| 1  | Simultaneous extinction of Madagascar's megaherbivores correlates                                                                     |
|----|---------------------------------------------------------------------------------------------------------------------------------------|
| 2  | with late Holocene human-caused landscape transformation                                                                              |
| 3  |                                                                                                                                       |
| 4  | James P. Hansford <sup>1,2,3,*</sup> , Adrian M. Lister <sup>4</sup> , Eleanor M. Weston <sup>4</sup> , Samuel T. Turvey <sup>1</sup> |
| 5  |                                                                                                                                       |
| 6  | <sup>1</sup> Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK                                    |
| 7  | <sup>2</sup> Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois 60115,                                 |
| 8  | USA                                                                                                                                   |
| 9  | <sup>3</sup> School of Ocean and Earth Science, National Oceanography Centre, University of                                           |
| 10 | Southampton, Southampton, UK                                                                                                          |
| 11 | <sup>4</sup> Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK                                                 |
| 12 |                                                                                                                                       |
| 13 | *Corresponding author: james.hansford@ioz.ac.uk                                                                                       |

14 Abstract. Reconstructing the dynamics and drivers of late Quaternary megafaunal 15 extinctions requires direct radiometric date series that are assessed within probabilistic statistical frameworks. Extinction chronologies are poorly understood for many tropical 16 17 regions, including Madagascar, which had a diverse, now-extinct Holocene large 18 vertebrate fauna including a "megaherbivore" guild of endemic hippopotami and 19 elephant birds. Madagascar's megaherbivores likely played vital roles in regulating 20 ecosystem structure and nutrient cycling, but few direct dates are available for 21 megaherbivore specimens identified to species level, with uncertainty over when and 22 why different representatives of this guild disappeared. Here, we conduct a new 23 investigation into Malagasy megaherbivore extinction dynamics, including 30 new AMS 24 dates and 63 audited published dates. We use Gaussian-resampled inverse-weighted McInerny (GRIWM) analysis to estimate species-specific extinction dates for three 25 26 elephant bird species (Aepyornis hildebrandti, Mullerornis modestus, Vorombe titan), 27 eggshell representing Aepyornis or Vorombe, and two hippo species (Hippopotamus 28 *lemerlei*, *H. madagascariensis*), and to estimate extinction dates for megaherbivore 29 communities in different biomes. Megaherbivores persisted for millennia after first 30 human arrival. Extinction date estimates vary significantly between biomes, with 31 disappearance from dry deciduous forest over a millennium earlier than other biomes, possibly reflecting local variation in megaherbivore population densities or human 32 33 pressures. However, megaherbivore communities including all elephant bird and hippo 34 species persisted elsewhere across Madagascar until  $\sim 1200-900$  BP, when they 35 collapsed suddenly. Extinctions are closely correlated in time with intensive conversion 36 of forests to grassland at  $\sim$ 1100-1000 BP, probably associated with a shift to agropastoralism and representing a radical change in sustainability of prehistoric human 37 38 interactions with biodiversity.

- **Keywords:** elephant bird, extinction chronology, *Hippopotamus*, Holocene, Madagascar,
- 40 Quaternary extinction, radiocarbon dating

### 41 **1. Introduction**

42 Reconstructing the spatiotemporal dynamics and drivers of Late Pleistocene-Holocene megafaunal extinctions has constituted a primary question in Quaternary science for 43 44 well over a century (Grayson, 1984). Multiple direct radiometric dates are required to 45 reconstruct extinction chronologies accurately for now-extinct species, and should be analysed within probabilistic statistical frameworks that can use the temporal spacing 46 47 of available dates to infer likely extinction timings (Bradshaw et al., 2012; Saltré et al., 48 2015). Such robust temporal frameworks are necessary before it is possible to identify 49 temporally synchronous causal drivers that might be responsible for species losses. 50 However, there is substantial disparity in our understanding of the temporal dynamics 51 of late Quaternary megafaunal biodiversity loss between different biogeographic 52 regions (Stuart, 2015), and data on extinction timings and drivers are less robust for 53 most tropical regions due to differing preservational conditions and less comprehensive 54 direct dating programmes (Louys et al., 2007; Turvey et al., 2013, 2021; Cooke et al., 55 2017; Price et al., 2018).

56 Madagascar's rich Holocene palaeontological record contains a remarkable endemic 57 vertebrate fauna, including 17 species of giant lemurs, as well as elephant birds (the 58 endemic ratite family Aepyornithidae), hippopotami, large euplerid carnivores, the 59 enigmatic aardvark-like *Plesiorycteropus*, giant tortoises, and crocodiles (Burney et al., 2004; Goodman and Jungers, 2014; Hansford and Turvey, 2018). Although only two of 60 61 the giant lemur genera, Archaeoindris and Megaladapis are likely to have exceeded the 62 body mass threshold of >44 kg (Jungers, 2008), typically used to define Quaternary 63 megafauna (Martin and Klein, 1984), Madagascar's Holocene fauna included a true "megaherbivore" guild comprising hippopotami (up to  $\sim$ 400 kg; Weston and Lister, 64 2009) and elephant birds, the world's largest birds (up to 860 kg; Hansford and Turvey, 65

2018). Whereas giant lemurs are inferred to have played important roles in seed 66 67 dispersal and forest regeneration (Crowley et al., 2011; Federman et al., 2016), Madagascar's megaherbivores are likely to have been keystone species with profound 68 69 top-down impacts in regulating plant community structure and composition through 70 grazing, browsing and trampling, and biogeochemical cycling via nutrient transfer 71 across landscapes and ecosystem boundaries (Doughty et al., 2016; Mahli et al., 2016; 72 Shurin et al., 2020). However, all of the largest-bodied representatives of Madagascar's 73 Holocene fauna are now extinct, with the largest surviving endemic vertebrates less 74 than 10 kg in body mass (Goodman and Benstead, 2004). The timing of megafaunal 75 extinctions and associated change in ecosystem functionality in Madagascar has 76 captivated researchers ever since elephant bird bones were first brought to Europe in the nineteenth century (Burney, 1999; Burney et al., 2004; Crowley, 2010; Anderson, 77 78 2018).

79 Numerous hypotheses have been proposed to explain the extinction of 80 Madagascar's large-bodied vertebrates, including non-anthropogenic climate-driven 81 aridification, and direct or indirect human impacts associated with hunting, habitat 82 modification, competition with introduced ruminants, or "hyperdisease" (Walker, 1967; 83 Mahé and Sourdat, 1972; Dewar, 1984). More recently, synergistic impacts of climate 84 change and human impacts have been proposed, which might have been 85 spatiotemporally variable (MacPhee et al., 1997; Burney, 1999; Burney et al., 2003, 2004; Crowley, 2010; Parker-Pearson et al., 2010; Goodman and Jungers, 2014). Not all 86 proposed hypotheses (notably complex multi-causal models) are easily falsifiable 87 88 (Burney et al., 2003).

Long-term environmental archives provide a temporal framework of late
 Quaternary ecosystem change and human-environmental interactions in Madagascar

91 for investigating potential drivers of regional biodiversity loss. Severe multidecadal 92 periods of drought are recorded throughout the mid to late Holocene of the southwest Indian Ocean, with megadroughts at ~2800 and 3600 BP lasting several centuries (Li et 93 94 al., 2020). In Madagascar this pattern of punctuated extreme drought is more extreme in 95 the south and is coupled with a continuous pattern of increasing aridification from  $\sim$ 4200 BP onwards, although the severity and ecosystem-level impacts of this 96 97 environmental change are debated (Mahé and Sourdat, 1972; Scroxton et al., 2019). 98 Charcoal microparticulates in speleothems and sediment cores show rapid increases in 99 the southwest at 1800-1600 BP and in the north, northwest, and central highlands at 100 1300-900 BP, and are interpreted as signals of human-driven deforestation (Burney, 101 1999; Burney et al., 2004; Crowley, 2010). Archaeological evidence for settled villages 102 dates from 1300 BP onwards, with arrival of cattle by  $\sim$ 1100 BP and occupation of most 103 of Madagascar's coasts by 900 BP (Burney et al., 2003, 2004; Crowther et al., 2016; 104 Douglass et al., 2019), and genetic data from modern human populations indicate 105 demographic expansion southward across Madagascar and population increase from 106 ~1500 BP (Pierron et al., 2017). A dramatic decline in arboreal pollen and increase in 107 grass pollen, starting at  $\sim$ 1100 BP and completed within a century, records a rapid, 108 complete transition from C<sub>3</sub> forests to C<sub>4</sub> grassland (Burns et al., 2016; Crowley et al., 109 2017). This has been interpreted as evidence for either a peak in natural aridification or 110 anthropogenic habitat alteration. However,  $\delta^{15}N$  values in dated subfossil vertebrate 111 bones provide no evidence of change in habitat moisture, implying that this 112 environmental shift was associated with changing human land use (e.g., subsistence 113 transition to agro-pastoralism, with increased use of fire to promote grass growth for 114 cattle) rather than changing precipitation (Crowley and Samonds, 2013; Crowley et al., 2017; Hixon et al., 2018). 115

116 Until recently, human arrival in Madagascar was thought to have occurred around 117 2500-2000 BP, based on evidence including introduced *Cannabis* pollen and increased charcoal microparticles (Burney et al., 2004; Crowley, 2010). However, recent 118 119 discoveries have challenged this interpretation. Coastal rock shelters in western 120 Madagascar provide support for regional human presence at  $\sim$ 2000 BP (Douglass, 2017), and microlithic tool assemblages indicating occupation of northern Madagascar 121 122 have been dated to >4000 BP (Dewar et al., 2013), although the chronological context of 123 this evidence has been contested (Anderson et al., 2018). Human modification of extinct 124 vertebrate bones provides evidence for even earlier regional human presence. A giant 125 lemur (Palaeopropithecus) radius with cut marks has been dated to ~2400 BP (Pérez et 126 al., 2005), and elephant bird bones showing confirmed microlithic tool marks have recently been directly dated to  $\sim$ 6400-6300 cal. BP (calibrated years before present) 127 128 and ~10,700-10,500 cal. BP (Hansford et al., 2018).

129 The Sporormiella coprophilous fungal spore record, which represents a proxy for 130 biomass of both mammalian and avian megaherbivores (Wood et al., 2011), indicates 131 megafaunal declines by  $\sim$ 1700 BP, although with geographic variation in stratigraphic 132 resolution (Burney et al., 2003). The archaeological record reveals an island-wide 133 human dietary "subsistence shift" around 1050 cal. BP from giant lemurs to smaller 134 forest-dwelling species that persist today (Godfrey et al., 2019). Large-scale radiocarbon 135 datasets are now available for Madagascar, including numerous direct and indirect 136 dates for many extinct species (Burney et al., 2004; Crowley, 2010). These datasets 137 demonstrate that some giant lemur species survived until less than a thousand years 138 ago, with direct dates of 630±50 BP and 510±80 BP available for Megaladapis edwardsi and Palaeopropithecus ingens, respectively (Burney et al., 2004). Radiometric data have 139 140 been interpreted to suggest a two-phase model of spatially staggered declines across

141 different biomes (Crowley, 2010). This model proposes that by  $\sim$ 2000 BP, very large 142 species (>150 kg) declined in arid spiny bush, other large species (10-150 kg) declined 143 in the grassland/woodland mosaic of the central highlands, and both very large and 144 large species declined in dry deciduous forest. Large species subsequently also declined 145 in arid spiny bush and succulent woodland by  $\sim$ 1000 BP. Conversely, historical and oral accounts of reported encounters with unusual animals in Madagascar have led to 146 147 suggestions that some megaherbivores (both elephant birds and hippopotami) might 148 have persisted into the post-1500 CE European historical era or even the twentieth 149 century (Flacourt, 1658; Racault, 2007; Wright, 2014).

