 and 5. *significant uncorrected; **significant with FDR correction for the 15 tests.
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Figure 5. Networks specific to decision acuity versus specific to IQ

Predictive performance for d and IQ when correcting for each other.

(A) As in Figure 4A, correlation between observed d and dpr, but here additionally correcting for IQ in addition to demographic and imaging-related factors (brain

volume, scanning site, head motion; see STAR Methods).

(B) Correlation between observed and predicted IQ, but correcting for imaging related factors and decision acuity.

In all plots, the leftmost bar corresponds to themodel that includes all connections. The whiskers indicate the intervals containing the lower 95%probability mass

(corresponding to one-tailed tests) for the null distribution, obtained via permutation of the subjects to derive the significance of the correlation between predicted

and measured scores (see STARMethods). The correlation is significant (uncorrected) when it falls above the whisker. *significant uncorrected; **significant with

FDR correction for the 15 tests. Abbreviations as per Figure 4.
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model-basedness (Feher da Silva and Hare, 2020; Kool

et al., 2017).

Developmentally, high decision acuity was robustly associated

with age, increasing by 0.37 SD from age 14 to 24. This is impor-

tant because component parameters have been found to have

less robust relationships with age in this same sample (Moutous-

sis et al., 2016, 2018). That d varied similarly with age across and

within participants offers some reassurance that its age depen-

dence here is not a practice effect. d also increased with parental

education, a developmentally important socio-economic indicator

(McDermott et al., 2019), again independently of IQ. These posi-

tive associations of dmay reflect adolescents and younger adults

getting more confident in the outcomes of their actions as a func-

tion of maturation but also of a supportive environment.

Mental health indices were associated with d, over and above

IQ. d decreased with p factor (general distress factor) and an

aberrant thinking (schizotypy/obsessionality) specific factor

and increased with a worry-specific factor but, perhaps counter-

intuitively, was not associated with the mood-specific factor.

d explained a small proportion of the variance in mental health,

as is often the case for risk factors in community samples like

ours (Pearson et al., 2015). Importantly, d was most strongly

associated with the general disposition factor sociality, which

statistically explained most of the relation between d and symp-

toms. Our finding that participants with lower decision acuity had

higher residual symptoms (i.e., unrelated to general distress)

within the domain of aberrant thinking is consistent with existing

literature (Ettinger et al., 2015).
Future mental health research can build on our evidence that

decision acuity may reflect a risk factor for schizotypy/compul-

sivity/obsessionality (aberrant thinking) and general distress (p

factor). Thus, decision acuity may confer (or indicate) vulnera-

bility to specific psychopathologies. At the same time, we found

that low decision acuity was robustly associated with poor social

functioning. Further research is needed to trace the pathways

between decision acuity, adaptive social function, and psychiat-

ric symptoms, especially as poor social functioning may confer a

greater functional impact to psychiatric symptoms. Finally, a

weak relationship with common mental disorder symptom-

atology, such as anxiety and depression, was a surprise and pro-

vides a challenge for the enterprise of identifying computational

phenotypes. Replicating these results and establishing their

causes beyond the goals of our study can provide new research

directions for computational psychiatry, and this dovetails with

recent work in related fields (Chen et al., 2020; Sripada

et al., 2020).

Decision acuity was also associated with specific, distributed

patterns of resting-state brain connectivity (Dubois et al., 2018;

Smith et al., 2015). The whole-brain, connectivity-based predic-

tive model depended on connections spread across the entire

brain, implying that d, like IQ, depends on more extensive sys-

tems than those typically observed for state-tapping tasks in

functional imaging studies (e.g., medial prefrontal, dorsolateral

prefrontal). Strikingly, the pattern of connections predicting

d was structured, with connections involving nodes in FPN,

MPC, OFC, OPC, PCC, SMT, and VIS being most predictive of
Neuron 109, 1–16, June 16, 2021 11
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d, irrespective of age and sex. Furthermore, the models trained

at baseline on all the features, as well as those restricted on fea-

tures within FPN, MPC, OFC, and SMT, were also predictive of

d at follow-up, demonstrating the stability of the relationship be-

tween rsFC in these modules and d over time.

Reassuringly, decision acuity was predicted by connections

involving MPC and OFC, regions typically recruited by decision-

making tasks. Circuits involving these regions receive highly pro-

cessed sensory information and support instrumental behavior by

representing subjective value of stimuli and choices (Garvert et al.,

2015; Padoa-Schioppa and Assad, 2006; Rushworth et al., 2011).

The OFC also supports credit assignment during reward learning

(Jochamet al., 2016;Walton et al., 2010) probably by representing

an association between stimuli and outcomes (Boorman et al.,

2016; Padoa-Schioppa and Assad, 2006; Stalnaker et al., 2018).

