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Abstract

Heavily boron doped diamond (BDD), which displays quasi-metallic properties, is
the ultimate electrode material for high sensitivity detection in extreme environ-
ments. BDD has a unique combination of chemical, mechanical, and electrical
properties. These are manipulated in this thesis to optimise the sensing capabilities
of the BDD electrodes used.

One exceptional property of BDD is its electrochemical window, which is the
widest of any known material. This means that with a BDD sensor it is possible to
detect the broadest range of chemical reactions. This parameter is well understood
at room temperature. However, until the work presented in this thesis there was
no systematic study investigating how it changes as the temperature of the electro-
chemical reaction is increased above 100 °C. Through comparison of polished and
unpolished BDD electrodes (with hydrogen and oxygen surface terminations) it is
determined that the electrochemical window of BDD electrodes narrows as temper-
atures increase. The corresponding activation energies are reported. Three methods
of determining the precise size of the electrochemical window from experimental
results are critically compared.

The addition of catalytically active gold nanoparticles (AuNPs) have previ-
ously been shown to improve the sensitivity of BDD electrodes for mercury de-
tection in aqueous environments. In this work, two AuNP sizes were deposited
onto as grown and mechanically polished BDD electrodes, in pursuit of defining
the optimum combination of these parameters to achieve the highest sensitivity for
mercury detection. A novel method of producing small AuNPs (10 nm diameter) on
the BDD surfaces was developed, using a TEM grid as a shadow mask. Exceptional
sensitivity (pM) is achieved with the AuNP decorated polished BDD electrodes.

Electrochemical impedance spectroscopy (EIS) is used to investigate the mech-
anism by which the AuNPs improve the sensitivity of the BDD electrodes. AuNP
decorated BDD electrodes are directly compared to bare BDD electrodes (as grown
and mechanically polished) under the same conditions as in the first electrochemi-
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cal study. The performance of each electrode is assessed by their electron transfer
rate (k0), alongside the capacitance and electron transfer resistance at their surface,
recorded during mercury detection measurements.



Impact Statement

The results presented in this thesis highlight how BDD electrodes can be opti-
mised for sensing with high sensitivity in extreme environments.

Academically, this research has extended the knowledge in this field through
two published papers, with a third recently submitted. This work has produced the
first published study investigating the influence of temperature on the performance
of a series of BDD electrodes. BDD substrates with two surface terminations (oxy-
gen and hydrogen) and two surface types (as grown and mechanically polished) are
analysed. The results from this work are the first to quantify the electrochemical
window of a BDD electrode above 100 °C. This brings the development of com-
mercial BDD sensors for high temperature environments one step closer, as it is now
possible to identify the potential range in which chemical reactions can be detected
at elevated temperatures.

A highlight from this thesis is the high sensitivity achieved with a polished
BDD electrode decorated with gold nanoparticles (AuNPs) for mercury detection,
which is good when compared to recent reports of alternative electrode materials in
the literature. It is a promising result for the possibility of high sensitivity detection
in the field. The outcome of this research is that BDD based sensors could be de-
veloped for commercial use in sensing mercury in real water samples. Although,
this will require significant modification from the work in this thesis, which has
focused on improving the sensitivity of electrodes for mercury detection but has
not addressed the issue of selectivity for mercury ions. This is an important factor
when designing a sensor to be used to analyse real water samples because many
other ions and molecules will be present in the solution which may impede or block
the signal for mercury detection. High sensitivity mercury detection in water is
important to environmental studies and for industries which have mercury in their
waste streams. Mercury accumulates in the food chain, ultimately poisoning hu-
mans. Detecting this heavy metal at lower concentrations means that interventions
can be made sooner to prevent further spread of the mercury. Areas where a ‘clean



Impact Statement 6

up’ is required can also be identified, cutting off contaminated sections of the food
chain.