150 However, previous radiometric studies have focused largely on extinct lemurs, with 151 fewer direct dates available for the island's megaherbivores. Previous studies have also only reported last-occurrence dates and their confidence intervals for extinct species. 152 153 instead of estimating extinction dates using more complex probabilistic methods. 154 Madagascar's megaherbivores have been the subject of recent morphology-based 155 taxonomic revisions, which now recognise four elephant bird species in three genera 156 (Aepyornis hildebrandti, A. maximus, Mullerornis modestus, Vorombe titan) based upon 157 leg bone morphology (Hansford and Turvey, 2018), and two hippo species 158 (*Hippopotamus madagascariensis* [=*H. guldbergi*], *H. lemerlei*) based upon cranial 159 morphology (Fovet et al., 2011; Ravotovao et al., 2014) (Text S1). It is difficult to assign 160 dates from specimens reported in the older literature to currently-recognised species, 161 due to an incomplete understanding of wider morphological differences among these 162 taxa and limited description of most previously dated material. 163

Previous assessments of megafaunal extinction chronologies using dated late
Holocene samples (Burney et al., 2004; Crowley, 2010) included only three directly
dated elephant bird bones, which were only identified to genus and are difficult to

166 interpret taxonomically following recognition of the new genus Vorombe (Hansford and 167 Turvey, 2018). These and other studies (Clarke et al., 2006; Parker-Pearson et al., 2010; Douglass, 2017) have instead preferentially dated elephant bird eggshell samples, many 168 169 of which cannot be definitively associated with skeletally diagnosed species (Hansford 170 and Turvey, 2018). Although more hippo skeletal material has been directly dated, these specimens have also rarely been identified to species level (Burney et al., 2004; 171 172 Crowley, 2010; Crowley and Samonds, 2013). Radiometric last-occurrence dates 173 currently available for elephant birds (taxonomically unidentified eggshell, unknown 174 lab number, 840±80 BP; Battistini, 1963) and hippopotami ("Hippopotamus sp.", lab 175 number: GaK-1506, 980±200 BP; Mahé and Sourdat, 1972) are based on uncalibrated 176 non-AMS (accelerator mass spectrometry) radiocarbon dates obtained before 1980 177 (Table 1), before exclusive use of collagen and adequate pretreatment came into regular 178 use, and would be rejected in modern radiometric auditing studies because of their 179 known higher potential for unreliability (Stafford, 1987; Lister and Stuart, 2013). 180 Here, we conduct a robust new investigation into the extinction chronology, 181 dynamics and drivers of Madagascar's megaherbivores. We present a dataset of new 182 direct AMS dates from morphologically diagnostic skeletal elements representing 183 currently recognised endemic elephant bird and hippo species, combined with other 184 available audited radiocarbon dates. We analyse species-specific and biome-specific 185 radiometric date series using Gaussian-resampled inverse-weighted McInerny 186 (GRIWM) analysis, a probabilistic method that progressively up-weights temporal gaps 187 between dates closer to the time a taxon disappears from the fossil record; this 188 approach controls for the Signor-Lipps effect (Signor and Lipps, 1982), whereby it is 189 extremely unlikely to detect the last individual of a declining taxon (Bradshaw et al., 190 2012; Saltré et al., 2015). This critical approach allows us to establish a high-quality

191 temporal baseline for understanding the timing of Madagascar's megafaunal extinctions,

192 where multiple species extinctions may have been masked by poor taxonomic

193 resolution, and for identifying temporally synchronous environmental changes likely to

194 have driven the extinction of the island's unique megaherbivore guild.

195

## 196 **2. Materials and methods**

197 We generated 30 new direct ultrafiltered AMS dates for previously undated

198 megaherbivore skeletal elements. AMS dating was conducted at the Oxford Radiocarbon

199 Accelerator Unit, UK.

200 For investigation of species-specific extinction chronologies, following radiometric 201 auditing we also included nine additional published direct radiocarbon dates on 202 megaherbivore skeletal elements with species-level identification, and rejected 37 203 further dates, following established auditing criteria (Lister and Stuart, 2013): five 204 published before 1980; one with no clear collection locality; 31 unidentifiable to species 205 (Tables 1-3, Table S1). We further included 24 available direct dates for eggshell 206 fragments representing two distinct reported morphotypes: 20 dates from "thick" 207 (~4mm) eggshell representing either *Aepyornis* or *Vorombe*, and four dates from "thin" 208 (~2mm) eggshell, a morphotype known to represent *Mullerornis modestus* based on 209 ancient DNA analysis (Grealy et al., 2017). Our dataset for species-specific analysis 210 contains 62 direct calibrated dates for six identified megaherbivore species and one 211 eggshell morphotype: Aepyornis hildebrandti, n=6; A. maximus, n=1; Mullerornis 212 *modestus*, n=7 (including dates on bone and thin eggshell); *Vorombe titan*, n=11; "thick" 213 eggshell, n=20; *Hippopotamus lemerlei*, n=13; *H. madagascariensis*, n=4. 214 For investigation of the temporal pattern of megaherbivore extinction across

215 different biomes, we used all dated material that could be identified as either elephant

216 bird or hippo. This included 30 additional published dates with known localities and 217 that were identifiable as hippo or large ratite but of unknown species, which we had excluded from species-specific analysis. Our dataset for biome-level GRIWM analysis 218 219 contains 92 direct calibrated dates for four biomes: arid spiny bush, 53 dates from 14 220 sites; succulent woodland, 16 records from four sites; dry deciduous forest, 10 records from two sites; central highlands, 13 records from three sites (Tables 2-3, Table S1). 221 222 Taxonomic identification of skeletal material followed published morphological 223 diagnoses for hippopotami and ratites (Fovet et al., 2011; Ravotovao et al., 2014; 224 Hansford and Turvey, 2018). We included dates from carbonate in eggshell, as this 225 stable biomineral is suitable for accurate age estimation (Long et al., 1983; Higham, 226 1994). Dates were calibrated using SHCal20 (Hogg et al., 2020) implemented in OxCal version 4.4 (Bronk Ramsey, 2009). All dates were calibrated at  $2\sigma$ , with date ranges 227 228 reported as 95% confidence ranges. Extinction date estimates were calculated in R 229 version 4.0 (R Development Core Team, 2011), using the GRIWM algorithm (Saltré et al., 230 2015), which requires a minimum of four dates for analysis.

231

#### 232 **3. Results**

233 Species-specific GRIWM analysis was possible for all extinct megaherbivore taxa except 234 for *Aepyornis maximus*, for which only one specimen has been dated directly. The  $2\sigma$ 235 ranges of the most recent dates for these taxa all overlap the 1200-1100 cal. BP interval: 236 Aepyornis hildebrandti, 1286-1177 cal. BP; Mullerornis modestus, 1284-986 cal. BP; Vorombe titan, 1179-998 cal. BP; "thick" eggshell, 1177-805 cal. BP; Hippopotamus 237 238 *lemerlei*, 1280-1114 cal. BP; *H. madagascariensis*, 1263-1070 cal. BP (Tables 2-3). 239 Estimated extinction dates for all taxa based on GRIWM analysis overlap the 1200-900 cal. BP interval, with 95% confidence ranges separated by a maximum of 206 years 240

between "thick" eggshell (957-885 cal. BP) and *Hippopotamus lemerlei* (1188-1163 cal.
BP) (Fig. 1, Table 4).

243 Unlike species-specific extinction dates, extinction dates for different biomes based 244 on GRIWM analysis show substantial variation (Fig. 2, Table 5). Estimated 245 megaherbivore extinction dates in three biomes (arid spiny bush, succulent woodland, central highlands) are slightly temporally staggered across the ~1150-900 cal. BP 246 247 interval, with 95% confidence limits for these biomes separated by a maximum of 95 248 years, with megafauna persisting longest in arid spiny bush (until 957-911 cal. BP). 249 However, megaherbivore extinction is estimated to have occurred over a thousand 250 years earlier in dry deciduous forest sites, between 2364-2078 cal. BP.

251

## 252 4. Discussion

253 Our study uses new AMS date series and probabilistic analyses to establish baselines for 254 understanding the spatiotemporal extinction dynamics of Madagascar's megaherbivore 255 guild, from both a species-level perspective based upon modern taxonomic frameworks, 256 and a community-level perspective for megaherbivores in different biomes across this 257 huge, ecologically complex island. Previous studies have not assessed species-specific 258 differences in extinction chronologies across Madagascar's large vertebrates through 259 statistical analysis of large date series, with previous conclusions about extinction 260 timing based upon interpretation of environmental proxy records, grouped-fauna 261 datasets or single last-occurrence dates (Burney et al., 2003, 2004; Crowley, 2010: 262 Godfrey et al., 2019).

263 The most striking result of our study is the extremely close temporal
264 correspondence in available last-occurrence dates and associated GRIWM extinction
265 date estimates for all investigated representatives of Madagascar's largest-bodied avian

266 and mammalian megafauna. All 95% confidence intervals for our species-specific 267 GRIWM estimates cluster within a narrow temporal window of approximately three centuries between ~1200-900 cal. BP. Estimates for Mullerornis modestus, Vorombe 268 269 titan, "thick eggshell" (representing either V. titan or Aepyornis), and Hippopotamus madagascariensis in particular overlap substantially, with the oldest bound of the 270 271 confidence intervals for all of these taxa postdating 1150 cal. BP. These findings 272 comprise probabilistic analyses for all of Madagascar's largest-bodied extinct bird and 273 mammal species other than Aepyornis maximus, and demonstrate that the island's 274 terrestrial megaherbivore guild experienced a closely-timed multi-taxon extinction 275 event, with species-level extinctions occurring within a narrow time window just over a 276 millennium ago.

277 In contrast, our extinction date estimates for megaherbivore communities in 278 different biomes show substantial variation, with available data suggesting the loss of 279 megaherbivores from dry deciduous forest over a millennium before other biomes. 280 These findings support the previous suggestion of early megafaunal declines in this 281 biome by  $\sim$  2000 BP, but contradict the hypothesis of comparable early declines in arid 282 spiny bush and the central highlands (Crowley, 2010). Instead, our results demonstrate 283 that megaherbivores persisted in these biomes until ~1150-900 cal. BP, with evidence 284 for latest survival in arid spiny bush. This spatially staggered pattern of millennial-scale decline is comparable to the dynamics of large vertebrate extinctions across many other 285 286 geographic regions with diverse ecosystems, for example in late Quaternary continental 287 and island large mammal faunas in Eurasia (Diamond, 1989; Crees et al., 2016; Turvey 288 et al., 2016; Lister and Stuart, 2019) and in recent mammal extinctions (Channell and 289 Lomolino, 2002), where range contraction typically occurs before final extinction. 290 Indeed, many extant Madagascar mammals also experienced pre-modern range

291 contraction from wider prehistoric Holocene distributions (Godfrey et al., 1999; Eronen
292 et al., 2017).

293 Variation in regional persistence or extirpation across Madagascar might reflect 294 between-biome variation in megaherbivore population densities and/or local human 295 pressures, with some evidence for both explanations. Geographic variation in Sporormiella spore frequencies has been considered indicative of past differences in 296 297 local megaherbivore densities (Burney et al., 2003); highest values were observed in 298 arid spiny bush sites, where we demonstrate longest persistence of megaherbivore 299 communities. Interestingly, comparison with Sporormiella data also suggests the 300 possibility of long-term megafaunal population decline within some biomes. Whereas 301 our radiocarbon dates demonstrate that megaherbivores definitely persisted in arid spiny bush until less than a thousand years ago, the *Sporormiella* record from the arid 302 303 spiny bush site of Ambolisatra declines sharply at 1705-1486 cal. BP (Burney et al., 304 2003). Conversely, dry deciduous forests have experienced amongst the highest levels 305 of historical deforestation of Madagascar's biomes, consistent with increased 306 vulnerability of local faunas and potentially with earlier disappearance of 307 megaherbivores (Olson and Dinerstein, 2002; Waeber et al., 2015). 308 However, we note that whereas other biomes contain megaherbivore dates from 309 multiple localities, all available dates from dry deciduous forest are from the cave 310 complex of Anjohibe (Anjohibe and Lavakasaka). Megaherbivore dates from Anjohibe 311 span much of the Holocene (Fig. 2), and younger radiometric dates are available from 312 the site for other extinct and extant species, indicating that its preservational window 313 extends beyond the last record of megaherbivores (Crowley and Samonds, 2013; 314 Goodman and Jungers, 2014). However, elephant birds and hippopotami are found in

315 relatively low frequencies in Malagasy subfossil cave contexts (Goodman and Jungers,

316 2014), and a single site may not represent the chronology of a large ecoregion. Further 317 dates are therefore needed from other dry deciduous forest sites and contexts that are ecologically similar to Anjohibe (i.e., that lack the rugged karstic topography that is less 318 319 amenable to megaherbivores). Furthermore, a date from elephant bird eggshell that 320 was rejected by our auditing criteria (1150±90 BP; Mahe & Sourdat, 1972) provides an intriguing possibility of later megaherbivore survival in the dry deciduous forest biome, 321 322 into the extinction window seen for other biomes. However, this evidence is contentious 323 due to the low-quality protocols, and also because this specimen was recovered from a 324 coastal archaeological context; elephant bird eggs are known to have been historically 325 moved around the coastline of Madagascar by boat and used to transport liquids such as 326 rum (Strickland, 1849).

