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Abstract 11 

We report a new method using a Time Delay Neural Network to transform Acoustic 12 

Emission (AE) waveforms into timeseries of instantaneous frequency content and permutation 13 

entropy. This permits periods of noise to be distinguished from signals. The model is trained 14 

in sequential batches, using an automated process that steadily improves signal recognition as 15 

new data are added. The model was validated using AE data from rock deformation 16 

experiments, using Darley Dale Sandstone in fully drained conditions at a confining pressure 17 

of 20 MPa (approximately 800m simulated depth). The model is initially trained by manual 18 

picking of five high amplitude waveforms randomly selected from the dataset (experiment). 19 

This is followed by semi-supervised training on a subset of 300 waveforms. When compared 20 

with the standard amplitude-threshold picking methodology the source locations obtained from 21 

the time difference of arrivals show ~400% increase in the number of events located, ~150% 22 

increase in signal to noise ratios and a ~30% reduction in location residuals. 23 

24 
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Introduction 25 

Acoustic emissions (AE) are the transient elastic waves produced by the sudden 26 

redistribution (release) of stress when a material fractures. These signals are considered to 27 

represent the laboratory analogue of natural earthquakes with wider applications spanning from 28 

non-destructive testing to vibration monitoring. In deformation experiments, AE are related to 29 

the initiation and growth of fractures (e.g. Lockner et al., 1992), matrix cracking (Scholey et 30 

al., 2010), fluid flow through fractures (Benson et al., 2019; Fazio et al., 2019), and  fibre 31 

breakage and various debonding processes (Bohse, 2000). Detection of these signals is a 32 

valuable asset as they provide a non-destructive and immediate feedback to dynamically 33 

evolving systems without the need for interference. However, a limitation of AE analysis is 34 

that results are often dependent on the successful discrimination of signals from the background 35 

noise. As datasets are often very large, therefore any approach requires an automated approach 36 

that is robust enough to handle to waveforms in a medium that is continually evolving. 37 

The simplest processing method to extract basic data uses stepwise calculation along the 38 

waveform timeseries of energy ratios (“signal-to-noise” ratio). This type of analysis is often 39 

used to extract discrete time series from a much longer (quasi-continuous) signal, with 40 

triggering dependent on the arrival of large amplitude spikes (such as the first arrival of an 41 

earthquake). Whilst intuitive and less computationally demanding than other techniques, this 42 

method is prone to errors, as the largest signal-to-noise ratio may not refer to the first arrival 43 

of a genuine signal (Guoping et al., 2004; Pomponi & Vinogradov, 2013). To reduce these false 44 

triggers, methods that take advantage of the inherent characteristics of microseismic signals, 45 

i.e., frequency content, have been proposed (Zhang et al., 2013). These methods use an 46 

automated approach via the Hilbert-Huang Transform (HHT, Huang et al., 1998) to identify 47 

low-frequency AE signals from high-frequency background noise. A further refinement of this 48 

approach combines the HHT with the Akaike Information Criterion (Akaike, 1973) to pick up 49 
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the first arrival of seismic waves (Jia et al., 2015).  50 

Entropy-based techniques, which identify the incoherent nature of the noise signal by 51 

relating data to past and previous values, are also well documented. In medicine, Ródenas et 52 

al. (2015) reported the accurate detection of atrial fibrillation from electrocardiograms. A 53 

similar approach uses intrinsic mode functions (IMF) to recognise focal electroencephalogram 54 

signals (Sharma et al., 2015). Similar techniques have found their use at the field scale. For 55 

example, fluctuations in entropy were detected prior to the Mexican earthquake of 2017 56 

(Ramírez-Rojas et al., 2018). Entropy is highly sensitive to seismic amplitude, frequency and 57 

phase changes (Jia et al., 2019). They demonstrate immunity to noise under a wide range of 58 

environmental conditions due to a sensitivity to the coherency of a real signal, making them 59 

uniquely suited for seismological analyses. The technique can also be applied to active seismic 60 

data (Zoukaneri & Porsani, 2015) by measuring the entropy of the instantaneous frequency 61 

content, increasing the level of information available for sub-surface mapping. 62 