Finally, theOFChas also been suggested to support the represen-

tation of latent states necessary to navigate decision-making

tasks (Schuck et al., 2016; Wilson et al., 2014). Similarly, involve-

ment of the PCC, FPN, and SMT is not surprising. Activity in the

PCC has been observed during decision-making tasks, and it

has been suggested that the PCC monitors the environment to

detect transitions to new states (Pearson et al., 2011). Although

the frontoparietal circuit has mainly been associated with work-

ing-memory task performance (Murray et al., 2017), it has been

shown that working memory also contributes to learning in typical

reinforcement learning tasks (Collins et al., 2017; Collins and

Frank, 2018). Finally, connections involving motor and somato-

sensory areas may contribute to adaptive decision-making. For

example, in our tasks, motor actions were orthogonalized with

respect to choices, and recent work suggests that only the

more capable decision-makers successfully uncouple motor ac-

tion and option choice (Shahar et al., 2019b). Hence, SMT con-

nectivity may be important to realize this decoupling. Similarly,

active suppression of Pavlovian tendencies that can corrupt

optimal decision-making may also involve optimal sensorimotor

functioning (Cavanagh et al., 2013; Swart et al., 2018).

Our ability to predict decision acuity at baseline when control-

ling for IQ, and IQ when controlling for decision acuity, based on

particular connectivity modules supports the idea that both con-

structs have specific signatures in rsFC. This suggests that deci-

sion acuity has a neurobiological substrate distinct from that of

IQ and adds to the validation of their distinctiveness suggested

by their differential association with psychological measures.

Although IQ absorbed the predictive ability of the connections

within the FPN, the MPC, and OFC, decision acuity tapped on

modules within the default mode (PCC), opercular (OPC), and

sensorimotor (SMT) networks independently of IQ. On the other

hand, IQ tapped on the opercular network (OPC), too, but also on

temporal networks associated with language processing (PTC),

consistent with the vocabulary subscale of IQ being heavily

reliant on linguistic ability (Axelrod, 2002). Interestingly, connec-

tions within the OPC, which encompasses the insula, indepen-

dently contributed to predicting both decision acuity and IQ at

baseline. As part of a salience network, these regions may

contribute to modulation of the switching between internally

and externally directed cognitions (Uddin, 2015).

Important questions for future research include whether deci-

sion acuity is a superordinate latent trait of decision-making and
12 Neuron 109, 1–16, June 16, 2021
whether it relates to dimensions such as risk preference, model-

based choice, and aspects of social competence. Crucially,

studies informed by the associations found here (aberrant

thinking, sociality) can be extended to clinical populations to

assess the generality of the findings, as well as to determine

whether decision acuity might inform diagnosis and treatment

plans for individual psychiatric patients. Such clinical studies

can profit from our finding that rsFC can predict (estimate) deci-

sion acuity, particularly as rsFC data can be acquired quickly,

does not impose cognitive demands, and can be administered

repeatedly to characterize patients through different phases of

a disorder. This type of extension of our approach will benefit

from advances in computational modeling of cognitive and

behavioral data (Huys et al., 2016), as well as improvements in

imaging data collection, processing, and characterization (Ciric

et al., 2018; Kundu et al., 2017; Todd et al., 2016; Vidaurre

et al., 2017), including initiatives to acquire high-quality large-

scale datasets (Kiddle et al., 2018; Van Essen et al., 2013).

We acknowledge limitations of the present study. We had a

retention rate between baseline and follow-up of 70%. Although

this is acceptable, it meant that our follow-up samplewas smaller,

and we had reduced power to detect longitudinal effects.

Although epidemiologically stratified, our sample was a volunteer

one, introducing potential self-selection biases. Our sample did

not allow for many-way (cognitive-brain-developmental-clinical)

analyses. Finally, the reliability and ecological validity of task-

based measures would benefit from further improvement.

Conclusion
We describe a new cognitive construct—decision acuity—that

captures global decision-making ability. High decision acuity

prominently reflected low decision variability. Decision acuity

showed acceptable reliability, increased with age, and was

associated with mental health symptoms independently of intel-

ligence. Crucially, it was associated with distinctive resting-state

networks, in particular in brain regions typically engaged by de-

cision-making tasks. The association between decision acuity

and functional connectivity was temporally stable and distinct

from that of IQ.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Processed connectivity

matrices

This paper https://github.com/

benjamingarzon/FCPC/tree/

master/data

ICA maps and functional

modules

This paper https://github.com/

benjamingarzon/FCPC/tree/

master/data

Data for cognitive task factor

analyses

This paper https://github.com/

mmoutou/decAc

file AllD18.R

Data for Decision Acuity

londitudinal analyses

This paper https://github.com/

mmoutou/decAc

file symfacdeciq.csv

Scripts for cognitive task

factor analyses and Decision

Acuity longitudinal analyze

This paper https://github.com/

mmoutou/decAc

R files CFA-decAc.R and

decAclongi.R ; optional

utilities file gen_ut.R

Software and algorithms

MATLAB Mathworks RRID: SCR_001622; https://

www.mathworks.com/

R package The R Foundation RRID: SCR_001905; https://

www.r-project.org

ME-ICA Kundu et al., 2017 https://afni.nimh.nih.gov/

pub/dist/src/pkundu/

README.meica

FSL Smith et al., 2004 RRID: SCR_002823; https://

fsl.fmrib.ox.ac.uk/fsl/fslwiki/

SPLS R library Chun and Keleş, 2010 https://cran.r-project.org/

web/packages/spls

Brain Connectivity Toolbox Rubinov and Sporns, 2010 RRID: SCR_004841; http://

www.brain-connectivity-

toolbox.net

Functional connectivity

analysis scripts

This paper https://github.com/

benjamingarzon/FCPC
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to andwill be fulfilled by the LeadContact, Michael Moutoussis (m.

moutoussis@ucl.ac.uk).