327 Rapid, simultaneous island-wide "blitzkrieg-style" extinction of megafauna within 328 centuries of first human arrival has been demonstrated for some islands (White et al., 329 2010), and notably for New Zealand's moa, the other group of recently extinct giant 330 ratites (Holdaway et al., 2013; Perry et al., 2014). This contrasts markedly with our 331 model of biome-staggered megaherbivore declines taking place over a >1000 year 332 interval, and with species extinctions occurring many millennia later than human arrival in Madagascar, with an "extinction window" (earliest evidence of humans to last 333 334 occurrence of megafauna; Burney et al., 2004) of >9000 years. Indeed, available AMS 335 dates for extinct giant lemurs show that several taxa persisted for several hundred 336 years beyond megaherbivore extinction, so that co-occurrence of humans and some 337 other now-extinct Malagasy megafaunal species was even more temporally protracted 338 than for megaherbivores (Burney et al., 2004). However, prolonged millennial-scale co-339 occurrence of humans and now-extinct megafauna is also seen in some other island systems, including the insular Caribbean (Cooke et al., 2017) and the "island continent" 340

of Australia (Gillespie et al., 2006; Price et al., 2015). Between-island evaluation is
required to assess variation in duration of system-specific extinction windows, in the
context of local environmental conditions (e.g., existence of native mammalian
predators) that might predispose faunas to vary in their vulnerability or resilience to
prehistoric human interactions.

However, although our results provide evidence for millennial-scale megaherbivore 346 347 range contraction and population decline, with protracted depletion across biomes, 348 Madagascar's megaherbivore guild persisted in three of four investigated biomes (arid 349 spiny bush, central highlands, succulent woodland) until ~1150-900 cal. BP. At this 350 point, surviving megaherbivore communities, which still retained all elephant bird and 351 hippo species with sufficient data to be included in this study, collapsed across the 352 island in a sudden event. The close correlation in the timing of all megaherbivore 353 species extinctions is also contemporaneous with the recently documented island-wide 354 human dietary "subsistence shift", from exploiting now-extinct large endemic 355 vertebrates alongside other resources (e.g., foraging marine resources in coastal regions; Douglass, 2017), to exploiting introduced large vertebrates and smaller 356 357 endemic species (Godfrey et al., 2019). Therefore, this process likely does not represent 358 simply an end-result of progressive attritional biodiversity loss driven by the 359 aridification and punctuated megadroughts of the late Holocene (Li et al., 2020). 360 Instead, we interpret the abrupt island-wide megaherbivore extinction event as a 361 possible "delayed blitzkrieg", not in response to initial human arrival but to changing 362 prehistoric human-environmental interactions and associated novel threats to 363 biodiversity. In particular, these extinctions are closely correlated in time with the period of intensive habitat conversion from forests to grassland that occurred between 364  $\sim$ 1100-1000 BP, probably associated with a subsistence shift to agro-pastoralism 365

(Burney et al., 2003; Virah-Sawmy et al., 2010; Crowley and Samonds, 2013; Burns et al.,
2016). Additional proximate extinction drivers are also possible; for example, reduction
and fragmentation of forests also facilitates access for hunters (Marchant et al., 2009).
We identify this radical shift in the sustainability of prehistoric human interactions with
local biodiversity as the likely ultimate driver of the disappearance of Madagascar's
megaherbivore guild.

372 Madagascar did not lose all of its native forests during the  $\sim$ 1100-1000 BP interval, 373 and our data cannot rule out the possibility that tiny remnant populations of some 374 elephant bird and/or hippo species persisted into the last millennium in restricted 375 environmental refugia, a pattern seen in many of today's highly threatened species that 376 had much larger historical ranges (Channell and Lomolino, 2002; Fisher and Blomberg, 377 2011; Turvey et al., 2015). It is even possible that such putative last survivors could 378 have inspired historical accounts of fantastic animals persisting in remote habitat 379 refugia, such as the second-hand seventeenth-century description of the vouropatra or 380 *vorompatra*, "a large bird which haunts the Ampatres and lays eggs like those of an 381 ostrich; the people of these regions cannot catch it, as it seeks out the most deserted 382 place" (Flacourt, 1658). However, our results clearly demonstrate that island-wide 383 collapse and functional extinction of Madagascar's megaherbivore guild had occurred 384 several centuries earlier.

Our analysis of megaherbivore extinction dynamics has focused on investigation of
extinction chronologies for elephant birds and hippopotami. Madagascar's Holocene
record also contains at least two species of now-extinct giant tortoise (Gerlach and
Canning, 1998), which may have persisted beyond the sudden crash of other
megaherbivore species ~1000 years ago (Burney et al., 2004; Crowley, 2010). However,
diversity and species-level identification of tortoise subfossils is unclear, and future

391 investigation of Madagascar's megafaunal extinctions should incorporate these taxa 392 following revision of their taxonomy. A third endemic hippo species, *Hippopotamus* 393 laloumena, is also recognised by some authors (Faure and Guérin, 1990), but is known 394 from very limited material, and its distinction from the extant mainland African species 395 *H. amphibius* requires further assessment (Boisserie, 2005; Goodman and Jungers, 396 2014) (See also Supplementary text S1). It is also vital to determine the roles that 397 Madagascar's extinct megaherbivores played in regulating ecosystem functionality, how 398 ecosystems changed following removal of these keystone species, and whether any of 399 their roles have been replaced by those of introduced species (Albert-Daviaud et al., 400 2020; Lundgren et al., 2020). Madagascar's wetland habitats are now highly degraded, 401 and forest habitats are depleted of phosphorus (Du et al., 2020) and nitrogen (Gashorn et al., 2009), limiting productivity and perhaps driving low fruiting yields (Crowley et 402 403 al., 2019). Understanding past megafaunal ecology using historical baselines represents 404 an important priority for identifying restoration targets and guiding field-based 405 environmental management in Madagascar's degraded landscapes. Although 406 Madagascar's native megaherbivores are gone, it is still possible to use the past to 407 inform the present and improve resilience for Madagascar's remaining threatened 408 ecosystems and biodiversity.

409

#### 410 **Data availability.** All datasets are available in Tables 2 and 3.

411

#### 412 Acknowledgements

413 This study was supported by an NRCF grant (NF/2015/1/4) to STT/JPH, and a BBSRC

- 414 grant (BB/D522689/1) to AML. We thank Ronan Allain (MNHN), Ursula Göhlich
- 415 (NHMW), Jørn Hurum (UIO), Benjamin Kear (ZIUU), and Sandra Chapman, Lorna Steele

416 and Andy Currant (NHMUK) for access to museum collections, the staff of the Oxford

417 Radiocarbon Accelerator Unit for dating support, Frédérik Saltré and Corey Bradshaw

418 for providing the R code for GRIWM analysis, and Max Barclay and Svetlana Nikolaeva

419 for taxonomic advice.

420

### 421 **References**

- 422 Albert-Daviaud, A., Buerki, S., Onjalalaina, G.E., Perillo, S., Rabarijaona, R.,
- 423 Razafindratsima, O.H., Sato, H., Valenta, K., Wright, P.C., Stuppy, W., 2020. The ghost
- 424 fruits of Madagascar: identifying dysfunctional seed dispersal in Madagascar's

425 endemic flora. Biol. Conserv. 242, 108438.

426 Anderson, T., 2018. Reassembling the Strange: Naturalists, Missionaries, and the

427 Environment of Nineteenth-Century Madagascar. Lexington Books, Lanham, MD.

428 Battistini, R., Verin, P., Rason, R., 1963. Le site archaeologique de Talaky. Annal.

429 Malgaches 1, 111–153.

Berger, R., Ducote, K., Robinson, K., Walter, H., 1975. Radiocarbon date for the largest
extinct bird. Nature 258, 709.

432 Boisserie, J.R., 2005. The phylogeny and taxonomy of Hippopotamidae (Mammalia:

433 Artiodactyla): a review based on morphology and cladistics analysis. Zool. J. Linn.

434 Soc. 143, 1–26.

Bradshaw, C.J.A., Cooper, A., Turney, C.S.M., Brook, B.W., 2012. Robust estimates of
extinction time in the geological record. Quat. Sci. Rev. 33, 14–19.

437 Bronk-Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–
438 360.

439 Burney, D.A., 1999. Rates, patterns, and processes of landscape transformation and

440 extinction in Madagascar. In: MacPhee, R.D.E. (Ed.), Extinctions in Near Time:

441 Causes, Contexts, and Consequences. Kluwer Academic/Plenum, New York, pp.

442 145–164.

443 Burney, D.A., Burney, L.P., Godfrey, L.R., Jungers, W.L., Goodman, S.M., Wright, H.T., Jull,

444 A.J.T., 2004. A chronology for late prehistoric Madagascar. J. Hum. Evol. 47, 25–63.

- 445 Burney, D.A., James, H., Grady, F., Rafamantanantsoa, J.G., Ramilisonina, Wright, H.,
- 446 Cowart, J., 1997. Environmental change, extinction and human activity: evidence

447 from caves in NW Madagascar. J. Biogeogr. 24, 755–767.

448 Burney, D.A., Ramilisonina, 1998. The kilopilopitsofy, kidoky, and bokyboky: accounts of

strange animals from Belo-sur-Mer, Madagascar, and the megafaunal "extinction

- 450 window." Am. Anthropol. 100, 957–966.
- 451 Burney, D.A., Robinson, G.S., Burney, L.P., 2003. *Sporormiella* and the late Holocene

452 extinctions in Madagascar. Proc. Natl. Acad. Sci. USA 100, 10800–10805.

453 Burns, S.J., Godfrey, L.R., Faina, P., McGee, D., Hardt, B., Ranivoharimanana, L.,

454 Randrianasy, J., 2016. Rapid human-induced landscape transformation in

455 Madagascar at the end of the first millennium of the Common Era. Quat. Sci. Rev.
456 134, 92–99.

101,72 771

- 457 Channell, R., Lomolino, M.V., 2002. Trajectories to extinction: spatial dynamics of the
  458 contraction of geographical ranges. J. Biogeogr. 27, 169–179.
- 459 Clarke, S.J., Miller, G.H., Fogel, M.L., Chivas, A.R., Murray-Wallace, C.V., 2006. The amino
- acid and stable isotope biogeochemistry of elephant bird (*Aepyornis*) eggshells from
  southern Madagascar. Quat. Sci. Rev. 25, 2343–2356.
- 462 Collen, B., Turvey, S.T., 2009. Probabilistic methods for determining extinction

463 chronologies. In: Turvey, S.T. (Ed.), Holocene Extinctions. Oxford University Press,

464 Oxford, pp. 181–191.

- 465 Cooke, S.B., Dávalos, L.M., Mychajliw, A.M., Turvey, S.T., Upham, N.S., 2017.
- 466 Anthropogenic extinction dominates Holocene declines of West Indian mammals.
- 467 Annu. Rev. Ecol. Evol. Syst. 48, 301–327.
- 468 Crees, J.J., Carbone, C., Sommer, R.S., Benecke, N., Turvey, S.T., 2016. Millennial-scale
- faunal record reveals differential resilience of European large mammals to human
  impacts across the Holocene. Proc. R. Soc. B 283, 20152152.
- 471 Crowley, B.E., 2010. A refined chronology of prehistoric Madagascar and the demise of
  472 the megafauna. Quat. Sci. Rev. 29, 2591–2603.
- 473 Crowley, B.E., Godfrey, L.R., 2019. Strontium isotopes support small home ranges for
  474 extinct lemurs. Frontiers Ecol. Evol. 7, 490.
- 475 Crowley, B.E., Godfrey, L.R., Bankoff, R.J., Perry, G.H., Culleton, B.J., Kennett, D.J.,
- 476 Sutherland, M.R., Samonds, K.E., Burney, D.A., 2017. Island-wide aridity did not
- 477 trigger recent megafaunal extinctions in Madagascar. Ecography 40, 901–912.
- 478 Crowley, B.E., Godfrey, L.R., Irwin, M.T., 2011. A glance to the past: subfossils, stable
- 479 isotopes, seed dispersal, and lemur species loss in southern Madagascar. Am. J.
  480 Primatol. 73, 25–37.
- 481 Crowley, B.E., Samonds, K.E., 2013. Stable carbon isotope values confirm a recent
- 482 increase in grasslands in northwestern Madagascar. Holocene 23, 1066–1073.
- 483 Crowther, A., Lucas, L., Helm, R., Horton, M., Shipton, C., Wright, H.T., Walshaw, S.,
- 484 Pawlowicz, M., Radimilahy, C., Douka, K., Picornell-Gelabert, L., Fuller, D.Q., Boivin,
- 485 N.L., 2016. Ancient crops provide first archaeological signature of the westward
- 486 Austronesian expansion. Proc. Natl. Acad. Sci. USA 113, 6635–6640.
- 487 Flacourt, É. de, 1658. Histoire de la Grande Isle Madagascar, Guillaume de Luyne, Paris.