Nonetheless, each of these techniques is limited by a user-defined ‘critical value’ that 63 

defines when a time-period is “signal” or “noise”. Often, this threshold is set based on the user 64 

experience and knowledge of the recording equipment. When tools are not calibrated, as is 65 

often the case in AE data (e.g. Høgsberg & Krenk, 2015), such an approach remains imprecise 66 

and will lead to further systematic errors regardless of the technique. Nevertheless, advances 67 

in machine learning and artificial intelligence tools are now ushering a new era of data analysis, 68 

which seeks to minimise biases enforced by user-defined parameters. Time Delay Neural 69 

Networks (TDNN) are an automated signal classification technique that are designed with the 70 

purpose of identifying patterns and trends in shift-invariant time-series data without explicitly 71 

knowing the beginning or end of a signal (Derakhshani & Schuckers, 2004; Peddinti et al., 72 

2015; Waibel et al., 1995). Analogous to a 1D Convolutional Neural Network (CNN), TDNNs 73 

are a form of Recurrent Neural Network (RNN) that models the propagation characteristics of 74 
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time series data similar to entropy techniques. By constructing models of the key elements of 75 

audio, or elastic vibrations in the case of seismology, they can recognise different speakers 76 

when employed for speech recognition (Haffner & Waibel, 1992) and perform robustly in the 77 

presence of reverberations (Snyder et al., 2015).  78 

Here, we seek to take advantage of TDNNs by applying a simple noise or signal 79 

classification routine to AE data from a typical rock-deformation experiment using Darley Dale 80 

Sandstone, where the TDNN is used to define the onset of energy as the boundary between the 81 

two classifications. By iteratively training a neural network on calculated timeseries of seismic 82 

envelopes, instantaneous frequency content and estimated signal entropy, the method picks AE 83 

waveforms and automatically incorporates them into the evolving (updated) model, thus 84 

improving later picks. To validate our approach, AE source locations are solved using the pick 85 

times obtained from the trained model using a Time Difference of Arrival method (e.g. 86 

Comanducci et al., 2020). AE distribution and error parameters are then compared to those 87 

obtained from picking signals with a simple amplitude threshold method. 88 

Data and Method 89 

Acoustic Emission Data 90 

A 40x100 mm cylindrical sample of Darley Dale Sandstone was deformed using a 91 

conventional triaxial deformation apparatus (Fazio, 2017) at a confining pressure of 20 MPa, 92 

representing approximately 800m depth. To ensure the experiment collected an AE dataset that 93 

contains a large range of amplitudes (Nakamura et al., 1972) and fracture mechanisms 94 

(Stanchits et al., 2006), the sample was deformed at a deformation rate of 3.6 mm/hr until brittle 95 

failure following the protocol of Fazio et al., (2017). For a detailed overview of the AE data 96 

acquisition methodology, please refer to Appendix 1. 97 

Model Parameters 98 
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A previous study had proposed using only the waveforms as input data (Derakhshani & 99 

Schuckers, 2004). After extensive testing, that approach was found to perform less robustly 100 

with the high noise conditions of the AE measured here. Instead, we focus on the simple 101 

attributes of signal amplitude and frequency content as training parameters to classify the 102 

waveform. The former is modelled through the seismic envelope, whilst the latter by 103 

instantaneous frequency content obtained through the HHT. A third parameter, permutation 104 

entropy (Unakafova & Keller, 2013), encompasses both aspects. A fourth timeseries, defined 105 

as the target model output, is used to classify the AE waveforms through binary separation of 106 

noise and signal data, assigned -1 and 1 respectively. Signal is defined as the time period 107 

between the calculated onset of energy and the point at which energy drops below a pre-pick 108 

noise threshold. Due to uncertainties in the waveform content following the main arrival (i.e. 109 

reflections) the model is only trained on noise identified during the pre-signal period.  110 