The results from the electrochemical impedance spectroscopy (EIS) study are
unexpected. EIS was used to analyse the mechanism of mercury detection at the
surface of BDD electrodes decorated with AuNPs. Previously, it was understood
that during these measurements mercury ions are pre-concentrated onto the AuNPs,
resulting in improved sensitivity of the BDD electrode compared to when AuNPs
were not present. However, it was found that mercury also pre-concentrated onto
the sp2 carbon regions of the BDD electrode surfaces, at higher concentrations of
mercury. This presents a new area of study for mercury detection with diamond
electrodes.
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Introduction

There is an ever increasing demand for sensing capabilities in extreme environ-

ments; from down-well sensors in the oil industry, to remote applications in outer

space and at the bottom of the planets oceans. Diamond electrodes present one

of the best options for addressing many of these challenges. They can be left in

remote locations for extended time periods without fouling and are stable at ex-

treme temperatures, pressures, and pHs, whilst also being radiation hard. The ex-

ceptional properties of heavily-boron doped diamond (BDD) electrodes, displaying

quasi-metallic characteristics, make them the ideal material for the development of

sensors for new discoveries not possible with other electrodes. The in�uence of

altering BDD surfaces by polishing, changing the surface termination, and the ad-

dition of gold nanoparticles (AuNPs) on the electrochemical performance of BDD

sensors have been directly compared throughout this work.

Research into using BDD electrodes for electrochemical detection has been

well established since the 20th century and more recently investigations into this

material have extended to using BDD electrodes in extreme environments. How-

ever, despite the multitude of published literature focused on using BDD electrodes

for high sensitivity detection, some assumptions are made. This thesis aims to ex-

tend the current understanding of the physical changes that happen at the surface of

BDD electrodes during high temperature electrochemical measurements and high

sensitivity detection under standard laboratory conditions.

BDD has the widest electrochemical window of any known electrode mate-

rial, at > 3 V in aqueous solution at room temperature. This is the potential range

that can be applied across the electrode before the onset of oxidation or reduction

of the electrolyte at its surface. Chemical reactions can only be detected electro-

chemically within this range. This means that BDD electrodes can be used to detect

the broadest range of chemical reactions and sense the largest number of analytes,

compared to any other electrode material. The electrochemical window of BDD is a
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well understood parameter at room temperature. However, until the work presented

in Chapter 6 of this thesis (published inScienti�c Reports) there was no systematic

investigation into how this parameter changes at higher temperatures. This is vital

information to have when designing a BDD sensor to be used above room tempera-

ture, as it de�nes the limit in the potentials where it will be possible to observe any

chemical reactions.

Gold based electrodes are commonly used as the basis for sensing systems

aiming to detect mercury. This is due to the often quoted `high af�nity' between

mercury and gold. BDD electrodes are commonly decorated with AuNPs for this

purpose. In this thesis, a set of BDD substrates (both as grown and mechanically

polished) were decorated with AuNPs of varying sizes, in pursuit of de�ning the

optimum con�guration of these parameters for mercury detection with the highest

sensitivity. This work is followed by a detailed EIS study, used to investigate the

interaction between gold and mercury at the surface of the BDD electrodes, to gain

a better understanding of the physical and chemical reasons for the `high af�nity'

between them.

Chapter 2 introduces diamond as a material and outlines its exceptional physi-

cal properties. The historical development of diamond synthesis by laboratory pro-

cesses is reviewed, followed by a discussion of the methods of doping synthetic

diamond substrates. Chapters 3 and 4 review the theory behind the electrochemical

techniques used throughout this thesis, from the electrochemical detection of ana-

lytes to electrochemical impedance spectroscopy for the analysis of electrochemical

systems. Chapter 5 reviews the experimental methods used throughout this thesis.

In Chapter 6, the electrochemical window of BDD electrodes, with different

levels of surface polishing and terminations, are measured over a wide temperature

range, from 21 °C to 125 °C. This is the �rst study investigating this fundamental

property of BDD electrodes at elevated temperatures.