- 488 Dewar, R.E., 1984. Recent extinctions in Madagascar: the loss of the subfossil fauna. In:
- 489 Martin, P.S., Klein, R.G. (Eds.), Quaternary Extinctions: A Prehistoric Revolution.
- 490 University of Arizona Press, Tucson, AZ, pp. 574–593.
- 491 Dewar, R.E., Radimilahy, C., Wright, H.T., Jacobs, Z., Kelly, G.O., Berna, F., 2013. Stone
- 492 tools and foraging in northern Madagascar challenge Holocene extinction models.
- 493 Proc. Natl. Acad. Sci. USA 110, 12583–12588.
- 494 Diamond, J.M., 1989. Quaternary megafaunal extinctions: Variations on a Theme by
  495 Paganini. J. Archaeol. Sci. 16, 167–175.
- 496 Doughty, C.E., Roman, J., Faurby, S., Wolf, A., Haque, A., Bakker, E.S., Malhi, Y., Dunning,
- 497 J.B., Svenning, J.C., 2016. Global nutrient transport in a world of giants. Proc. Natl.
- 498 Acad. Sci. USA 113, 868–873.
- 499 Douglass, K., 2017. The diversity of late Holocene shellfish exploitation in Velondriake,
  500 southwest Madagascar. J. Island Coast. Archaeol. 12, 333–359.
- 501 Douglass, K., Hixon, S., Wright, H.T., Godfrey, L.R., Crowley, B.E., Manjakahery, B.,
- 502 Rasolondrainy, T., Crossland, Z., Radimilahy, C., 2019. A critical review of
- radiocarbon dates clarifies the human settlement of Madagascar. Quat. Sci. Rev. 221,105878.
- 505 Du, E., Terrer, C., Pellegrini, A.F.A., Ahlström, A., van Lissa, C.J., Zhao, X., Xia, N., Wu, X.,
- 506 Jackson, R.B., 2020. Global patterns of terrestrial nitrogen and phosphorus
- 507 limitation. Nature Geosci. 13, 221–226.
- 508 Eronen, J.T., Zohdy, S., Evans, A.R., Tecot, S.R., Wright, P.C., Jernvall, J., 2017. Feeding
- 509 ecology and morphology make a bamboo specialist vulnerable to climate change.
- 510 Curr. Biol. 27, 3384–3389.
- 511 Faure, M., Guérin, C., 1990. *Hippopotamus laloumena* nov. sp., la troisième espèce
- 512 d'hippopotame holocène de Madagascar. C. R. Acad. Sci. Ser. II 310, 1299–1305.

- 513 Faure, M., Guérin, C., Ohler, A., 2015. Le statut du nom *Hippopotamus madagascariensis*
- 514 Guldberg, 1883. Réponse à Rakotovao *et al*. 2014. Geodiversitas 37, 267–269.
- 515 Federman, S., Dornburg, A., Daly, D.C., Downie, A., Perry, G.H., Yoder, A.D., Sargis, E.J.,
- 516 Richard, A.F., Donoghue, M.J., Baden, A.L., 2016. Implications of lemuriform
- 517 extinctions for the Malagasy flora. Proc. Natl. Acad. Sci. USA 113, 5041–5046.
- 518 Fisher, D.O., Blomberg, S.P., 2011. Correlates of rediscovery and the detectability of
- 519 extinction in mammals. Proc. Roy. Soc. B 278, 1090–1097.
- 520 Fovet, W., Faure, M., Guérin, C., 2011. *Hippopotamus guldbergi* n. sp.: révision du statut
- 521 d'*Hippopotamus madagascariensis* Guldberg, 1883, après plus d'un siècle de
- 522 malentendus et de confusions taxonomiques. Zoosystema 33, 61–82.
- 523 Ganzhorn, J.U., Arrigo-Nelson, S., Boinski, S., Bollen, A., Carrai, V., Derby, A., Donati, G.,
- 524 Koenig, A., Kowalewski, M., Lahann, P., Norscia, I., Polowinski, S.Y., Schwitzer, C.,
- 525 Stevenson, P.R., Talebi, M.G., Tan, C., Vogel, E.R., Wright, P.C., 2009. Possible fruit
- 526 protein effects on primate communities in Madagascar and the Neotropics. PLoS527 ONE 4, e8253.
- 528 Gerlach. J., Canning, L., 1998. Taxonomy of Indian Ocean giant tortoises (*Dipsochelys*).
  529 Chelonian Conserv. Biol. 3, 3–19.
- Gillespie, R., Brook, B.W., Baynes, A., 2006. Short overlap of humans and megafauna in
  Pleistocene Australia. Alcheringa 30(S1), 163–186.
- 532 Godfrey, L.R., Jungers, W.L., Simons, E.L., Chatrath, P.S., Rakotosamimanana, B., 1999.
- 533 Past and present distributions of lemurs in Madagascar. In: Rakotosamimanana, B.,
- 534 Rasamimanana, H., Ganzhorn, J.U., Goodman, S.M. (Eds.), New Directions in Lemur
- 535 Studies. Springer, New York, pp. 19–53.

| 536 | Godfrey, L.R., Scroxton, N., Crowley, B.E., Burns, S.J., Sutherland, M.R., Pérez, V.R., Faina,  |
|-----|-------------------------------------------------------------------------------------------------|
| 537 | P., McGee, D., Ranivoharimanana, L., 2019. A new interpretation of Madagascar's                 |
| 538 | megafaunal decline: The "Subsistence Shift Hypothesis". J. Hum. Evol. 130, 126–140.             |
| 539 | Goodman, S.M., Benstead, J.P., 2004. The Natural History of Madagascar. University of           |
| 540 | Chicago Press, Chicago.                                                                         |
| 541 | Goodman, S.M., Jungers, W.L., 2014. Extinct Madagascar. University of Chicago Press,            |
| 542 | Chicago.                                                                                        |
| 543 | Grayson, D.K., 1984. Nineteenth-century explanations of Pleistocene extinctions: A              |
| 544 | review and analysis. In: Martin, P.S., Klein, R.G. (Eds.), Quaternary Extinctions: A            |
| 545 | Prehistoric Revolution. University of Arizona Press, Tucson, AZ, pp. 5–39.                      |
| 546 | Grealy, A., Phillips, M., Miller, G., Gilbert, M.T.P., Rouillard, J.M., Lambert, D., Bunce, M., |
| 547 | Haile, J., 2017. Eggshell palaeogenomics: palaeognath evolutionary history revealed             |
| 548 | through ancient nuclear and mitochondrial DNA from Madagascan elephant bird                     |
| 549 | (Aepyornis sp.) eggshell. Mol. Phylogen. Evol. 109, 151–163.                                    |
| 550 | Hansford, J.P., Turvey, S.T., 2018. Unexpected diversity within the extinct elephant birds      |
| 551 | (Aves: Aepyornithidae) and a new identity for the world's largest bird. Roy. Soc.               |
| 552 | Open Sci. 5, 181295.                                                                            |
| 553 | Hansford, J.P., Wright, P.C., Pérez, V.R., Muldoon, K.M., Turvey, S.T., Godfrey, L.R., 2020.    |
| 554 | Evidence for early human arrival in Madagascar is robust: a response to Mitchell. J.            |
| 555 | Island Coast. Archaeol. 15, 596–602.                                                            |
| 556 | Hansford, J., Wright, P.C., Rasoamiaramanana, A., Pérez, V.R., Godfrey, L.R., Errickson, D.,    |
| 557 | Thompson, T., Turvey, S.T., 2018. Early Holocene human presence in Madagascar                   |
| 558 | evidenced by exploitation of avian megafauna. Sci. Adv. 4, eaat6925.                            |
| 559 | Higham, T., 1994. Radiocarbon dating New Zealand prehistory with moa eggshell: some             |
| 560 | preliminary results. Quat. Sci. Rev. 13, 163–169.                                               |

- 561 Hixon, S.W., Elliott Smith, E.A., Crowley, B.E., Perry, G.H., Randrianasy, J., Ranaivoarisoa,
- 562 J.F., Kennett, D.J., Newsome, S.D., 2018. Nitrogen isotope (δ15N) patterns for amino
- 563acids in lemur bones are inconsistent with aridity driving megafaunal extinction in
- south-western Madagascar. J. Quat. Sci. 33, 958–968.
- 565 Hogg, A.G., Heaton, T.J., Hua, Q., Palmer, J.G., Turney, C.S.M., Southon, J., Bayliss, A.,
- 566 Blackwell, P.G., Boswijk, G., Bronk Ramsey, C., Pearson, C., Petchey, F., Reimer, P.,
- 567 Reimer, R., Wacker, L., 2020. SHCal20 Southern Hemisphere Calibration, 0–55,000
- 568 years cal BP. Radiocarbon 62, 759–778.
- 569 Holdaway, R.N., Allentoft, M.E., Jacomb, C., Oskam, C.L., Beavan, N.R., Bunce, M., 2014. An
- 570 extremely low-density human population exterminated New Zealand moa. Nature
  571 Comms 5, 5436.
- Jungers, W.L., Demes, B., Godfrey, L.R., 2008. How big were the "giant" extinct lemurs of
  Madagascar? In: Fleagle, J.G., Gilbert, C.C. (Eds.), Elwyn Simons: A Search for Origins.
  Springer, New York, pp. 343–360.
- 575 Li, H., Sinha, A., André, A.A., Spötl, C., Vonhof, H.B., Meunier, A., Kathayat, G., Duan, P.,
- 576 Voarintsoa, N.R.G., Ning, Y., Biswas, J., Hu, P., Li, X., Sha, L., Zhao, J., Edwards, R.L.,
- 577 Cheng, H., 2020. A multimillennial climatic context for the megafaunal extinctions in
- 578 Madagascar and Mascarene Islands. Science Adv. 6, eabb2459.
- 579 Lister, A.M., Stuart, A.J., 2013. Extinction chronology of the woolly rhinoceros
- 580 *Coelodonta antiquitatis*: reply to Kuzmin. Quat. Sci. Rev. 62, 144–146.
- 581 Lister, A.M., Stuart, A.J., 2019. The extinction of the giant deer *Megaloceros giganteus*
- 582 (Blumenbach): new radiocarbon evidence. Quatern. Int. 500, 185–203.
- 583 Long, A., Hendershott, R., Martin, P., 1983. Radiocarbon dating of fossil eggshell.
- 584 Radiocarbon 25, 533–539.