The seismic envelope is the most intuitive and useful parameter to apply as it represents 111 

the instantaneous energy of the signal (Figure 1a). Typically, noise is represented by low 112 

amplitude values and signal by high amplitude values. The boundary between these two is often 113 

defined by a rapid increase in values as a signal arrives. However, in the presence of low 114 

amplitude data, or strong scattering where the envelope of the signal can become broadened, 115 

the increase becomes shallower or simply not present (De Siena et al., 2016). To address this, 116 

the HHT provides a measure of instantaneous frequency content along the entire time series 117 

(Figure 1b) that is independent of amplitude, therefore any boundary between classifications 118 

is still preserved when energies are low. Noise is identified through a dominance of high-119 

frequency energy, whilst the signal is identified through a consistent dominance of low 120 

frequency waves. However, on its own, this method is likely to fail in the presence of high-121 

frequency signals that are similar in content to the background. 122 

The final training parameter, permutation entropy, describes the uncertainty and the 123 
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degree of irregularity of a random timeseries (Figure 1c). Ordinal patterns are calculated that 124 

represent the relationship between past and future values at each time step of the waveform 125 

(i.e. an increasing trend). A probability density function of the number of patterns within a 126 

moving window is then calculated, thus removing any dependence on the amplitude of the 127 

original waveform (Unakafova & Keller, 2013). The larger the value of permutation entropy, 128 

the higher the diversity of ordinal patterns is and the more complex the input data are. Thus, 129 

noise is characterised by high values and signal by low, however, the boundary is slightly 130 

shifted to that of the seismic envelope. A more detailed overview on the training data is 131 

provided in Appendix 2.  132 

Training Routine 133 

Similar to the previously described entropy method, a TDNN models the temporal trend 134 

(or trajectory) of the training data, classifying patterns in the data according to the target 135 

timeseries. A key difference of a TDNN from other multi-layer neural networks is that patterns 136 

are classified with shift-invariance; a specific pattern may occur at any point in the timeseries. 137 

With each successive layer in the network, increasingly coarse trends in the training data are 138 

identified, therefore ensuring the model learns the most important features of the chosen 139 

classifications.  140 

Five high-amplitude waveforms are randomly selected from an AE pool to create an 141 

initial model that is trained under supervised conditions. Their onsets are manually picked, and 142 

the model iteratively trained on the concatenated input parameters (training dataset) after each 143 

waveform. At this stage, the model already has a relatively high degree of picking accuracy. 144 

Following this, the model undergoes semi-supervised training. A waveform of any amplitude 145 

is randomly selected from the available pool. The input parameters are both calculated and 146 

simulated in the neural network model generating an output.  147 
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Whilst easier than picking the signal directly from the waveform, it is still difficult to 148 

pick the signal onset from the model output due to the uncertain transition from noise to signal. 149 

With knowledge of the sample velocities, an effective approach was to define a window 150 

between the origin time (or first arrival time when picking subsequent waveforms in a single 151 

AE group) and the maximum possible arrival time for energy traversing the length of the 152 

sample. Within this window we calculate the instantaneous frequency content of the model 153 

output in order to characterise the rapid change in model values as a signal is detected. The 154 

onset of energy is then set when the frequencies and model output exceed 14 KHz and -0.95, 155 

respectively. 156 

Once the onset is identified, two ‘picking quality’ ratios are calculated around this value. 157 

A short-term SNR of the original waveform and a SNR of the model output. After extensive 158 

testing, we set their values to 2.0 for the former and between 0.3 and 0.9 for the latter as they 159 

identified a reliable onset when the training dataset was still small. When both ratios are 160 

exceeded, the input parameters are added to the training data and the neural network is updated. 161 

To improve computation speed, the model is trained in batches of 10 waveforms. Waveforms 162 

can be further down-sampled to increase computation speed, although this will decrease data 163 

quality. As this is an iterative process (Figure 2), the model is steadily improved over time, 164 

which allows for the later inclusion of data that may not have been initially included. The model 165 

ceases training once the training dataset exceeds 300 waveforms as the quality of picking did 166 

not improve significantly after this stage.  167 

To provide a robust comparison and best highlight the improvements offered by the 168 

proposed neural network approach, AE data are also processed using a simple amplitude-169 

threshold method to pick data. The root mean square (RMS) envelope of each waveform is 170 

calculated and the pick time is chosen when the envelope exceeds 1.1 times the level of the 171 

background noise (using the same windowing approach as before). 172 
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Source Location 173 