In Chapters 7 and 8, the in�uence of modi�cation of BDD electrode surfaces

with gold nanoparticles (AuNPs) on the sensitivity of these electrodes for mercury

detection is investigated. In Chapter 7, the focus is optimising the size of the AuNPs

on two BDD substrate types (as grown and mechanically polished) to obtain the

lowest limit of detection for mercury sensing. In Chapter 8, the same conditions

are analysed using electrochemical impedance spectroscopy (EIS) to gain further

insight into the exact in�uence that the AuNPs have on the electrode performance.

Chapter 9 summarises the results presented in Chapters 6, 7, and 8 of this

thesis. Chapter 10 presents the future work that will follow on from the conclusions

drawn in this thesis.
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Diamond

Diamond is an exceptional material that has been sought after for centuries. Perhaps

best known as a rare gemstone, diamond has extreme properties that make it highly

desirable for many scienti�c applications. It is the hardest known material, an ex-

cellent thermal conductor, chemically inert, and transparent from deep UV to far IR,

as well as being semiconducting and biocompatible. These extraordinary properties

are a result of the lattice of carbon bonds that make up the diamond structure.

2.1 Carbon bond
Carbon, atomic number 6, has the electronic con�guration 1s2, 2s2, 2p2. Valence

bond theory would therefore suggest that carbon is divalent, as it should only form

two covalent bonds via the half-�lled 2p orbital. Divalent carbon does exist in

the form of transient intermediates such as the carbenes. However, stable carbon

compounds are tetravalent, meaning that four valence electrons must be present

[146].

Figure 2.1: Bohr model of carbon electron shells.

Within the �lled k shell of carbon there is one s-orbital, which contains two

electrons of opposite spins. The electrons in the k shell do not participate in bonding

due to their high stability, as a result of being in a �lled shell and their proximity

to the nucleus. Carbon bonds are made with the remaining four electrons in the
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half-�lled L shell through molecular orbital hybridisation, which Linus Pauling �rst

proposed in 1931 to explain the bonding structure of methane [142]. Pauling's

theory descirbes the formation of hybrid 2spn atomic orbitals (where n = 1, 2 or 3),

in which the respective wavefuncions of the 2s and 2p orbitals mix via promotion of

the 2s orbital electrons to higher energy and demotion of the 2p electrons to lower

energy.

Figure 2.2: 3D representation of carbon s and p atomic orbitals.

An sp hybrid orbital (with half s and half p orbital character) is found in linear

molecules that contain triple bonds between some atoms, such as alkynes. In each

alkyne carbon atom the 2s and 2px orbitals are hybridised, which leaves the 2py and

2pz orbitals to form twop molecular orbitals with the 2p orbitals on the adjacent

carbon atom [30].

Figure 2.3: Sp2 hybridisation, modi�ed from [7].

The sp2 hybrid orbital has one third s and two thirds p orbital character. It is

found in trigonal planar molecules that contain double (p) bonds, such as alkenes.

On each carbon atom in an alkene the 2s, 2px and 2py orbitals are hybridised, leaving

the 2pz orbital available to form ap molecular orbital with the 2pz orbital on the

adjacent carbon atom. Although, in the case of graphite the two electrons in the

2pz orbital are delocalised and free to move between sheets of covalently bonded

carbon atoms, resulting in the electrically conductive and soft properties associated

with the material [200].

The sp3 hybrid orbital has one quarter s and three quarters p orbital charac-

ter. Sp3 hybridisation is found in tetrahedral molecules that contain single bonds
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Figure 2.4: Sp3 hybridisation, modi�ed from [7].

between atoms, such as alkanes eg. diamond. Within diamond the 2s, 2px, 2py and

2pz orbitals of each carbon atom are hybridised, resulting in a tetrahedral structure

with carbon-carbon bond angles of 109.5� [30].

Table 2.1: Orbital hybridisation of carbon.