Materials availability
Not applicable

Data and code availability
Due to the wording of the consent that participants gave to the NSPN project, all pseudo-anonymized data supporting this study is

available upon legitimate-interest request from openNSPN@medschl.cam.ac.uk.
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All code pertaining to the analysis of computational task measures and their factor analysis is available upon request from m.

moutoussis@ucl.ac.uk, while code pertaining to the functional connectivity analysis is available upon request from benjamin.

garzon@ki.se.

EXPERIMENTAL MODEL AND SUBJECTS DETAILS

Human subjects
Participants were sampled from a pool of c. 2400 community-dwelling young people and formed a ‘cognitive cohort’. Participants

were contacted at random from 5 age bins (14-16,16-18 etc.), until each recruited age bin had approximately equal proportions

of females andmales. The proportion of non-white-English youngsters in our study was within 10%of that of themost recent census.

Significant neuropsychiatric problems were screened out by self-report, and recruitment sources were selected for the sample to be

as representative as possible of the healthy population (Kiddle et al., 2018).We continued to invite people from the larger pool into the

cognitive cohort, until our target number of 780 ‘cognitive’ participants was completed. Of these, 300were invited forMRI brain scan-

ning. They were equally distributed in the 5 age bins as above, and equal Female:Male ratio. At the time of registering with the study,

participants were asked to tick: Sex: ‘Female’ or ‘Male’. All participants that gave data for decision acuity and imaging analyses

ticked one or the other box. It was not clarified if some understood the question as ‘gender identity’, socially attributed or biological

category. Due to the phrasing ‘Sex:’ we expect that most participants understood the question to mean ‘self-reported estimate of

biological sex’, but this is a tentative interpretation.

In addition, they were screened for absence of a history or presence of mental health disorder, neurological or major health prob-

lem, or learning disability. Initial screening was by self-report but was confirmed by SCID-II interview and IQ testing.

We supplemented this non-healthcare-seeking sample with 50 young people recently diagnosed with DSM-5 major depressive

disorder. Of these, 38 gave decision-making battery data for decision-acuity analyses (M = 11,F = 27). Thus, the main sample

was representative of the healthy wider population, but a smaller depression group was also analyzed to test whether the structure

of decision-making and the relevant brain measures identified in the healthy population also extended to this health-seeking group.

The depressed cohort was excluded from MRI analyses reported here.

Participants (and their parents, if less than 16 years old) gave informed consent to participate in the study. The study was approved

by the Cambridge Ethics Committee (12/EE/0250).

METHOD DETAILS

Sample size estimation
Our key sample size estimation pertained to the neuroimaging sample, and resulted in the estimate of N = 300. The cognitive-task

sample was then as large as study resources allowed, including resources needed to re-telephone participants who had initially given

consent but did not immediately respond to an invitation of follow-up, up to achieving a follow-up rate of at least 70%. In summary,

estimation of the key, neuroimaging cohort sample size proceeded as follows.

At the time of study design, there were no specific studies to provide a rigorous analysis for rsFC developmental, longitudinal sam-

ple size estimation. We therefore relied on a roughly comparable study which allowed for imaging developmental effect. This study

used a cohort of 387 participants, who provided 829 structural MRI scans (Giedd, 2004). We thus aimed for 300 participants, a num-

ber whichwas logistically accessible, and optimized power by selecting parameters (ageminimum andwidth) of age-bins and follow-

up intervals, using published gray-matter volume data as a proxy for the individual variation that we should have power to detect.

Quadratic growth curves were fitted to the data from the published study above, and study parameters varied in silico to minimize

variance of the estimated parameters of the growth-curves. Simulations showed a plateauing of efficiency if the overall age rangewas

reduced to less than 10 years, or the width of age-bins to less than 2 years. Parameter accuracy improved with follow-up interval and

deteriorated if the follow-up was shorter than 6 months. Therefore, we aimed for 5 age bins times 2 years width, and selected a min-

imum interval of 12 months, aiming at about 18 month average. This was well above 6 months, reduced the chance of demographic

loss (moving far away) and allowed adequate time to repeat invitations for participants that did not immediately respond to follow-up

invitations.

Decision-making Task Battery
We selected seven tasks tapping fundamental decision-making with evidence linking them to bothmental health symptoms and neu-

ral mechanisms (Table 1 in main text). First, a Go-NoGo task (Guitart-Masip et al., 2012) provided measures relevant to sensitivity to

rewards and Pavlovian bias. Second, an approach-avoidance taskmeasured the balance of seeking rewards versus avoiding losses

(Bach et al., 2014). This is likely to be relevant to everyday risk-taking by young people. Third, a risk preference task (Symmonds et al.,

2011) complemented this, focusing on widely accepted economic measures of risk-taking (Bach et al., 2020; Rigoli et al., 2016).