Pick times are inverted for source location using a Time Difference of Arrival (TDOA) 174 

method (Tobias, 1976). Although this method is only robust in the case of weak velocity 175 

anisotropy, the TDOA method is well established in micro-seismic source location (e.g. 176 

Comanducci et al., 2020) and works well for the near-isotropic Darley Dale sandstone as used 177 

here. These data are calculated by pairwise subtraction of the time of arrival values to each 178 

sensor from a single source. A fixed velocity is used in the calculation that is updated as time 179 

progresses (see Appendix 1: Rock Deformation Experiment). The calculated TDOA values 180 

are determined through iterative estimation of the source location. The process iterates the 181 

location using the L2 norm of the location residual, comparing between calculated and TDOA 182 

values. It arrives to a local minimum at the best determined source location. To be valid, 183 

sources are located with a minimum of 6 arrival times, although the accuracy greatly improves 184 

with the addition of more sensors.  185 

Results and Discussion 186 

At high amplitudes, both the neural network (NN) and the amplitude threshold method 187 

(AT) performed equivalently. This is unsurprising as the seismic envelope is a key indicator of 188 

an AE arrival in both methods. However, as amplitudes decrease and reach the level of the 189 

background noise, discrepancies in pick times become increasingly apparent (Figure 3). Whilst 190 

it still performed relatively well with impulsive arrivals, the AT method (Figure 3, blue line) 191 

struggled with the strongly scattered or emergent arrivals that are characteristic of low 192 

amplitude AE data. Such data are challenging for picking methods, as the first arrival of the P-193 

wave becomes more discriminatory due to the convolution of many wave-modes that extend 194 

into the coda (e.g. Grosse & Ohtsu, 2008). The NN on the other hand, was much more 195 

consistent in capturing the first arrival regardless of amplitude, wave-mode or waveform 196 
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character. By modelling characteristic sequences of data, the TDNN is able to classify the 197 

patterns that uniquely define signal or noise in the timeseries. From the model output (Figure 198 

3, red line), the arrival time may then be obtained from a far simpler timeseries, even for data 199 

that was not picked by the AT method. It should be noted that the windowing scheme was 200 

crucial to avoid picking late high energy coda arrivals or even the coda from a prior AE in the 201 

pre-pick noise.  202 

Although relevant in all forms of waveform analysis (e.g. seismic, microseismic), the 203 

occurrence of external (outside the sample) or electronic noise (often high amplitude, high 204 

frequency) with temporal and frequency characteristics similar to real events is a characteristic 205 

element of AE data processing. Waveform frequency data has already been shown to be a 206 

reliable parameter to characterise waveform data (96% accuracy), but still leads to false-alarms 207 

in the pre-pick noise without additional constraints on arrival time (Jiang & Zheng, 2020). 208 

Similar results are obtained when only amplitude data is used (Chen et al., 2019), but such an 209 

approach is likely to fail in high-noise environments. The method presented here is distinct 210 

from the previously mentioned studies in that it combines multiple input parameters to train 211 

the model (amplitude, frequency and entropy). This provided a notable advantage over single 212 

feature methods as a more robust characterisation of noise (rather than only signal) was 213 

obtained. However, the TDNN performed poorly in the presence of very high amplitude data 214 

(SNR > 800). Due to the way the signal is decomposed during the HHT, the noise window is 215 

characterised by low frequency information thus resulting in errors during training. As these 216 

data occurred very rarely, it was not considered detrimental to the overall model.  217 

Sources that were located using both methodologies reveal the time-dependent evolution 218 

of the fault plane through the entire experiment (Figure 4Error! Reference source not found.). 219 