| 585 | Louys, J., Curnoe, D., Tong, H., 2007. Characteristics of Pleistocene megafauna               |
|-----|-----------------------------------------------------------------------------------------------|
| 586 | extinctions in Southeast Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 243, 152–             |
| 587 | 173.                                                                                          |
| 588 | Lundgren, E.J., Ramp, D., Rowan, J., Middleton, O., Schowanek, S.D., Sanisidro, O., Carroll,  |
| 589 | S.P., Davis, M., Sandom, C.J., Svenning, J.C., Wallach, A.D., 2020. Introduced                |
| 590 | herbivores restore Late Pleistocene ecological functions. Proc. Natl. Acad. Sci. USA          |
| 591 | 117, 7871–7878.                                                                               |
| 592 | MacPhee, R.D.E., Burney, D.A., 1991. Dating of modified femora of extinct dwarf               |
| 593 | hippopotamus from southern Madagascar: implications for constraining human                    |
| 594 | colonization and vertebrate extinction events. J. Archaeol. Sci. 18, 695–706.                 |
| 595 | MacPhee, R.D.E., Marx, P.A., 1997. The 40,000-year plague: humans, hypervirulent              |
| 596 | diseases, and first-contact extinctions. In Goodman, S.M., Patterson, B.D. (Eds.),            |
| 597 | Natural Change and Human Impact in Madagascar. Smithsonian Institution Press,                 |
| 598 | Washington, D.C., pp. 169–217.                                                                |
| 599 | Mahé, J., Sourdat, M., 1972. Sur l'extinction des vertébrés subfossiles et l'aridification du |
| 600 | climat dans le sud-ouest de Madagascar. Bull. Soc. Géol. France 14, 295–309.                  |
| 601 | Malhi, Y., Doughty, C.E., Galetti, M., Smith, F.A., Svenning, J.C., Terborgh, J.W., 2016.     |
| 602 | Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proc.              |
| 603 | Natl. Acad. Sci. USA 113, 838–846.                                                            |
| 604 | Marchant, R., Brewer, S., Webb, T., Turvey, S.T., 2009. Holocene deforestation: a history     |
| 605 | of human-environmental interactions, climate change, and extinction. In: Turvey,              |
| 606 | S.T. (Ed.), Holocene Extinctions. Oxford University Press, Oxford, pp. 213–233.               |
| 607 | Marden, L., 1967. Madagascar: island at the end of the earth. Nat. Geo. 132, 443–487.         |
| 608 | Martin, P.S., Klein, R.G., 1984. Quaternary Extinctions: A Prehistoric Revolution.            |
| 609 | University of Arizona Press, Tucson, AZ.                                                      |
|     |                                                                                               |

| 610 | Muldoon, K.M., Crowley, B.E., Godfrey, L.R., Rasoamiaramanana, A., Aronson, A., Jernvall, |
|-----|-------------------------------------------------------------------------------------------|
| 611 | J., Wright, P.C., Simons, E.L., 2012. Early Holocene fauna from a new subfossil site: a   |
| 612 | first assessment from Christmas River, south central Madagascar. Madag. Conserv.          |
| 613 | Dev. 7, 23–29.                                                                            |
| 614 | Olson, D.M., Dinerstein, E., 2002. The Global 200: priority ecoregions for global         |
| 615 | conservation. Ann. Missouri Bot. 89, 199–224.                                             |
| 616 | Parker-Pearson, M., Godden, K., Ramilisonina, Retsihisatse, Schwenninger, J.L.,           |
|     |                                                                                           |

617 Heurtebize, G., Radimilahy, C., Smith, H., 2010. Pastoralists, Warriors and Colonists:

618 The Archaeology of Southern Madagascar. Archaeopress, Oxford.

619 Parker Pearson, M., Godden, K., Ramilisonina, Schwenninger, J.L., Smith, H., 1995. The

620 Central Androy Survey: Third Report. University of Sheffield, Sheffield and Musée

621 d'Art et d'Archéologie, Antananarivo.

622 Pérez, V.R., Godfrey, L.R., Nowak-Kemp, M., Burney, D.A., Ratsimbazafy, J., Vasey, N.,

623 2005. Evidence of early butchery of giant lemurs in Madagascar. J. Hum. Evol. 49,

624 722–742.

625 Perry, G.L., Wheeler, A.B., Wood, J.R., Wilmshurst, J.M., 2014. A high-precision

626 chronology for the rapid extinction of New Zealand moa (Aves, Dinornithiformes).

627 Quat. Sci. Rev. 105, 126–135.

628 Pierron, D., Heiske, M., Razafindrazaka, H., Rakoto, I., Rabetokotany, N., Ravololomanga,

629 B., Rakotozafy, L.M.A., Rakotomalala, M.M., Razafiarivony, M., Rasoarifetra, B.,

630 Raharijesy, M.A., Razafindralambo, L., Ramilisonina, Fanony, F., Lejamble, S.,

631 Thomas, O., Abdallah, A.M., Rocher, C., Arachiche, A., Tonaso, L., Pereda-Loth, V.,

632 Schiavinato, S., Brucato, N., Ricaut, F.X., Kusuma, P., Sudoyo, H., Ni, S., Boland, A.,

633 Deleuze, J.F., Beaujard, P., Grange, P., Adelaar, S., Stoneking, M., Rakotoarisoa, J.A.,

- Radimilahy, C., Letellier, T., 2017. Genomic landscape of human diversity across
  Madagascar. Proc. Natl. Acad. Sci. USA 114, E6498–E6506.
- 636 Price, G.J., Louys, J., Cramb, J., Feng, Y., Zhao, J., Hocknull, S.A., Webb, G.E., Nguyen, A.D.,
- 637 Joannes-Boyau, R., 2015. Temporal overlap of humans and giant lizards (Varanidae;
- 638 Squamata) in Pleistocene Australia. Quat. Sci. Rev. 125, 98–105.
- Price, G.J., Louys, J., Faith, J.T., Lorenzen, E., Westaway, M.C., 2018. Big data little help in
  megafauna mysteries. Nature 558, 23–25.
- 641 R Development Core Team, 2011. R: A Language and Environment for Statistical

642 Computing. R Foundation for Statistical Computing, Vienna.

643 Racault, J.M., 2007. Memories of the Great Ocean: Travel Relationships to French-

644 Speaking Literatures of the Indian Ocean. Presses Paris-Sorbonne, Paris.

- 645 Rakotovao, M., Lignereux, Y., Orliac, M.J., Durantho, F., Antoine, P.O., 2014. *Hippopotamus*
- 646 *lemerlei* Grandidier, 1868 et *Hippopotamus madagascariensis* Guldberg, 1883
- 647 (Mammalia, Hippopotamidae): anatomie crânio-dentaire et révision systématique.
- 648 Geodiversitas 36, 117–161.
- 649 Saltré, F., Brook, B.W., Rodríguez-Rey, M., Cooper, A., Johnson, C.N., Turney, C.S.M.,
- 650 Bradshaw, C.J.A., 2015. Uncertainties in dating constrain model choice for inferring
- extinction time from fossil records. Quat. Sci. Rev. 112, 128–137.
- 652 Samonds, K.E., Crowley, B.E., Rasolofomanana, T.R.N., Andriambelomanana, C.,
- Andrianavalona, H.T., Ramihangihajason, T.N., Rakotozandry, R., Nomenjanahary,
- Z.B., Irwin, M.T., Wells, N.A., Godfrey, R.R., 2019. A new late Pleistocene subfossil site
- 655 (Tsaramody, Sambaina basin, central Madagascar) with implications for the
- 656 chronology of habitat and megafaunal community change on Madagascar's Central
- 657 Highlands. J. Quat. Sci. 34, 379–392.

- Sauer, E.G.F., 1972. Ratite eggshells and phylogenetic questions. Bonn. Zool. Beitr. 23, 3–
  48.
- 660 Scroxton, N., Burns, S.J., McGee, D., Godfrey, L., Ranivoharimanana, L., Faina, P., 2019.
- The impact of the 4.2 kyr event in the Indian Ocean basin: major drying or
- insignificant event? AGUFM, GC11G-1132.
- 663 Shurin, J.B., Aranguren-Riaño, N., Negro, D.D., Lopez, D.E., Jones, N.T., Laverde-R, O., Neu,
- A., Ramos, A.P., 2020. Ecosystem effects of the world's largest invasive animal.
  Ecology 101, e02991.
- 666 Signor, P.W., Lipps, J.H., 1982. Sampling bias, gradual extinction patterns and
- 667 catastrophes in the fossil record. In: Silver, L.T., Schultz, P.H. (Eds.), Geological
- 668 Implications of Impacts of Large Asteroids and Comets on the Earth. Geological
- 669 Society of America, Boulder, CO, pp. 291–296.
- 670 Stafford, T.W., Jull, A.J.T., Brendel, K., Duhamel, R.C., Donahue, D., 1987. Study of bone
- 671 radiocarbon dating accuracy at the University of Arizona NSF accelerator facility for
- 672 radioisotope analysis. Radiocarbon 29, 24–44.
- 673 Strickland, H.E., 1849. Supposed existence of a giant bird in Madagascar. Ann. Mag. Nat.
- 674 Hist. 2(4), 338–339.
- Stuart, A.J., 2015. Late Quaternary megafaunal extinctions on the continents: a short
  review. Geol. J. 50, 338–363.
- 677 Turvey, S.T., Crees, J.J., Di Fonzo, M.M.I., 2015. Historical data as a baseline for
- 678 conservation: reconstructing long-term faunal extinction dynamics in Late
- 679 Imperial-modern China. Proc. Roy. Soc. B 282, 20151299.
- Turvey, S.T., Sathe, V., Crees, J.J., Jukar, A.M., Chakraborty, P., Lister, A.M., 2021. Late
- 681 Quaternary megafaunal extinctions in India: how much do we know? Quat. Sci. Rev.
- 682 252, 106740.

- Turvey, S.T., Tong, H., Stuart, A.J., Lister, A.M., 2013. Holocene survival of Late
- 684 Pleistocene megafauna in China: A critical review of the evidence. Quat. Sci. Rev. 76,
  685 156–166.
- Turvey, S.T., Hansford, J., Brace, S., Mullin, V., Gu, S., Sun, G., 2016. Holocene range
- 687 collapse of giant muntjacs and pseudo-endemism in the Annamite large mammal
  688 fauna. J. Biogeogr. 43, 2250–2260.
- 689 Virah-Sawmy, M., Willis, K.J., Gillson, L., 2010. Evidence for drought and forest declines
  690 during the recent megafaunal extinctions in Madagascar. J. Biogeogr. 37, 506–519.
- 691 Waeber, P.O., Wilmé, L., Ramamonjisoa, B., Garcia, C., Rakotomalala, D., Rabemananjara,
- 692 Z.H., Kull, C.A., Ganzhorn, J.U., Sorg, J.P., 2015. Dry forests in Madagascar: neglected
  693 and under pressure. Int. Forest. Rev. 17(S2), 127–148.
- 694 Walker, A., 1967. Patterns of extinction among the subfossil Madagascar lemuroids. In:
- 695 Martin, P.S., Wright, H.E. Jr (Eds.), Pleistocene Extinctions: The Search for a Cause.
- 696 Yale University Press, New Haven, CT, pp. 407–424.
- Weston, E.M., Lister, A.M., 2009. Insular dwarfism in hippos and a model for brain size
  reduction in *Homo floresiensis*. Nature 459, 85–88.
- 699 White, A.W., Worthy, T.H., Hawkins, S., Bedford, S., Spriggs, M., 2010. Megafaunal
- 700 meiolaniid horned turtles survived until early human settlement in Vanuatu,

701 southwest Pacific. Proc. Natl. Acad. Sci. USA 107, 15512–15516.

- Wood, J.R., Wilmshurst, J.M., Worthy, T.H., Cooper, A., 2011. *Sporormiella* as a proxy for
- non-mammalian herbivores in island ecosystems. Quat. Sci. Rev. 30, 915–920.
- Wright, P.C. 2014. For the Love of Lemurs: My Life in the Wilds of Madagascar. Lantern
  Books, New York.