Name Electron con�guration No. hybrid
orbitals

Bonding geometry

Ground state 1s2 2s2 2p 2p 2p 0

sp 1s2 2sp 2sp 2p 2p 2 C C C

sp2 1s2 2sp2 2sp22sp2 2p
3 C C

C

C

sp3 1s2 2sp3 2sp32sp32sp3
4 C

C

C
C

C

2.2 Diamond properties
The exceptional properties of diamond are a result of its molecular geometry.

Within the diamond lattice, except at surfaces, each carbon atom is covalently

bonded in a tetrahedral arrangement to four neighbouring carbon atoms with a bond

strength of 370 kJmol� 1, length 1.54	A [146]. The bond strength between adjacent
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carbon atoms in diamond is weaker than those in graphite (680 kJmol� 1, length

1.42 	A). However, although the covalent bonds within each graphite sheet are very

strong, the London dispersion forces between the sheets are the weakest known in-

termolecular forces. Therefore the layers are easily separated, resulting in the soft

properties of graphite.

Figure 2.5: a) The face centred cubic structure of diamond, modi�ed from [34] and b) the
[100], [110] and [111] Miller planes of diamond.

The lattice structure of diamond is face centred cubic, with eight atoms per

unit cell, usually described with the Miller indices: [100], [110] and [111] (Figure

2.5). In the unit cell there are atoms on the faces of the cube and at the corners of

the cube. The additional carbon atoms are located at a0 (1
4, 1

4, 1
4), a0 (3

4, 3
4, 1

4), a0 (3
4,

1
4, 3

4) and a0 (1
4, 3

4, 3
4), where a0 is the lattice constant at room temperature (3.567	A

� 2.6x10� 6) [71][72]. The C-C bond length, d, is equal to one quarter of the cubic

body diagonal, so that d =
p

3a0=4 = 1.54 	A [176].

The atomic density of diamond is 1.76x1023 atoms/cm3, which is the highest of

any known solid [61][170][131]. This explains why diamond is the hardest, stiffest

and least compressible of all known materials. Additionally, although the precise

tensile strength of diamond is unknown it could theoretically have a magnitude of 90

- 225 GPa depending on the crystal direction, as the tensile strength is highest in the

[100] direction [200]. The most interesting property of diamond to this thesis is that

diamond can be doped for electronic applications, which paired with the chemical

inertness and radiation hardness of the material makes diamond well suited for use

as an electrode in extreme environments [26].
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Table 2.2: Properties of Diamond, taken from [26][171][113].

Diamond property Value

Mechanical Hardness 90 GPa

Compressibility 8.3� 10� 13 m2/N

Thermal Conductivity at 25 °C 3.15� 103 W/mK

Thermal Expansion Coef�cient at 25 °C 0.8� 10� 6 K� 1

Transparency from deep UV to far IR

Room Temperature Resistivity 1016 Wcm

Band Gap 5.47 eV

Dielectric Strength 1� 107 Vcm� 1

Electron Mobility 2.2 cm2/Vs

Hole Mobility 1.6 cm2/Vs

2.3 Diamond growth
Graphite is the thermodynamically stable allotrope of carbon at room temperature

and pressure. Diamond is a metastable allotrope of carbon because the large activa-

tion barrier means that carbon cannot undergo a phase change between graphite and

diamond. This is due to the large kinetic barrier between the sp2 (graphitic carbon)

and sp3 (diamond carbon) phases. Diamond can be synthesised when the growth

conditions overcome this large kinetic barrier, see carbon phase diagram Figure 2.6.

Once formed, diamond is kinetically stable under standard conditions.

Diamond forms naturally in the Earth's mantle at depths of over 150 km as a

result of the high temperatures (greater than 1000 °C) and pressures (GPa) present

[44]. Natural diamond may be transported to the Earth's surface during kimber-

lite eruptions. These mainly occur at continental cratons, for example in Russia,

Canada and South Africa, which contain sites of the largest natural diamond mines

[166]. Some limitations of natural diamond include inhomogenity across the struc-

ture, variable impurity inclusions and high cost. However, these limitations can be

overcome by the generation of arti�cial diamonds through the high pressure high

temperature (HPHT) and chemical vapour deposition (CVD) techniques described

below.