Although events with high location residuals are displayed here for completeness, the 220 

distribution of AE hypocentres is consistent with post-test visual inspection of the final fault 221 
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(Figure 4a, e.g. Benson et al., 2010; Lockner et al., 1992). Considering the evolution through 222 

time (Figure 4b), we note that the event locations are diffuse throughout the sample during the 223 

early stages of deformation (windows 1, 2 and 3). As strain increases, during the period of 224 

strain-softening (window 4), the distribution of AE locations starts shaping a fault structure 225 

(strain localisation). During crack coalescence and brittle failure (window 5) event locations 226 

are primarily located along the observed failure plane.  Whilst the general distribution of events 227 

remain the same for both methods, the inconsistencies in waveform picking that were shown 228 

in Figure 3 have resulted in significant differences in source location that can differ by several 229 

centimetres for individual AE (Figure 4, coloured dots). A key component of the presented 230 

method is that the model is trained on data that came from same the dataset that is due to be 231 

picked. As AE datasets are typically very large, it is impractical to manually pick a dataset to 232 

truly validate our source locations. Nonetheless, a focusing of events towards a failure plane is 233 

much more evident when using picks from the NN compared to the AT method.  234 

In terms of overall performance TDNNs (or RNNs) are generally considered to be 235 

equivalent to the more powerful Convolutional Neural Network (CNN) for use in signal 236 

detection (G et al., 2018; Guo et al., 2020; Yao et al., 2020). Moreover, the number of training 237 

data required to create a well performing model also remains relatively low for both approaches 238 

(e.g. Chen et al., 2019). An important difference, however, is that the TDNN presented here 239 

outputs a transitional classification rather than the absolute output of a CNN. This provides a 240 

measure of uncertainty that is time dependent and thus physically much more appropriate for 241 

data generated by time-dependent processes, such as waveform data and for the vast majority 242 

of pre-failure processes.  243 

The semi-supervised approach presented here may be considered advantageous due to 244 

the low workload requirements when training the model on new datasets. To initiate a new 245 

training routine, only 5 high amplitude waveforms needed to be manually picked before the 246 
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model could train itself. In addition, as the model improves more low amplitude data is 247 

incorporated into the model automatically, thus removing the requirement to manually pick 248 

difficult data. The choice of network, CNN or TDNN, is therefore tuned to the end-user 249 

requirements rather than on any standard performance metrics.  250 

In any case, the models derived using the method proposed here may be applied to new 251 

datasets or modified as a triggering tool to use with continuous or real-time data. An important 252 

advantage of the TDNN over CNNs is that the input timeseries may be of any length, regardless 253 

of those used in the training routine. Rather than identifying individual elements (such as the 254 

first arrival), TDNNs characterise sequences of features in order to classify patterns. Thus, a 255 

continuous dataset may first be down-sampled to generate a quick approximation of arrival 256 

times (trigger) and the exact same model may then be used on the higher resolution recording 257 

to obtain a more accurate pick.  258 

Conclusions 259 

This study has presented a workflow and application of a machine learned waveform 260 

picking tool. A time delay neural network is trained to recognise the onset of AE energy using 261 

instantaneous frequency, seismic envelope and entropy measurements. Statistical results 262 

demonstrate the reliability of the method and highlight the potential of using multiple 263 

waveform characterisation techniques to determine the arrival of acoustic energy.  264 

We conclude that an automated process may be readily applied to AE datasets, as 265 

recorded here from a triaxial rock deformation experiment. Aside from the 5 waveforms used 266 

to initially train the model, no user intervention is required. A high degree of picking accuracy 267 

and the inclusion of low-amplitude data that may be missed by traditional single-parameter 268 

threshold methods results in datasets with a high source location recovery rate and a reduction 269 

in the propagation of errors in further analysis of the data. 270 
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Data and Resources 271 

Acoustic Emission data are obtained at the Rock Mechanics Laboratory, University of 272 

Portsmouth. Raw data files, pick times, source locations and errors are available at 273 

https://zenodo.org/record/3958910. Programming codes were developed in MATLAB® 274 

version 2018a and are available at https://github.com/thomaskingunito/programming.  275 
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Appendix 1: Rock Deformation Experiment 280 

Darley dale sandstone (DDS) is ubiquitous in rock mechanics testing. It is a brown-281 

yellow, feldspathic sandstone with a modal composition of quartz (69%), feldspars (26%), clay 282 