Fourth, we assessed inter-temporal discounting, learning about the preferences of others and finally peer influence (Moutoussis

et al., 2016; Nicolle et al., 2012). Discounting has been shown to be important in a range of psychiatric disorders (Bickel et al.,

2012) and so are issues of thinking about others (Sripada et al., 2009) and peer influence (Kerr et al., 2012). Fifth, we included an in-

formation gathering task (Moutoussis et al., 2011) as this has been consistently shown to be relevant to psychotic symptoms (Lincoln
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et al., 2010b) as well as the fundamentals of decision-making (Dayan, 2014). Sixth, a Trust Task was used as a measure of complex

social cognition especially relevant to disorders of interpersonal function (Fett et al., 2012; King-Casas et al., 2008). Seventh, a two

step task assessed the role of habitual versus planful mechanisms in decision-making (Daw et al., 2011). The battery was imple-

mented using MATLAB (MATLAB, 2012) using the Cogent toolbox (see acknowledgments). Trained research assistants directed

the participants through the battery.

In terms of remuneration, participants received a flat fee but were also (truthfully) told that they would be paid extra according to

their earnings in the tasks. They were informed that there would be a substantial amount of luck in each task, but those who

completed the tasks carefully would expect to earn about 2.5 pounds extra per task. Participants did not see earnings for each trial,

because tasks differed greatly in their delivery andwe did not want to display varying amounts of money to avoid additional Pavlovian

motivational effects. Instead, participants were told that ‘roughly, each good decision in each task is worth approximately the same’,

a statement which provided a reasonable reflection of the true state of affairs. The sole element of deception in the battery was that

during the interpersonal tasks participants were told that their play partner was a peer, whereas in reality it was a computer agent.

However these agents were simulating as closely as possible the performance of healthy people who had the same demographics as

the participants. Participants were debriefed at the end of all testing.

Earnings were added to their compensation for the day’s testing, except for the Interpersonal-Discounting task. Here, participants

were paid at one of their chosen delays, randomly chosen from all the trials in the task, if they chose a larger but delayed payment.

This was paid in Amazon vouchers.

The order of the tasks was subject to constrained randomization. We first piloted the battery in 15 participants, of whom we asked

detailed feedback as to how interesting and how tiring they found each task, as well as free-form comments. On the basis of this we

avoided putting the more tiring or less interesting tasks near the end of the battery, in order to minimize the effect of fatigue. This

resulted in eight different task sequences, one of which was given at random to participants. After the first 40 participants were re-

cruited we performed an interim analysis to compare performance in this battery of shortened tasks as compared to the full-length

versions. Performance in each task showed followed the pattern of performance in the original, except the Two-Step task. Here par-

ticipants as a group showed only just-detectable goal-directed decision-making. As this would greatly reduce the task’s usefulness

we improved the pre-task training and instructions and discarded this first �10% of data for this task, with satisfactory results.

Tasks lasted 8-30 min each, giving an overall duration of 2 3=4 – 2
3=4 h, including one obligatory break and as many extra between-

task breaks as the participant asked for. Good performance attracted proportionally greater fees in real money.

Key measures were first extracted from each task according to published methodologies. These key measures assess funda-

mental aspects of decision-making, namely sensitivity to rewards and losses, attitudes to risk, inter-temporal and reflection impul-

sivity, pro-sociality andmodel-basedness. 820 participants (including all scanned participants) yielded usable data across tasks. The

approach-avoidance task, the information gathering task, and the trust task required some adaptations that are listed below.

We were interested in whether common factors operated across domains of decision-making. We therefore pre-processed the

data to reduce strong correlations amongmeasures within-task, which would otherwise dominate the factor analysis, as is described

in the supplemental information. In total we formed 32 measures, listed in Tables 1 and S1.

The approach avoidance taskwas originally described in Bach et al. (2014) was adapted for the purposes of this study. Because of

time constraints we reduced the number of threat contexts from three to two, which we call two ‘predators’ corresponding to low and

high threat. Also, different from the previous study, epoch duration did not depend on threat level. That is, an epoch ended after a

random duration, independent of whether the predator woke up or not. Finally, the number of epochs was reduced to 1/3 of the orig-

inal, so that the task took about 23 min to complete.

Based on the previous work (Bach et al., 2014), we collected a large number of behavioral descriptive measures and performed an

exploratory factor analysis of these (substantially correlated) measures. We found that the first three factors could be meaningfully

interpreted in decision-making terms, namely as sensitivity to the level of threat in the environment (‘threat sensitivity’), sensitivity to

features increasing probability of loss within an environment (‘loss sensitivity’) and measures of overall performance (‘performance’).

As might be expected, this third ‘performance’ factor loaded more highly in d (Figure 1) but still did not exceed the threshold of 0.25

that we used for inclusion in confirmatory analyses (below).