2.3.1 High pressure high temperature synthesis
HPHT growth employs conditions where the formation of diamond is more ther-

modynamically stable than the formation of graphite. As seen in the carbon phase
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Figure 2.6: Carbon phase diagram, taken from [204].

diagram (Figure 2.6), which was �rst proposed by Leipunsky in 1939, diamond

is unstable with respect to graphite at temperatures below 1300 °C and pressures

below 40 kbar [100][172]. Although, even when these conditions are met the ki-

netics of the reaction must be considered, as the activation energy for conversion

from graphite to diamond is very high. Transition metals such as nickel are com-

monly used as catalysts to exceed the activation energy at lower temperatures and

pressures, therefore reducing the cost and energy requirement of HPHT diamond

synthesis.

There are limitations to this technique, most signi�cantly the incorporation of

both strain and impurities (particularly nitrogen, boron and metals) within the dia-

monds produced. However, boron inclusions can be desirable as these produce blue

diamonds and conductive diamonds at higher boron concentrations. The concentra-

tion of nitrogen can be reduced by the addition of getters, Ti, Zr or Al, to the nickel

catalyst [133].

2.3.2 Chemical vapour deposition

Diamond growth by CVD was �rst investigated in the 1950s as a low pressure al-

ternative to the HPHT method, however, it did not become an established technique

until the mid 1980s. CVD is primarily used for the production of polycrystalline
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diamond, but growth of homoepitaxial single crystal diamond is now also possible

(although with size limitations). Single crystal diamonds are grown homoepitaxi-

ally on a single crystal substrate, which is either a natural diamond or a diamond

produced by HPHT synthesis [78][182]. The crystal plane orientation ([100], [110]

or [111]) of the initial substrate dictates the resultant orientation of the grown dia-

mond [177]. Polycrystalline diamond, which is the focus of this work, is produced

from heteroepitaxial growth on a variety of different substrates [153].

Figure 2.7: Mechanism of CVD diamond growth process, taken from [114].

During the CVD process a gas mixture of methane (generally< 1%) and hy-

drogen are introduced into a vacuum chamber at a pressure between 10 - 50 torr,

which is then activated with a hot �lament (HF) (2200 °C) or by a microwave plasma

(MWP) near the substrate (700 - 10000 °C) [133]. The small proportion of methane

gas is the source of carbon in the system. Hydrogen radicals generated by the dis-

sociation of hydrogen gas dimers react with methane molecules via the mechanism

shown in Figure 2.7 to produce synthetic diamond [114]. During the CVD growth
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process the majority of carbon-carbon bonds formed are graphitic sp2 bonds rather

than the sp3 bonds of diamond. The hydrogen radicals preferentially attack the sp2

bonds, therefore favouring the production of sp3 bonds at the surface of the synthe-

sised diamond [146][133].

Figure 2.8: Schematic of the HFCVD reactor developed at NIRIM, taken from [112].

In HFCVD the hydrogen/methane gas mixture, at 10 - 100 torr, �ows past

a metal �lament (tungsten, tantalum, molybdenum or rhenium) which is electri-

cally heated to 2000 - 2400 °C (Figure 2.8) [105][112]. Under these conditions

the molecules of the gas mixture are thermally activated as they �ow past the �la-

ment. Diamond is deposited on a substrate (normally silicon or molybdenum) that

is mounted a few millimetres below the �lament. The substrate is kept at a temper-

ature between 700 - 1000 °C by radiation from the heated �lament or via a separate

heater [105][114]. The �lament is made from a metal that will not signi�cantly

react with the process gas. Tungsten and tantalum are most commonly used, al-

though, they will eventually react with carbon in the process gas and form a metal
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