**Table 1.** Rejected pre-1980 radiocarbon dates for Madagascar megaherbivores. Key:GaK, Gakushuin University, Japan; UCLA, University of California Los Angeles. 

| Lab. number | <b>Collection locality</b> | Material | <b>Reported species</b> | Date (BP) | Reference                   |
|-------------|----------------------------|----------|-------------------------|-----------|-----------------------------|
| UCLA-1983   | Fort Dauphin               | Eggshell | Aepyornis maximus       | 1000±150  | Berger et al.<br>(1975)     |
| N/A         | Irodo                      | Eggshell | Aepyornis maximus       | 1150±90   | Mahé and<br>Sourdat (1972)  |
| N/A         | Manambovo                  | Eggshell | Aepyornis maximus       | 840±80    | Battistini et al.<br>(1963) |
| N/A         | "south Madagascar"         | Eggshell | Aepyornis maximus       | 2930±85   | Marden (1967)               |
| N/A         | Tulear                     | Eggshell | Aepyornis maximus       | 5210±140  | Sauer (1972)                |
| GaK-1506    | Itampolo                   | Bone     | Hippopotamus sp.        | 980±200   | Mahé and<br>Sourdat (1972)  |

709 **Table 2.** Accepted radiocarbon dates available for elephant bird species used in species-specific or biome-specific extinction date

analyses. Key: CAMS, Center for Accelerator Mass Spectroscopy, Lawrence Livermore National Laboratory; Hela, Hela Dating Laboratory,

711 Helsinki University; MNHN, Museum National d'Histoire Naturelle, Paris; NHMUK, Natural History Museum, London; NHMW,

712 Naturhistorisches Museum, Vienna; NZA, Rafter Radiocarbon Lab, Lower Hutt, New Zealand; OxA, Oxford Radiocarbon Accelerator Unit;

713 OZF, ANTARES AMS Facility, Menai, Australia; PSU, Pennsylvania State University; UB, Queens University, Belfast; UIO, Natural History

714 Museum, University of Oslo; USNM, National Museum of Natural History/Smithsonian Institution; ZIUU, Zoologiska Museum, Uppsala

715 Universitet; Beta, Beta Analytic. \* indicates field or excavation grid numbers.

| Lab. number           | Locality         | Biome                | Specimen number     | Material        | Date (BP) | Calibrated<br>date, 2σ (BP) | Reference                    |
|-----------------------|------------------|----------------------|---------------------|-----------------|-----------|-----------------------------|------------------------------|
| 1. Aepyornis h        | ildebrandti      |                      |                     |                 |           |                             |                              |
| UB29724               | Antsirabe        | Central highlands    | UIO A31834          | Tibiotarsus     | 5282±39   | 6182-5916                   | This paper                   |
| 0xA-34327             | Antsirabe        | Central highlands    | NHMW 2014/0238/0006 | Tibiotarsus     | 3112±31   | 3371-3175                   | This paper                   |
| 0xA-33537             | Antsirabe        | Central highlands    | NHMW 2014/0238/0037 | Tibiotarsus     | 2177±27   | 2301-2012                   | This paper                   |
| 0xA-34758             | Masinandraina    | Central highlands    | ZIUU 34(A46)        | Tarsometatarsus | 1537±25   | 1418-1312                   | Hansford and Turvey (2018)   |
| 0xA-34325             | Antsirabe        | Central highlands    | NHMW 2014/0238/0003 | Tibiotarsus     | 1485±28   | 1400-1296                   | This paper                   |
| 0xA-34328             | Antsirabe        | Central highlands    | NHMW 2014/0238/0012 | Tibiotarsus     | 1349±28   | 1286-1177                   | This paper                   |
| 2. Aepyornis m        | naximus          |                      |                     |                 |           |                             |                              |
| Hela-1774<br>UB-31590 | Ilakaka          | Succulent woodland   | USNM A605209        | Tibiotarsus     | 9428±53   | 10,991-10,427               | Hansford and Turvey (2018)   |
| 3. Mullerornis        | modestus         |                      |                     |                 |           |                             |                              |
| UB29726               | Lamboharana      | Arid spiny bush      | MNHN MAD 6768       | Tibiotarsus     | 5597±40   | 6443-6283                   | Hansford and Turvey (2018)   |
| β-55094<br>CAMS-3547  | Lavakasaka       | Dry deciduous forest | HFJ-92-15*          | Eggshell        | 2380±70   | 2701-2141                   | Burney et al. (1997)         |
| 0xA-8271              | Talakay          | Arid spiny bush      | AND33-97*           | Eggshell        | 1825±30   | 1814-1609                   | Parker Pearson et al. (2010) |
| 0xA-8273              | Talakay          | Arid spiny bush      | AND2-97*            | Eggshell        | 1780±35   | 1725-1564                   | Parker Pearson et al. (2010) |
| 0xA-34274             | Velondriake      | Arid spiny bush      | PSU TONY10B3_S_1*   | Eggshell        | 1677±27   | 1588-1426                   | Douglass (2017)              |
| Beta-103349           | Ankilibehandry   | Succulent woodland   | BSM-95-10*          | Tibiotarsus     | 1280±60   | 1270-1070                   | Burney et al. (1997)         |
| UB-29725              | Southwest coast  | -                    | MNHN MAD 6662       | Tibiotarsus     | 1296±32   | 1284-986                    | Hansford et al. (2018)       |
| 4. Vorombe tit        | an               |                      |                     |                 |           |                             |                              |
| 0xA-34776             | Ampoza-Ankazoabo | Arid spiny bush      | NHMUK PV A2142      | Femur           | 3381±24   | 3685-3486                   | Hansford and Turvey (2018)   |
| 0xA-34774             | Ampoza-Ankazoabo | Arid spiny bush      | NHMUK PV A2145      | Tibiotarsus     | 2744±25   | 2867-2754                   | This paper                   |
| 0xA-33534             | Ampoza-Ankazoabo | Arid spiny bush      | MNHN MAD 377        | Femur           | 2540±26   | 2736-2434                   | This paper                   |
| 0xA-34775             | Ampoza-Ankazoabo | Arid spiny bush      | NHMUK PV A2144      | Tibiotarsus     | 2509±23   | 2717-2369                   | This paper                   |
| OxA-33532             | Ampoza-Ankazoabo | Arid spiny bush      | MNHN MAD 368        | Femur           | 2499±25   | 2708-2365                   | This paper                   |

| 0xA-33531      | Ampoza-Ankazoabo | Arid spiny bush    | MNHN MAD 364     | Femur           | 2470±24  | 2700-2353     | Hansford and Turvey (2018)   |
|----------------|------------------|--------------------|------------------|-----------------|----------|---------------|------------------------------|
| 0xA-33533      | Ampoza-Ankazoabo | Arid spiny bush    | MNHN MAD 6770    | Tarsometatarsus | 2112±25  | 2104-1933     | This paper                   |
| 0xA-33572      | Ankilibehandry   | Succulent woodland | MNHN MAD 8813    | Tarsometatarsus | 2047±29  | 2039-1885     | This paper                   |
| 0xA-33573      | Ankilibehandry   | Succulent woodland | MNHN MAD 6655    | Tibiotarsus     | 1503±29  | 1405-1303     | This paper                   |
| 0xA-33536      | Ankilibehandry   | Succulent woodland | MNHN MAD 383     | Tarsometatarsus | 1442±24  | 1353-1276     | This paper                   |
| 0xA-33535      | Andolonomby      | Arid spiny bush    | MNHN 1906-16-67  | Tibiotarsus     | 1237±24  | 1179-998      | Hansford et al. (2018)       |
| 5. Thick eggsh | ell              |                    |                  |                 |          |               |                              |
| 0xA-34217      | Velondriake      | Arid spiny bush    | PSU TONY1SE_2_1* | Eggshell        | 9420±83  | 11,068-10,293 | Douglass (2017)              |
| 0xA-8279       | Talakay          | Arid spiny bush    | MAD-97/16*       | Eggshell        | 6238±45  | 7252-6954     | Parker Pearson et al. (2010) |
| 0ZF856         | Faux Cap         | Arid spiny bush    | 9691C*           | Eggshell        | 4635±105 | 5582-4970     | Clarke et al. (2006)         |
| OZF855         | Faux Cap         | Arid spiny bush    | 9691B*           | Eggshell        | 4510±98  | 5443-4850     | Clarke et al. (2006)         |
| 0xA-8280       | Talakay          | Arid spiny bush    | MAD-97/19*       | Eggshell        | 4461±70  | 5289-4861     | Parker Pearson et al. (2010) |
| 0ZF854         | Faux Cap         | Arid spiny bush    | 9691A*           | Eggshell        | 3447±63  | 3835-3486     | Clarke et al. (2006)         |
| OxA-5077       | Maroaloke        | Arid spiny bush    | A2*              | Eggshell        | 2246±57  | 2345-2057     | Parker Pearson et al. (1995) |
| 0xA-8281       | Talakay          | Arid spiny bush    | MAD-97/45*       | Eggshell        | 2246±56  | 2344-2059     | Parker Pearson et al. (2010) |
| 0xA-5075       | Maroaloke        | Arid spiny bush    | A1*              | Eggshell        | 1941±48  | 1992-1720     | Parker Pearson et al. (1995) |
| 0xA-34215      | Velondriake      | Arid spiny bush    | PSU TONY2A9_S_1* | Eggshell        | 1929±47  | 1983-1708     | Douglass (2017)              |
| 0xA-34216      | Velondriake      | Arid spiny bush    | PSU TONY2B8_1_1* | Eggshell        | 1920±49  | 1983-1703     | Douglass (2017)              |
| 0xA-5076       | Maroaloke        | Arid spiny bush    | A8*              | Eggshell        | 1838±60  | 1875-1570     | Parker Pearson et al. (1995) |
| 0xA-8274       | Talakay          | Arid spiny bush    | AND1-97*         | Eggshell        | 1716±56  | 1704-1426     | Parker Pearson et al. (2010) |
| Beta-90099     | Belo-sur-Mer     | Succulent woodland | BSM-95-6*        | Eggshell        | 1710±78  | 1744-1373     | Burney et al. (1997)         |
| 0xA-8269       | Talakay          | Arid spiny bush    | AND5-97*         | Eggshell        | 1613±51  | 1575-1352     | Parker Pearson et al. (2010) |
| OZF514         | Faux Cap         | Arid spiny bush    | 9691E*           | Eggshell        | 1458±48  | 1409-1181     | Clarke et al. (2006)         |
| 0xA-5078       | Maroaloke        | Arid spiny bush    | A10*             | Eggshell        | 1281±40  | 1271-1061     | Parker Pearson et al. (1995) |
| 0xA-8268       | Bevala           | Arid spiny bush    | AND 29-97*       | Eggshell        | 1234±40  | 1261-978      | Parker Pearson et al. (2010) |
| 0xA-8272       | Talakay          | Arid spiny bush    | AND4-97*         | Eggshell        | 1147±61  | 1179-910      | Parker Pearson et al. (2010) |
| OxA-8270       | Talakay          | Arid spiny bush    | AND6-97*         | Eggshell        | 1114±56  | 1177-805      | Parker Pearson et al. (2010) |
| 6. Unknown sp  | pecies           |                    |                  |                 |          |               |                              |
| NZA-16995      | Masinandraina    | Central highlands  | ZIUU MAS-5       | Tibiotarsus     | 4496±40  | 5295-4884     | Burney et al. (2004)         |
| β-67659        | Itampolo-ve      | Arid spiny bush    | UA HFJ-92-12*    | Bone            | 1880±70  | 1927-1588     | Burney et al. (1997)         |

718 **Table 3.** Accepted radiocarbon dates available for *Hippopotamus* species used in species-specific or biome-specific extinction date