The ‘cover story’ and graphics of the Information Gathering task were adapted from the work of Lincoln and coworkers (Lincoln

et al., 2010a, 2010b). On the basis of previous work (Moutoussis et al., 2011) we reduced the maximum number of samples of

information per trial in order to increase the impact of the approaching end (urgency). We first presented participants with an un-

costed-information gathering version of the task for 10 trials. This had deliberately non-specific instructions to maximize the chance

that participants would bring their own, subjective cost structure to bear and because, somewhat unexpectedly, such uncosted,

scarce-instruction versions of the task has produced some of the most consistent results in clinical and subclinical samples. We

then presented them with 10 trials with more specific instructions. Participants started with 100 points and had to pay 10 points

for each item of information they requested.We employed amaximum-likelihood fit of the bayesian-observer model fromMoutoussis

et al. (2011).

In order to analyze the Trust taskwe adapted themeasures described by Fett et al. (2012). Following these researchers, we consid-

ered whether participants increased or decreased their offer at each move in response to observing their partner increase or

decrease theirs. However we considered the fractional change in contribution, i.e., the change in the fraction of play-money that

could have been given. This entails the hypothesis that each player considers the other as ‘messaging’ them from a baseline of their
Neuron 109, 1–16.e1–e7, June 16, 2021 e3
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financial means, not in absolute terms. We then considered the vector in the 2-dimensional space of (fractional-change-of-Investor

by fractional-change-of-Trustee) formed for each round of play. We classified this in the same way as Fett et al. (retaliating, repairing,

honoring, disrupting) as the angle between the vector and the change-of-Investor axis increased from �180 to 180 degrees. Again

using the (rather crude) approximation that strategy remains the same throughout the 10 rounds of the game, we added the vectors

for each of the rounds to determine the character of the game as a whole. The orientation of the resultant vector characterizes the

whole exchange – both Investor (our participant) and Trustee (the computer). As all investors played the same computer program, this

vector can be seen as the type of exchange that the participant elicited.

In the event, orientations showed a clear bimodal distribution, either around zero degrees (an exchange based on coaxing the

Trustee) or around�3p/4. The latter represents an exchange where each party is responding to the other’s reduction in contribution

with their own reduction. We might speculate that participants attempt to signal ‘if you won’t be generous, I won’t either’. The two-

cluster distribution could in turn be fitted reasonably well with a single straight line spanning retaliatory to coaxing exchanges. The

‘trust building’ index in Tables 1 and 2 corresponds to the participant’s position along this line.

MRI data acquisition
MRI scans were acquired on three identical 3T whole-body MRI systems (Magnetom TIM Trio; VB17 software version; Siemens

Healthcare): two located in Cambridge and one located in London. Reliability of the MRI procedures across sites has been demon-

strated elsewhere (Weiskopf et al., 2013). Structural MRI scans were acquired using a multi-echo acquisition protocol with six equi-

distant echo times between 2.2 and 14.7 ms, and averaged to form a single image of increased signal-to-noise ratio (SNR); TR =

18.70 ms, 1.0 mm isotropic voxel size, field of view (FOV) = 256 3 256, and 176 sagittal slices with parallel imaging using GRAPPA

factor 2 in anterior-posterior phase-encoding direction. Resting-state blood-oxygen-level dependent (BOLD) fMRI (rsfMRI) datawere

acquired using multi-echo acquisition protocol with three echo times (TE = 13, 31, 48 ms), TR of 2420 ms, 263 volumes, 3.8 mm

isotropic voxel size, 34 oblique slices with sequential acquisition and a 10% gap, FOV = 240 3 240 mm and matrix size = 64 3

64 3 34. The duration of the functional scan was approximately 11 min.

Connectivity Analysis
The rsfMRI data were denoised with multi-echo independent component analysis (ME-ICA) (Kundu et al., 2017). ME-ICA leverages

the echo time dependence of the BOLD signal to separate BOLD-related from artifactual signal sources, like head motion. The func-

tional images were normalized to MNI space by composing a rigid transformation of the average functional image to the participant’s

structural image and a non-linear transformation of the structural image to the MNI template, and finally smoothed with a 5 mm full-

width-at-half-maximum Gaussian kernel. Following Smith et al. (2015), group-ICA was applied to the pre-processed fMRI baseline

data to decompose it in 200 nodes, 32 of which were identified as artifacts by visual inspection and excluded. The remaining 168

nodes are either confined brain regions or networks formed by regions where BOLD signal time-series are strongly correlated. Mul-

tiple spatial regressions against the group-ICA spatial maps were used to estimate time-series for each network and subject, for both

baseline and follow-up scans. RsFC matrices (168 3 168 nodes) were then computed using partial correlation with limited L2 reg-

ularisation (Smith et al., 2011). All these preprocessing steps were conducted with the ME-ICA toolbox (https://afni.nimh.nih.gov/

pub/dist/src/pkundu/README.meica) and the FMRIB Software Library (FSL, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). As shown in Fig-

ure S4 and recent studies of FC reliability (Noble et al., 2017), overall reliability of individual functional connections is low, though

some connections displaymoderate to high reliability. We thus usedmultivariatemethods combiningmultiple FC values as a strategy

to compensate for the low FC of individual connections.