(3%) and mica (2%) (Heap et al., 2009). Previous studies report a connected porosity of 13.3% 283 

± 0.8% with grain sizes varying from 100-800 µm (Zhu & Wong, 1997). Pore sizes measured 284 

by mercury porosimeter have a mean diameter of 10 gm, but with significant microporosity 285 

(Read et al., 1995). The unconfined compressive strength is 160 MPa (Baud & Meredith, 1997). 286 

At the scale analysed here, no distinct layering or laminations were present. A cylindrical rock 287 

sample was cored using a diamond tipped hollow coring drill to prepare a 4 cm diameter sample 288 

that was then trimmed to 10 cm length with a diamond saw. End faces are accurately ground 289 

using a lathe fitted with a cross-cutting diamond grinding disk with surfaces flat and parallel to 290 

within 0.01 mm.  291 

Deformation was performed using a conventional triaxial deformation cell installed at 292 

the Rock Mechanics Laboratory, University of Portsmouth (Fazio, 2017). The sample 293 
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presented here was deformed until brittle failure at a confining pressure of 20 MPa at a constant 294 

deformation rate of 3.6 mm/hr. Experimentation was performed under fully drained conditions 295 

to avoid any fluid-driven effects on AE frequency content (Benson et al., 2010). These 296 

environmental conditions ensure that a high number of AE are obtained and any time-297 

dependent variations in the signal waveform are predominantly due to the scattering effects of 298 

microfractures, thus allowing for the sampling of a diverse range of deformation structure. 299 

Axial displacement is measured with a non-contact Eddy Displacement system mounted to the 300 

apparatus. It comprises of three sensors that accurately (sub-micron) measure the distance to a 301 

target steel plate attached to the driving piston. These readings are averaged and are used to set 302 

the target deformation rate via feedback to an axial stress intensifier. 303 

For AE data acquisition the protocol of Benson et al. (2007) was followed. The dry 304 

sample was positioned inside an engineered rubber jacket fitted with ports for an array of 305 

twelve 1 MHz single-component Piezo-Electric Transducers (PZTs, model PAC Nano30) were 306 

embedded (Error! Reference source not found.Error! Reference source not found.). These 307 

sensors have a relatively flat frequency response between 125-750 KHz. Sensor output is 308 

connected to preamplifiers set to 40 dB, focusing on data quality over quantity. An ITASCA-309 

Image “Milne” recorder operate in a standard ‘trigger’ model, downloading all twelve channels 310 

when any single channel passes a set 100 mV threshold (e.g. Gehne, 2018). During 311 

experimentation, in addition to ‘passive’ mode (recording of fracturing events) the sensors are 312 

also used in ‘active’ mode for P-wave elastic velocity measurements in order to derive a 313 

velocity model for source locations (Figure A2). Periodically, each PZT was triggered in 314 

sequence with a high voltage (200 V) pulse, with the energy recorded by the remaining 11 315 

sensors in the array. Signal to noise (SNR) was further improved by pulsing each sensor 316 

multiple times (16) and stacking the received waveforms, with each survey of 12-sensors 317 

generating 144 non-unique raypaths and taking approximately 30 seconds to complete. 318 
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Mechanical data from the deformation testing reveals a typical response of DDS. A total 319 

of 24360 AE were detected by the ‘trigger’ recording system (Figure A2, histogram 0.01% 320 

strain bins), however, it is unknow what percentage of these signals are noise related. 321 

Differential stress increases gradually (Figure A2, black line), entering the elastic phase of 322 

deformation at approximately 0.3% strain, coinciding with a rapid increase in the number of 323 

AE recorded. During the period of strain-softening from 0.7-0.9% strain the rate of AE 324 

dramatically accelerates and peaking at ~1000 events/0.01% strain. As the sample goes through 325 

peak stress (145 MPa) several pulses in AE count correspond with minor drops in differential 326 

stress. However, the overall rate decreases with time. At ~1.4% strain the sample fails, with 327 