- analyses. Key: AA, NSF-Arizona AMS Facility, Tuscon; CAMS, Center for Accelerator Mass Spectroscopy, Lawrence Livermore National
- 720 Laboratory; CVB, Centre ValBio, Ranomafana Madagascar: Hela, Hela Dating Laboratory, Helsinki University; MNHN, Museum National
- d'Histoire Naturelle, Paris; NHMUK, Natural History Museum, London; OxA, Oxford Radiocarbon Accelerator Unit; Pta, Stephan
- 722 Woodborne Quaternary Research Dating Unit (QUADRU), Pretoria; TO, IsoTrace Laboratory, University of Toronto; UA: Universite
- 723 d'Antananarivo; Beta, Beta Analytic.; ZIUU, Zoologiska Museum, Uppsala Universitet. \* indicates field or excavation grid numbers.
- 724

| Lab. number             | Locality           | Biome                | Specimen number | Material | Date (BP)  | Calibrated<br>date, 2σ (BP) | Reference                  |
|-------------------------|--------------------|----------------------|-----------------|----------|------------|-----------------------------|----------------------------|
| 1. Hippopota            | mus lemerlei       |                      |                 |          | 1          |                             |                            |
| 0xA-19325               | Lamboharana        | Arid spiny bush      | NHMUK PV M82187 | Cranium  | 3895±27    | 4410-4153                   | This paper                 |
| 0xA-19316               | Itampolo-ve        | Arid spiny bush      | NHMUK PV M4935  | Cranium  | 3359±28    | 3681-3455                   | This paper                 |
| 0xA-19318               | Ampoza-Ankazoabo   | Succulent woodland   | ZIUU-3972       | Cranium  | 2566±27    | 2747-2490                   | This paper                 |
| 0xA-19319               | Ampoza-Ankazoabo   | Succulent woodland   | ZIUU-3973       | Cranium  | 2547±26    | 2740-2464                   | This paper                 |
| 0xA-19321               | Ampoza-Ankazoabo   | Succulent woodland   | NHMUK PV M82190 | Cranium  | 2386±26    | 2490-2157                   | This paper                 |
| 0xA-19315               | Itampolo-ve        | Arid spiny bush      | NHMUK PV M4934  | Cranium  | 2189±27    | 2305-2016                   | This paper                 |
| 0xA-19317               | Itampolo-ve        | Arid spiny bush      | NHMUK PV M4937  | Mandible | 1657±25    | 1568-1421                   | This paper                 |
| 0xA-19322               | Anavoha            | Arid spiny bush      | MNHN MAD 8818   | Cranium  | 1583±24    | 1519-1365                   | This paper                 |
| 0xA-19323               | Lamboharana        | Arid spiny bush      | MNHN MAD 7914   | Cranium  | 1404±24    | 1310-1180                   | This paper                 |
| 0xA-19314               | Andolonomby        | Arid spiny bush      | MNHN MAD 1076   | Cranium  | 1360±25    | 1290-1177                   | This paper                 |
| 0xA-19324               | Lamboharana        | Arid spiny bush      | MNHN MAD 8823   | Mandible | 1349±25    | 1284-1177                   | This paper                 |
| 0xA-19313               | Andolonomby        | Arid spiny bush      | MNHN MAD 1060   | Mandible | 1338±26    | 1285-1176                   | This paper                 |
| 0xA-19320               | Ampoza-Ankazoabo   | Succulent woodland   | MNHN M7918      | Cranium  | 1325±24    | 1280-1114                   | This paper                 |
| 2. Hippopotar           | nus madagascariens | is                   |                 |          |            |                             |                            |
| 0xA-19462               | Antsirabe          | Central highlands    | NHMUK PV M5141  | Cranium  | 3358±27    | 3680-3455                   | This paper                 |
| 0xA-19464               | Antsirabe          | Central highlands    | NHMUK PV M7093  | Cranium  | 2857±27    | 3060-2805                   | This paper                 |
| 0xA-19465               | Antakara           | Arid spiny bush      | MNHN MAD 7352   | Cranium  | 1298±24    | 1268-1080                   | This paper                 |
| 0xA-19463               | Antsirabe          | Central highlands    | NHMUK PV M5142  | Mandible | 1280±24    | 1263-1070                   | This paper                 |
| 3. Unknown s            | pecies             |                      |                 |          |            |                             |                            |
| CAMS 173568             | Tsaramody          | Central highlands    | Not given       | Phalanx  | 14,580±460 | 18,811-16,550               | Samonds et al. (2019)      |
| Hela-1828               | Ilakaka            | Succulent woodland   | CVB, not given* | Bone     | 9655±60    | 11,184-10,751               | Muldoon et al. (2012)      |
| CAMS 142559             | Anjohibe           | Dry deciduous forest | UA 4917         | Mandible | 6310±60    | 7324-6995                   | Crowley and Samonds (2013) |
| Beta-64961<br>CAMS-8648 | Anjohibe           | Dry deciduous forest | UA HFJ-93-2-B*  | Bone     | 5300±60    | 6262-5912                   | Burney et al. (1997)       |

| CAMS 144110             | Anjohibe         | Dry deciduous forest | UA 9570                   | Cranium       | 4815±40  | 5594-5329 | Crowley and Samonds (2013) |
|-------------------------|------------------|----------------------|---------------------------|---------------|----------|-----------|----------------------------|
| CAMS 143194             | Anjohibe         | Dry deciduous forest | UA 3591                   | Scapula       | 4055±40  | 4795-4310 | Crowley and Samonds (2013) |
| Beta-55093<br>CAMS-3562 | Anjohibe         | Dry deciduous forest | UA HJF-92-11              | Bone          | 3730±70  | 4283-3833 | Burney et al. (1997)       |
| CAMS 143195             | Anjohibe         | Dry deciduous forest | UA 3560                   | Pelvis        | 3455±25  | 3823-3574 | Crowley and Samonds (2013) |
| CAMS 143120             | Anjohibe         | Dry deciduous forest | UA 1992-M-395*            | Unknown       | 3095±30  | 3365-3165 | Crowley and Samonds (2013) |
| CAMS 142896             | Taolambiby       | Arid spiny bush      | A subzero SE 180-<br>200* | Mandible      | 2905±40  | 3153-2866 | Crowley (2010)             |
| CAMS 143068             | Anjohibe         | Dry deciduous forest | UA 3558                   | Pelvis        | 2890±40  | 3148-2851 | Crowley and Samonds (2013) |
| CAMS 143059             | Taolambiby       | Arid spiny bush      | AB-1 330-440*             | Vertebra      | 2855±35  | 3061-2790 | Crowley (2010)             |
| Pta-7728                | Ampoza-Ankazoabo | Succulent woodland   | Not given                 | Unknown       | 2760±60  | 2965-2739 | Burney et al. (2004)       |
| CAMS 142640             | Taolambiby       | Arid spiny bush      | B1 2.1 m (cm)*            | Vertebra      | 2745±40  | 2925-2745 | Crowley (2010)             |
| CAMS 243052             | Ampoza-Ankazoabo | Succulent woodland   | UA B3-13                  | Pelvis        | 2660±40  | 2854-2538 | Crowley (2010)             |
| CAMS 143193             | Anjohibe         | Dry deciduous forest | Uncatalogued<br>(UA)      | Bone fragment | 2635±40  | 2844-2496 | Crowley and Samonds (2013) |
| CAMS 142566             | Taolambiby       | Arid spiny bush      | A1-B1 2.5 m*              | Rib           | 2550±30  | 2742-2437 | Crowley (2010)             |
| CAMS 142918             | Taolambiby       | Arid spiny bush      | AB-1 280 cm*              | Vertebra      | 2540±30  | 2737-2430 | Crowley (2010)             |
| NZA-16996<br>R-28139/7  | Ampoza-Ankazoabo | Succulent woodland   | AMO-1                     | Bone          | 2517±40  | 2723-2366 | Burney et al. (2004)       |
| CAMS 142567             | Taolambiby       | Arid spiny bush      | A1-B1 2.2 m*              | Rib           | 2470±25  | 2701-2353 | Crowley (2010)             |
| GrA-11626               | Ampoza-Ankazoabo | Succulent woodland   | Not given                 | Unknown       | 2370±50  | 2682-2145 | Burney et al. (2004)       |
| CAMS 143060             | Taolambiby       | Arid spiny bush      | A12.20 M*                 | Tibia         | 2300±50  | 2352-2135 | Crowley (2010)             |
| CAMS 142636             | Ankilibehandry   | Succulent woodland   | SQ234. Oh *               | Tooth root    | 2275±35  | 2339-2137 | Crowley (2010)             |
| TO-1438                 | Lamboharana      | Arid spiny bush      | MNHN MAD 1710             | Unknown       | 2020±300 | 2720-1319 | MacPhee et al. (1991)      |
| AA-2895                 | Andolonomby      | Arid spiny bush      | MNHN MAD 1711             | Unknown       | 1970±50  | 1999-1746 | MacPhee et al. (1991)      |
| CAMS 143150             | Antsirabe        | Central highlands    | unidentified A*           | Rib           | 1800±35  | 1807-1577 | Crowley (2010)             |
| TO-1437                 | Lamboharana      | Arid spiny bush      | MNHN MAD 1709             | Bone          | 1740±50  | 1728-1432 | MacPhee et al. (1991)      |
| CAMS 142734             | Taolambiby       | Arid spiny bush      | A1-B1 2.4 m*              | Vertebra      | 1440±30  | 1356-1186 | Crowley (2010)             |
| CAMS 142540             | Antsirabe        | Central highlands    | unidentified A1*          | Rib           | 1260±25  | 1259-1062 | Crowley (2010)             |

- **Table 4.** Taxon-specific GRIWM extinction date estimates for Madagascar elephant bird
   and *Hippopotamus* species.

| Megafaunal taxon              | Samples | Extinction date<br>estimate (BP) | Extinction date<br>estimate (CE) |
|-------------------------------|---------|----------------------------------|----------------------------------|
| Aepyornis hildebrandti        | 6       | 1223-1118                        | 727-832                          |
| Mullerornis modestus          | 7       | 1124-1031                        | 826-919                          |
| Vorombe titan                 | 11      | 1106-939                         | 844-1011                         |
| "thick" eggshell              | 20      | 957-885                          | 993-1065                         |
| Hippopotamus lemerlei         | 13      | 1188-1163                        | 762-787                          |
| Hippopotamus madagascariensis | 4       | 1132-1050                        | 818-900                          |

**Table 5.** GRIWM extinction date estimates for megaherbivore communities in different

# 731 Madagascar biomes.

| Biome                | Таха                                                                                         | Samples | Extinction date<br>estimate (BP) | Extinction<br>date estimate<br>(CE/BCE) |
|----------------------|----------------------------------------------------------------------------------------------|---------|----------------------------------|-----------------------------------------|
| Arid spiny bush      | Aepyornis sp., H. lemerlei, H.<br>madagascariensis, M. modestus,<br>V. titan, thick eggshell | 53      | 957-911                          | 993-1039 CE                             |
| Central highlands    | A. hildebrandti, Aepyornis sp., H.<br>madagascariensis,<br>Hippopotamus sp.                  | 13      | 1109-1045                        | 841-905 CE                              |
| Succulent woodland   | <i>M. modestus, V. titan, H. lemerlei,</i><br><i>Hippopotamus</i> sp., thick eggshell        | 16      | 1133-1052                        | 817-898 CE                              |
| Dry deciduous forest | M. modestus, Hippopotamus sp.                                                                | 10      | 2364-2078                        | 414-128 BCE                             |