The obtained rsFC values were used as features in a sparse partial least-squares (SPLS) model to predict two outcome measures

of interest (decision acuity and IQ composite scores). SPLS (Chun and Keleş, 2010; ‘spls’ R library, https://cran.r-project.org/web/

packages/spls/) is a multivariate regression model that simultaneously achieves data reduction and feature selection. It has applica-

tion in datasets with highly correlated features and sample sizemuch smaller than the total number of features, as was the case in the

present study. SPLSmodels are governed by two parameters (number of latent components and a threshold controlling model spar-

sity) that were adjusted using a nested cross-validation scheme (i.e., using data in the training dataset only) with 10-folds (Figure 2).

Predicted scores were estimated by 20-fold cross-validation repeated 5 times. For each training-testing partition we performed the

following steps. To elucidate whether the predictions were driven by rsFC values independently of age, sex or covariates of no in-

terest (see below), we fitted a linear model to the training dataset and regressed out from the target variable (in both training and

testing datasets) age, sex and their interaction as well as brain volume, scanning site and head-motion-related parameters. Head

motion is known to originate spurious correlations that bias connectivity estimates and therefore (besides theME-ICA preprocessing

explained above) we regressed out average framewise displacement (FD), a summary index of the amount of in-scanner motion (Po-

wer et al., 2012), and the degrees of freedom resulting from the ME-ICA denoising, which may differ across subjects depending on

how much nuisance variance is removed from their data. As an additional control for head motion, subjects whose mean FD was

above 0.3 mm were not included in the analysis. We also standardized both training and testing data with respect to the mean

and standard deviation of the training data (separately for each feature). As a first step to filter out uninformative features and speed

up computations, only those significantly (p < 0.05) correlated with the outcome variable in the training dataset were entered in the

SPLS model. We then used a bagging strategy where data were resampled with replacement 200 times and as many SPLS models

were fitted to the resampled datasets, and their feature weights averaged to produce a final model. The purpose of this step was 1) to
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improve the generalizability of the final average model and 2) to allow estimation of the stability of the feature weights selected. The

final, average model was used to compute the predicted scores for the testing partition. The same procedure was repeated for all

folds to obtain one predicted score for each subject, where the predicted score for each participant depended only on data from

other subjects in the sample. These procedures were implemented with R (https://www.r-project.org/) and MATLAB (https://

www.mathworks.com).

Network node community structure
To enhance our understanding of the anatomical distribution of the predictive connections, we performed a ‘virtual lesion’ analysis

(Dubois, et al., 2018), which entails assessing the performance of the model when it is trained only on subsets of connections instead

of the full ensemble. First, we partitioned the set of nodes into disjoint modules or communities (to some extent analogous to large-

scale functional networks; Smith et al., 2009) formed by nodes which displayed high connectivity among them but lower connectivity

with nodes in other modules. We obtained the community structure directly from our dataset instead of relying on previous partitions

that have been derived from adult connectomes (Ito et al., 2017; Power et al., 2011), because brain connectivity of adolescents and

adults is known to differ (Fair et al., 2009).

To produce the partition, we averaged the baseline rsFCmatrices across participants and removed negative entries. The resulting

matrix was submitted to the Louvain community detection algorithm for weighted graphs (Blondel et al., 2008) and this partition was

refined using a modularity fine-tuning algorithm (Sun et al., 2009). Since the algorithm is not deterministic, it was applied 100 times

and the results gathered in a nodes x nodes consensusmatrix that indicates the frequency bywhich the corresponding node pair was

assigned to the same module. The consensus matrix was partitioned repeatedly until convergence. The algorithm depends on a

parameter g that controls the resolution (which determines the ensuing number of modules). We adjusted this parameter to maximize

the normalized mutual information between solutions at different resolutions. The optimal value of g ensures the most stable parti-

tioning and in our dataset (g = 2.7) led to a solution with 14 modules, a number that yielded interpretable modules and is on par with

the cardinality used in previous studies. These analyses are similar to those reported in (Geerligs et al., 2015) andwere performedwith

the Brain Connectivity Toolbox (Rubinov and Sporns, 2010; http://www.brain-connectivity-toolbox.net) for MATLAB. Having parcel-

lated the connectome in the 14 modules, we trained the prediction model for each one of them using only connections implicating

nodes in thatmodule (i. e. either connections among nodes in themodule or connections between nodes in themodule and the rest of

the brain). We employed the same module decomposition in the analysis concerning the follow-up dataset.

QUANTIFICATION AND STATISTICAL ANALYSIS

Derivation, validation and psychometric correlates of Decision Acuity
We tailored analysis to test the hypothesis that a few (around three) dimensions of covariation would meaningfully load across de-

cision-making measures, expecting reward sensitivity, risk preferences, goal-directedness and prosociality to be represented in

these dimensions. We allowed, however, the data to determine the number of factors in the model. We used an exploratory-confir-

matory approach to establish the structure of the factor model using the baseline data. Then, we made use of the longitudinal nature

of our sample to test the temporal stability and predictive validity of the key derived measure.