Figure 4aError! Reference source not found. highlighting the formation of a fracture plane 328 

marked in red. 329 

Appendix 2: Model Training Parameters 330 

Seismic Envelope 331 

The Root Mean Square (RMS) envelope provides a scaled amplitude estimate of the AE 332 

trace. The envelope represents the instantaneous energy of the signal and is computed in a 333 

sliding window of 10 samples. Such a narrow window is selected to avoid smoothing of the 334 

low amplitudes at signal onset. In low-noise environments the amplitude of the signal greatly 335 

exceeds that of the pre-signal noise and provides a good marker of the onset of energy. 336 

However, as noise increases, this onset becomes increasingly difficult to identify resulting in a 337 

high degree of uncertainty.  338 

Instantaneous Frequency Content 339 

Intrinsic modal functions represent simple oscillatory modes of complex signals. Unlike 340 

harmonic signals, IMF can have variable frequency and amplitude content through time. 341 

Known as empirical mode decomposition (EMD), IMF of individual AE are obtained through 342 
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a continuous screening process called “sifting” and must satisfy the following requirements: 343 

The number of extrema and the number of zero-crossings must either be equal or differ by a 344 

minimum of one, whilst the mean of the upper and lower envelopes is zero. The procedure 345 

follows as thus (Huang et al., 1998): 346 

1. The local extrema in the time series 𝑋(𝑡) are identified 347 

2. Local maxima are connected by a cubic spline line to produce an upper envelope 348 

3. This is repeated for the local minima to produce a lower envelope 349 

The difference between 𝑋(𝑡) and the mean of the two envelopes, 𝑚1, is the first 350 

component ℎ1: 351 

 ℎ1 = 𝑋(𝑡) −  𝑚1.  352 

Using ℎ1 as the new time series, this process is repeated 𝑘 times until the standard deviation of 353 

ℎ1𝑘, 𝜎𝑘, is less than 0.8. This value was selected as it allows for a relatively small number of 354 

IMF components, whilst still capturing signal complexity: 355 

 𝜎𝑘 =  ∑
|ℎ𝑘−1(𝑡) −  ℎ𝑘(𝑡)|2

ℎ𝑘−1
2 (𝑡)

𝑇

𝑡=0

.  356 

Thus, ℎ1𝑘 is defined as the first IMF component of the data: 357 

 𝑐1 =  ℎ1𝑘.  358 

Typically, 𝑐1 contains the highest frequency component of 𝑋(𝑡). Subsequent IMF, which 359 

contain longer period data, are then calculated from the residual 𝑟𝑛 where: 360 

 𝑟𝑛 =  𝑟𝑛−1 −  𝑐𝑛.  361 

The sifting process is stopped when 𝑟𝑛 becomes a monotonic function from which no new IMF 362 

can be extracted. Consequently, the test data is decomposed into 𝑛 empirical modes where 363 
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 𝑋(𝑡) =  ∑ 𝑐𝑗 +  𝑟𝑛

𝑛

𝑗=1

.  364 

Once obtained, the Hilbert transform 𝐻, or instantaneous amplitude 𝐴𝑖𝑛𝑠𝑡, of each IMF 365 

component is calculated as: 366 

 𝐻(𝑐𝑛)(𝑡) =  
1

𝜋
∫

𝑐𝑛(𝜏)

𝑡 −  𝜏
𝑑𝜏

∞

−∞

.  367 

Where 𝜏 is the width of the analysis window. The phase angle 𝜃,  368 

 𝜃 = 𝐼𝑚(log(𝐻(𝑐𝑛))),  369 

is then used to compute the instantaneous frequency content 𝑓𝑖𝑛𝑠𝑡 as 370 

𝑓𝑖𝑛𝑠𝑡 =  
∆(𝜃)/ 𝑇𝑠

2 ∗ 𝜋
,  371 

where 𝑇𝑠 is the sampling period. To characterise the data for use in classification, each step of 372 

the vector 𝑓𝑟𝑒𝑞(𝑡) is then defined as the 𝑓𝑖𝑛𝑠𝑡(𝑡) of the highest 𝐴𝑖𝑛𝑠𝑡(𝑡) of all IMF components 373 