# **FIGURE LEGENDS**

| 735                                                                                                   | Figure 1. Species-specific AMS date series for Madagascar's extinct megaherbivores,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 736                                                                                                   | calibrated using OxCal 4.4 and SHCal20. Estimated species extinction dates based on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 737                                                                                                   | GRIWM analysis shown by black bars below each date series. Vertical grey band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 738                                                                                                   | indicates approximate timing of inferred human subsistence transition to agro-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 739                                                                                                   | pastoralism (decline in arboreal pollen and increase in grass pollen) from Burns et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 740                                                                                                   | (2016). Different types of dated evidence for earlier human presence in Madagascar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 741                                                                                                   | from Burney et al. (2003), Dewar et al. (2013), and Hansford et al. (2018).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 742                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7/3                                                                                                   | <b>Figure 2</b> Piama specific AMS data series for Madagassar's extinct magabarbiyora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 743                                                                                                   | rigule 2. Biome-specific AMS date series for Madagascal's extinct meganer bivore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 743                                                                                                   | communities, calibrated using OxCal 4.4 and SHCal20. Estimated biome-specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 744<br>745                                                                                            | communities, calibrated using OxCal 4.4 and SHCal20. Estimated biome-specific extinction dates based on GRIWM analysis shown by black bars below each date series.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 743<br>744<br>745<br>746                                                                              | communities, calibrated using OxCal 4.4 and SHCal20. Estimated biome-specific<br>extinction dates based on GRIWM analysis shown by black bars below each date series.<br>Vertical grey band indicates approximate timing of inferred human subsistence                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 744<br>745<br>746<br>747                                                                              | <ul> <li>right e 2. Biome-specific AMS date series for Madagascar's extinct meganeror/ore</li> <li>communities, calibrated using OxCal 4.4 and SHCal20. Estimated biome-specific</li> <li>extinction dates based on GRIWM analysis shown by black bars below each date series.</li> <li>Vertical grey band indicates approximate timing of inferred human subsistence</li> <li>transition to agro-pastoralism (decline in arboreal pollen and increase in grass pollen)</li> </ul>                                                                                                                                                                                             |
| <ul> <li>744</li> <li>745</li> <li>746</li> <li>747</li> <li>748</li> </ul>                           | <ul> <li>right e 2. Biome-specific AMS date series for Madagascar's extinct meganeror/ore</li> <li>communities, calibrated using OxCal 4.4 and SHCal20. Estimated biome-specific</li> <li>extinction dates based on GRIWM analysis shown by black bars below each date series.</li> <li>Vertical grey band indicates approximate timing of inferred human subsistence</li> <li>transition to agro-pastoralism (decline in arboreal pollen and increase in grass pollen)</li> <li>from Burns et al. (2016). Different types of dated evidence for earlier human presence</li> </ul>                                                                                             |
| <ul> <li>743</li> <li>744</li> <li>745</li> <li>746</li> <li>747</li> <li>748</li> <li>749</li> </ul> | <ul> <li>right'e 2. Biome-specific AMS date series for Madagascar's extinct megaher bivore</li> <li>communities, calibrated using OxCal 4.4 and SHCal20. Estimated biome-specific</li> <li>extinction dates based on GRIWM analysis shown by black bars below each date series.</li> <li>Vertical grey band indicates approximate timing of inferred human subsistence</li> <li>transition to agro-pastoralism (decline in arboreal pollen and increase in grass pollen)</li> <li>from Burns et al. (2016). Different types of dated evidence for earlier human presence</li> <li>in Madagascar from Burney et al. (2003), Dewar et al. (2013), and Hansford et al.</li> </ul> |



Calibrated date (calBP)



Calibrated date (calBP)

### **TEXT S1: NOMENCLATURE OF MALAGASY HIPPOS**

Grandidier (1868) established the name *Hippopotamus lemerlei* for a fossil hippopotamus from Madagascar. Guldberg (1883), describing new fossil material from Madagascar, proposed the name *H. madagascariensis*. However, Fovet *et al.* (2011: 33) show from Guldberg's text that he was not intending to define a new species, but merely to give *lemerlei* a new name that he considered more appropriate. Nonetheless, Guldberg's *H. madagascariensis* has its own type material and his paper satisfies the criteria of Article 12 of the International Code of Zoological Nomenclature (ICZN, 1999) for availability of names published before 1931.

Subsequently, Stuenes (1989) and Faure & Guerin (1990) showed clearly that there were in fact two distinct species of fossil hippopotami from Madagascar. Stuenes (1989) designated a specimen studied by Grandidier as lectotype of *lemerlei*, and another illustrated by Guldberg as lectotype of *H. madagascariensis*. The latter name was subsequently used by most authors for the species additional to *H. lemerlei* (Weston & Lister 2009).

Fovet *et al.* (2011) and Faure *et al.* (2015), however, consider *madagascariensis* an unavailable name in the meaning of ICZN (1999), since Guldberg had intended it merely as a 'replacement name' for *lemerlei*. Article 11.6 of the Code states: "A name which when first published in an available work was treated as a junior synonym of a name then used as valid is not thereby made available". But paragraph 11.6.1 continues: "However, if such a name published as a junior synonym had been treated before 1961 as an available name and either adopted as the name of a taxon or treated as a senior homonym, it is made available thereby". The Code adds that the authorship and date of the taxon is that of its first publication. Several authors between 1883 and 1961 (e.g., Major 1902) clearly used the name *madagascariensis* as the valid name for a taxon, so *Hippopotamus madagascariensis* Guldberg, 1883 remains an available name.

Distinct from its nomenclatural availability is the taxonomic validity of *H. madagascariensis* as a species separate from *H. lemerlei*. Fovet *et al.* (2011) and Faure *et al.* (2015) are of the opinion that the lectotypes of *lemerlei* and *madagascariensis*, selected by Stuenes (1989), are of the same species, rendering *madagascariensis* a junior subjective synonym of *lemerlei*. They proposed a new name, *Hippopotamus guldbergi* Fovet *et al.*, 2011, with a skull at NHMUK as the holotype, for the 'second species' on Madagascar. We, however, agree with Stuenes (1989) and Rakotovao *et al.* (2014: 153-5) that the lectotype crania of *H. madagascariensis* and *H. lemerlei* are distinct and represent the two taxa now abundantly documented from Madagascar (e.g., Weston & Lister 2009). The *madagascariensis* lectotype clearly lacks the distinctive bulbous swelling to the upper rim of the orbit seen in *lemerlei*, as well as having a shorter muzzle relative to the size of the braincase. These are among the few characters reliably separating the two species.

In consequence, we retain the names *Hippopotamus lemerlei* Grandidier, 1868 and *H. madagascarensis* Guldberg, 1883 for the two common fossil hippopotamus species on Madagascar. *H. guldbergi* Fovet *et al.* (2011) is treated as a junior subjective synonym of

*H. madagascariensis* Guldberg, 1883. Since the Guldberg specimen chosen by Stuenes (1989) as lectotype of *madagascariensis* is lost, Rakotovao *et al.* (2014) proposed another specimen as lectotype, but the Code (Articles 73.2.2 and 74.1.1) makes clear that a lectotype, once selected, cannot be changed even if lost. The lectotype selected by Stuenes (1989) remains valid and was fortunately illustrated in detail by Guldberg (1883) and reprinted by Fovet *et al.* (2011).

A third species, *H. laloumena* Faure & Guérin, 1990, with type specimen from Mananjary on the east coast of Madagascar, is known only from a mandible and some foot bones (Faure *et al.* 2010). It is close in size to small individuals of *H. amphibius* (Weston & Lister 2009), and was initially described as the subspecies *H. amphibius standini* Monnier & Lamberton, 1922 (considered a *nomen nudum* by Faure & Guerin 1990). It has been suggested that the remains are modern importations of *H. amphibius* (Boisserie, 2005; Goodman & Jungers, 2014), possibly based on some modern hippo bones curated in Malagasy museums. However, the type mandible of *H. laloumena* is heavily mineralised, indicating considerable antiquity, while foot bones from the Belobaka locality were excavated from a deposit tentatively dated to around 20 ka BP (Faure *et al.* 2010). This implies that a larger species of hippopotamus colonised the island on one or more occasions before historical times (Weston & Lister 2009). This animal might indeed represent a subspecies of *H. amphibius* (no diagnostic cranial material is yet known), but due to a degree of body size scaling and the probable antiquity of this specimen, we retain its separate taxonomic status as *H. laloumena*.

## REFERENCES

- Boisserie, J.R., The phylogeny and taxonomy of Hippopotamidae (Mammalia: Artiodactyla): A review based on morphology and cladistic analysis. *Zoological Journal of the Linnean Society* **143**, 1-26 (2005).
- Goodman, S.M., Jungers, W.L., *Extinct Madagascar* (University of Chicago Press, 2014). Faure, M., Guérin, C., *Hippopotamus laloumena* nov. sp., la troisième espèce
- d'hippopotame Holocène de Madagascar. *Comptes Rendus de l'Académie des Sciences, Paris, série II* **310**, 1299-1305 (1990).
- Faure, M., Guérin, C., Genty, D., Gommery, D., Ramanivosoa, B., Le plus ancien hippopotame fossile (*Hippopotamus laloumena*) de Madagascar (Belobaka, Province de Mahajanga). *Comptes Rendus Palevol* 9, 155-162 (2010).
- Faure M., Guérin C., Ohler A., Le statut du nom *Hippopotamus madagascariensis* Guldberg, 1883. Réponse à Rakotovao *et al.* 2014. *Geodiversitas* **37**, 267-269 (2015).
- Fovet, W., Faure, M., Guérin, C., *Hippopotamus guldbergi* n. sp.: Révision du statut d'*Hippopotamus madagascariensis* Guldberg, 1883, après plus d'un siècle de malentendus et de confusions taxonomiques. *Zoosystema* **33**, 61-82 (2011).
- Grandidier, A., Sur les découvertes zoologiques faites récemment à Madagascar. *Annales des Sciences naturelles, Zoologie et Paléontologie, série 5*, **10**, 375-378 (1868).
- Gildberg, G.A., Undersøgelser over en subfossil flodhest fra Madagascar. *Christiana Videnskabs-Selskab Forhandlinger* **6**, 1-24 (1883).
- ICZN, International Code of Zoological Nomenclature, Fourth Edition (1999). https://www.iczn.org/the-code/the-international-code-of-zoologicalnomenclature/the-code-online/

- Major, C.J.F., Some account of a nearly complete skeleton of *Hippopotamus madagascariensis* Guld., from Sirabé, Madagascar, obtained in 1895. *Geological Magazine IX*, **455**, 193-199 (1902).
- Monnier, L., Lamberton, C., Note sur des ossements subfossiles de la region de Mananjary. *Bulletin de l'Académie Malgache* **3**, 211-213 (1922).
- Rakotovao, M., Lignereux, Y., Orliac, M.J., Duranthon, F., Antoine, P.O., *Hippopotamus lemerlei* Grandidier, 1868 et *Hippopotamus madagascariensis* Guldberg, 1883 (Mammalia, Hippopotamidae): Anatomie crânio-dentaire et révision systématique. *Geodiversitas* **36**, 117-161 (2014).
- Stuenes, S., Taxonomy, habits and relationships of the subfossil Madagascan hippopotamia *Hippopotamus lemerlei* and *H. madagascariensis*. *Journal of Vertebrate Paleontology* **9**, 241-268 (1989).
- Weston, E.M., Lister, A.M., Insular dwarfism in hippos and a model for brain size reduction in *Homo floresiensis*. *Nature* **459**, 85-89 (2009).

**Table S1.** Rejected radiocarbon dates. Key: GaK, Gakushuin University, Japan; UCLA, University of California Los Angeles.

| Lab. number | <b>Collection locality</b> | Material | Reported species  | Date (BP) | Reference |
|-------------|----------------------------|----------|-------------------|-----------|-----------|
| UCLA-1983   | Fort Dauphin               | Eggshell | Aepyornis maximus | 1000±150  | 1         |
| N/A         | Irodo                      | Eggshell | Aepyornis maximus | 1150±90   | 2         |
| N/A         | Manambovo                  | Eggshell | Aepyornis maximus | 840±80    | 3         |
| N/A         | "south Madagascar"         | Eggshell | Aepyornis maximus | 2930±85   | 4         |
| N/A         | Tulear                     | Eggshell | Aepyornis maximus | 5210±140  | 5         |
| GaK-1506    | Itampolo                   | Bone     | Hippopotamus sp.  | 980±200   | 2         |

## REFERENCES

- 1. Berger, R., Ducote, K., Robinson, K., Walter, H., Radiocarbon date for the largest extinct bird. *Nature* **258**, 709 (1975).
- Mahé, J., Sourdat, M., Sur l'extinction des vertébrés subfossiles et l'aridification du climat dans le sud-ouest de Madagascar. *Bull. Soc. Géol. France* 14, 295-309 (1972).
- 3. Battistini, R., Verin, P., Rason, R., Le site archaeologique de Talaky. *Annal. Malgaches* **1**, 111-153 (1963).
- 4. Marden, L., Madagascar: Island at the end of the earth. *National Geographic Magazine* **132**, 443-487 (1967).
- 5. Sauer, E.G.F., Ratite eggshells and phylogenetic questions. *Bonner Zoologische Beitrage* **23**, 3-48 (1972).