Task measures at baseline only were first transformed to near-normal marginal distributions using logarithmic or power-law trans-

forms, imputed for the small percentage of missing values using the R package ‘missMDA’, then randomly divided into a ‘discovery’

and ‘testing’ samples. N = 416 participants were used for exploratory common factor analysis (ECFA) and 414 were used for out-of-

sample testing. We found loadings on the first ECFA factor, likely to be most important, to vary smoothly across all parameters, and

the great majority of loadings to be lower than the conventional threshold of 0.4 used to construct structural equation models for

confirmatory FA (Muthén and Muthén, 2008). Items had high uniqueness, as expected. These results were much like the final to-

tal-sample FA illustrated in Figure 1. Therefore, rather than claim that certain decision parameters were important and others

were not in providing a measure of the underlying latent variable, we allowed for all decision-making items to contribute, recognizing

that individual item weights would be poorly estimated, but expecting that the resulting overall scores would be well estimated. We

tested this by comparing (i) discovery versus test samples and (ii) purposeful half-splits of the population with respect to sex and age

(see supplemental information, section B). The exploratory analysis furthermore suggested that our objective need not be to deter-

mine a ground-truth number of factors, as higher order factors were dominated by single tasks and hence were of no interest here.

Our criterion for including higher-order factors then was whether higher dimensional models were likely to result in better score es-

timates for the low-order factors, which were of interest.

The maximum number of factors for the exploratory-confirmatory analysis was 8, estimated by parallel analysis (Figure S1). The R

library ‘nFactors’, and specifically R functions ‘eigen’,’parallel’ and ‘nScree’ were used to estimate the scree-plot based number of

exploratory factors to retain illustrated in Figure S1. Based on these, models from 8 down to 1 factors were derived with function ‘fa’,

using ordinary least-squares to find minimum-residual (minres) solutions. The models estimated from the ECFA were then tested on

the confirmation dataset using structural equation modeling in R (Fox, 2006). Criteria of under-determination, Bayesian Information

Criterion (BIC), and comparative fit index (CFI) were used to compare including an increasing number of factors. In the confirmatory

factor analysis, a threshold of 0.25 was adopted as very few loadings on the first factor exceeded the conventional threshold of 0.4

(See Figure 1 in themain text). Considering the test set of 414 participants only, we found that model fit as indexed by the BIC and CFI
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improved from 1 to 4 factors. However, 5 factor and more complex model fits did not converge on the test set. According to these

criteria we considered a model of four factors to be most parsimonious and robust, but we also considered the stability of the latent

constructs derived tomake a final choice of factor-analyticmodel.Within the range of three to five factors, d scoreswere not sensitive

to the exact number of factors, scores being correlated with r > 0.9, p�0, with the score obtained from the 4-factor solution. We thus

opted for a 4-factor model for all subsequent analyses.

We then tested whether decision acuity as a construct was stable with respect to (i) the random discovery/confirmation split (ii)

median-split age and (iii) sex using the baseline data. We examined how closely scores for a certain subgroup (below median age

for (ii), ‘Male’ for (iii)) based on ECFA of the group itself agreed with scores for the same individuals based on FA weights derived

from the opposite (i.e., above median age or ‘Female’) group. We examined the construct stability of decision acuity by correlating

component d scores on half the sample with the same scores derived from the first ECFA component on the other half of the sample.

Here wewere not primarily interested in the factor structure of decision-making, but in the stability of the construct of decision acuity.

We thus divided the sample into two subgroups either by age (at 19) or by sex. We argued that if the construct itself was stable across

age (and sex), then the decision acuity factor score for each participant could be calculated either using the factor loadings derived

from the participant’s own group or indeed the opposite one. Individuals with substantially differing scores would indicate that a

different latent construct organized decision-making across the subgroups. If, for example, d was an invariant latent construct

with respect to age, then the pattern of loadings derived from older participants would give the same scores when applied to younger

participants as and ECFA on the young participant data themselves (Figure S3). d was highly stable across the discovery-confirma-

tion random split (0.99 confidence interval for r(exploratory based on confirmatory loadings, own exploratory) = 0.976,0.985), as well

as age CIr(young|old, own young) = 0.969,0.9811). Its stability across gender was satisfactory but significantly lower, evidencing a

small degree of sexual dimorphism CIr(male|female, ownmale) = 0.820,0.887. Fit indicators were similar for the whole sample and for

each split (e.g., RMSEA 90%CIs for females, males, younger, older and all were 0.051-0.061, 0.052-0.062, 0.054-0.064, 0.046-0.056

and 0.052-0.058 respectively). None of the analyses was materially affected by excluding from the sample of 830 participants the 50

who had a diagnosis of DSM5 depression.

Finally, we tested for external validity of decision acuity in correlating with (iv) mental health scores for symptomatology and dis-

positions, using bifactor scores and (v) patterns of functional brain connectivity, as described in Results.