in 𝑋(𝑡). Thus, 𝑓𝑟𝑒𝑞 is simply a high-resolution vector of the dominant frequency content 374 

through time.  375 

Permutation Entropy 376 

The Permutation Entropy method describes the uncertainty and the degree of irregularity 377 

in a random series.  To compute the empirical PE (refer to Unakafova and Keller, (2013) for 378 

more details), ordinal patterns of the AE are obtained with delay of τ = 1, indicating a distance 379 

of 1 between points in patterns and an order of d = 5, meaning patterns contain 6 points (d+1). 380 

With a high degree of overlap between points, it is possible to use all of the information about 381 

order relations between points in the AE waveform. The distribution of ordinal patterns are 382 

obtained by the simple enumeration of the type of pattern. The PE, computed in a sliding time 383 

window of 30 points to reflect the complexity in the time series, is calculated at time t as: 384 
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𝑃𝐸𝑑
τ(𝑡) =  − ∑

𝑞𝑗

𝑀
ln

𝑞𝑗

𝑀
= ln𝑀 −  

1

𝑀

(𝑑+1)!−1

𝑗=0

∑ 𝑞𝑗ln𝑞𝑗

(𝑑+1)!−1

𝑗=0

,  385 

where 𝑞𝑗 = #{𝑘 ∈ {𝑡, 𝑡 − 1,.  .  . , 𝑡 − 𝑀 + 1} has the ordinal pattern j} (with 0ln0 := 0) and M 386 

is defined as the number of ordinal patterns in the window. 387 
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Figure Legend 516 

Figure 1: Input parameters used in model training. Data classifications, indicated above, are noise and signal. a) 517 

Seismic envelope. High values typically denote signal, however, low amplitude data is poorly characterised. b) 518 

Dominant frequency content of the AE waveform. Red and blue indicates high and low frequency content 519 

respectively. Pre-signal noise is characterised by high frequency and the signal itself with low values. c) 520 

Permutation energy behaves similarly to seismic envelope but the trend is opposite with low values identifying 521 

signal. Even at low amplitudes, permutation entropy detects coherancy in frequency content.  522 

Figure 2: Flowchart detailing key elements of the training loop. 523 

Figure 3: AE signal (black), neural network model output (NN, red) and amplitude threshold (AT, blue) highlight 524 

the discrepencies in picking quality between the two methods at low amplitudes. Strongly scattered or emergent 525 

waveforms are frequently misspicked due to late arrivals in the coda. The AT method also misses many low 526 

amplitude arrivals that the NN is still able to detect. 527 
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Figure 4: a) Post-failure imaging of the sample highlights a singular failure plane propagating to the lower left. b) 528 

AE sources that are located by both methodologies (black dots). Example locations (corresponding coloured dots) 529 

highlight the discreprency in source location due to the different picking methodologies. 530 

Figure A1: Sensor array. 531 

Figure A2: Velocity data, stress-strain curve and raw AE count for Darley Dale Sandstone deformed at 20 MPa 532 

confning pressure. 533 
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Permutation energy behaves similarly to seismic envelope but the trend is opposite with low values identifying 542 

signal. Even at low amplitudes, permutation entropy detects coherancy in frequency content.  543 
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Figure 2: Flowchart detailing key elements of the training loop. 545 
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 546 

Figure 3: AE signal (black), neural network model output (NN, red) and amplitude threshold (AT, blue) highlight 547 

the discrepencies in picking quality between the two methods at low amplitudes. Strongly scattered or emergent 548 

waveforms are frequently misspicked due to late arrivals in the coda. The AT method also misses many low 549 

amplitude arrivals that the NN is still able to detect. 550 
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AE sources that are located by both methodologies (black dots). Example locations (corresponding coloured dots) 553 
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Figure A1: Sensor array. 557 
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 559 

Figure A2: Velocity data, stress-strain curve and raw AE count for Darley Dale Sandstone deformed at 20 MPa 560 

confning pressure. Brittle failure ocucrs at approximately 1,2% strain. 561 

 562 