The follow-up battery did not contain one of the baseline tasks, and had minor differences (but the same derived parameters) for

two further tasks. In order to perform longitudinal analyses, we adopted a conservative approach, estimating a measure of decision

acuity based on the final stage of the baseline analysis, but retaining only the weights for the six tasks that were assessed longitu-

dinally.We checked that thismore approximatemeasure adequately captured individual variability of the baseline sample, whichwas

the case (r = 0.98, p undetectable) and therefore used in the longitudinal analysis baseline scores derived from these six tasks. We

then derived the follow-up decision acuity estimates as follows.We first applied the same approximate-gaussianization transforms to

each follow-up measure. Next, we z-scored each follow-up measure using the mean and standard deviation of the respective (trans-

formed) baseline measure. Finally, we applied the weights for these 6 tasks derived from the baseline factor analysis. Thus, we took

the follow-up measures of decision acuity to have exactly the same structure as baseline, so that it could be used to compare ab-

solute changes in this measure. Finally, in analyses correlating follow-up symptoms with decision acuity, and as decision acuity and

IQ were measured typically six months after symptoms and hypothesized to be trait-like, we interpolated follow-up decision acuity

and IQ measures to the time of symptom measurement.

For the longitudinal analysis, we used a linear mixed effects approach. As the structure of decision Acuity was fixed by the pro-

cedure above, we did not split the follow-up sample into test and discovery sets. We used Bayesian Information Criterion to select

the statistical models by which we tested for inter-relations between decision acuity and key psychometric variables. For all the

following analyses, N = 571 for the follow up sample. Developmental time in this accelerated longitudinal design is represented

both by age-at-recruitment, and by the time interval between test waves. Both recruitment procedures and development itself

may mean that these two measures of developmental age may in practice affect our dependent variables differently. We therefore

first checked if LME modeling over baseline and follow-up with age as a random effect, in addition to a random intercept for each

participant, improved model fit. In fact, it worsened model fit (BIC = 5974.5; logLik = �2965.512; versus BIC = 5960.0, logLik =

�2965.529), so we did not include age as random effect in further analyses. In further analyses involving IQ, we used the raw matrix

and vocabulary WASI IQ subscores and modeled age explicitly, rather than use standardized IQ subscores. This is because we

noticed that the standardized WASI total IQ in our sample was associated with age (r Pearson = 0.135, p = 0.00011, r2 = 0.017) at

baseline. This indicates that our sample had a different age dependence of IQ scores than the reference one (Axelrod, 2002). There-

fore, we regressed d for raw IQ subscores while covarying for age, in effect accounting for variation in IQ ability independent of

whether this was due to age or self-selection.

We also formed a performance measure across tasks, in order to check the interpretation that d reflects better decision-making.

First, we excluded the discounting and Roulette tasks, as these specifically probed the balance of amounts won versus other dimen-

sions of the return, namely its delay and uncertainty respectively. Second, we excluded the Approach-Avoidance conflict task, as one

of the measures by which it entered the estimation of dwas judged to be too close to a performance measure already (the third com-

mon-factor scores of the within-task factor analysis; see above). Parenthetically, this measure loaded modestly in the expected di-

rection onto d, i.e., positively, with a weight of 0.24 and high uniqueness (Figure 1). We then t-scored winnings within each of the

Go-NoGo, Information Gathering, Investor-Trustee and Two-step tasks, and averaged these scores across tasks. The Pearson
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raw and partial correlation table between this task-performance measure, d and WASI total IQ, shown in Table S2, supported the

interpretation of d as conducive to profitable decision-making above and beyond IQ.

Predictive performance of Connectivity Analysis
We assessed predictive performance as the Pearson correlation coefficient r between measured d and (cross-validated) predicted

d (dpr), averaged across repetitions of the cross-validation splits. After Fisher transformation, the null distribution of r should follow a

zero-centered Gaussian distribution. In order to appraise significance, we estimated the variance of this distribution by generating

100 random permutations of the target variable (Winkler et al., 2016) and repeating the model-fitting procedures mentioned above,

separately for each fold. We then derived p values for the observed r from the estimated null distribution. We assessed predictive

performance for a model based on the full set of connections, as well as for models trained on the subsets of connections corre-

sponding to the modules described in the previous subsection.

To demonstrate that the relationships between connectivity and decision acuity were stable over time and replicate, we used the

model estimated at baseline to predict d based on the follow-up rsFC data for modules that were significant at baseline. Given that

the data at baseline and follow-up are not independent, we kept the same cross-validation fold structure in both datasets, so that the

prediction of a subject at follow-up did not involve their own rsFC baseline data, as this would have inflated the estimates of predictive

performance at follow-up.

Connectivity patterns predictive of d versus IQ
For imaging analyses, we derived a composite score of IQ by averaging standardized vocabulary and matrix IQ subscores, rather

than using the standardized WASI score, because of two reasons. First, we wanted analyses involving both age and IQ to have a

straightforward interpretation where IQ represents a measure of raw ability, as opposed to age-standardized ability, and explicitly

test for age-dependence separately. Second, we found evidence (Results) that our sample was different from the original on which

standardized scores were derived, and hence the standardization procedure might be invalid. Next, we trained models both on the

complete set of connections and the subsets corresponding to the individual modules to predict the IQ composite scores, as we had

done previously to predict d, yielding IQpr, and assessed predictive performance for each of themodules separately. To compare the

connectivity patterns that were predictive of dwith those predictive of IQ, for each of themodules we assessed the partial correlation

between d and dprwhen controlling for IQ, and the partial correlation between IQ and IQprwhen controlling for d. In all these analyses

we corrected for age, sex and imaging-related confounds as above.
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