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Using Wi-Fi probe requests from mobile phones to quantify 1 

the impact of pedestrian flows on retail turnover 2 

Abstract 3 

This paper discusses the opportunities afforded by novel population sensing technologies in 4 
the field of ‘smart’ urban management. In particular, it focuses on the application of these new 5 
sources of data in retail analysis.  6 

Our goal is to integrate data derived through novel pedestrian counting and point-of-sale 7 
systems to build a statistical model that captures the relationship between retail turnover and 8 
footfall in the UK. The point-of-sales data are provided by two UK-based food & beverage 9 
retailers. To accurately measure the pedestrian activity around retail units, we make use of 10 

the data generated by the ‘SmartStreetSensor’ project: a deployment of a large network of 11 
sensors installed across 105 towns and cities in the UK that collect Wi-Fi probe requests 12 
generated by mobile devices. We propose and implement novel methods for processing these 13 
raw signals into accurate estimates of pedestrian activity without compromising participants’ 14 

privacy. 15 

The resulting data is then integrated into seasonal ARIMA and dynamic regression models 16 
that can be used to predict future sales. Our results indicate that the dynamic regression model 17 
that accounts for fluctuations in footfall data outperforms seasonal ARIMA model that uses 18 

only past values and behaviours of transaction data to predict future sales. Thus, we conclude 19 
that footfall does have a strong impact on retail sales and therefore integrating footfall 20 
measures into sales forecasting can significantly improve the forecasting results. We also 21 
examine differences between the two retailers and observe a stronger correlation at the Fast 22 

Food Retailer locations compared to the correlation at Family Restaurant locations.  23 

Keywords: human activity patterns, Wi-Fi probe requests, retail location analysis, 24 
regression model 25 

1. Introduction 26 

The emergence of people sensing technologies has led to a diverse range of new data sources 27 
that are greatly extending the ability to capture and analyse how people move through, and 28 

interact with, urban environments. The information, which has traditionally been collected 29 
through manual counting and surveys, can now be obtained using novel population sensing 30 
technologies that are common in smart cities - such as mobile devices, Wi-Fi sensors or 31 
Bluetooth beacons - at a much lower cost and over long periods.  32 

The focus here is to demonstrate the potential of applying movement data in retail analytics – 33 
an area of research of increasing national importance to the UK. The value of accurate footfall 34 
measures in site selection process is well known (Brown, 1993; Wood & Browne, 2007) since 35 

they can offer a basis for predicting store revenues and performance (Waddington et al., 36 
2019). Beyond where to locate a store, developing an understanding of the activity-patterns 37 
in an area allows retailers to make informed decisions around optimal trading times (Parker et 38 
al., 2017), efficient staffing schedules (Begley et al., 2018; Chapados et al., 2014; Chuang et 39 

al., 2016) and can uncover early warning of changes that can negatively impact trading 40 
success (Wehrle, 2017). Beyond the specifics of individual retailers, such measures can 41 
provide the basis for intelligence-led planning decisions that seek to mediate the impacts of 42 



Trasberg T, Soundararaj B and Cheshire J, Computers, Environment and Urban Systems, 2021 
 

online retail on physical retail spaces and, in the UK context at least, inform the significant 43 
government incentives for traditional retailing environments to diversify into other areas 44 

(Ministry of Housing Communities & Local Government, 2019). 45 

Despite the potential of better footfall metrics, there remains a relative lack of data-driven 46 
studies to provide robust empirical evidence about the relationship between granular footfall 47 
measures and retail turnover. Our goal, therefore, is to use the most granular data available 48 

to build a statistical model that represents the relationship between retail turnover and footfall.  49 

This research benefits from access to store-level transactions data for 34 retail units split 50 
across a Fast Food Retailer (11 retail units) and a Family Restaurant (23 retail units). All units 51 
are located in the UK and occupy a diverse range of urban retail centres. The commercial 52 

sensitivity of the data means that the retailers supplying the data have chosen to remain 53 
anonymous. Having two food & beverage retailers in the sample allows us to make 54 
comparisons but also to draw conclusions on the impact of passing footfall on this retail type.  55 

To accurately capture the activity patterns around retail units, we utilise the 56 

‘SmartStreeetSensor’ project that deployed a network of sensors at storefronts to capture the 57 
Wi-Fi probe requests from passing mobile devices. These probe requests are then used to 58 
estimate the levels of footfall at any given time. Our priority here is to develop a scalable, 59 
nonintrusive and passive collection method without compromising participants’ privacy.  60 

We ask the following research questions:  61 

RQ1: Does integrating footfall data to sales forecasting models improve the model’s 62 
performance?  63 

RQ2: Is there a significant difference between the impact that footfall has on a Family 64 

Restaurant compared to the Fast Food Retailer?  65 

This paper remainder of the paper is structured as follows. First, we discuss technologies that 66 
are used to measure pedestrian flows and outline the main advantages of estimating the 67 
footfall from Wi-Fi probe requests. Then we discuss the opportunities afforded by ‘smart’ 68 

technologies for the retail sector and for furthering existing research in this area. Next, we 69 
describe the processes of setting up the footfall sensors and estimating pedestrian flows using 70 
Wi-Fi probe requests before describing seasonal ARIMA and dynamic regression models that 71 
are common forecasting techniques used in retail to estimate turnover. In the results section, 72 

we provide a visual analysis of the collected footfall data and compare the performance of the 73 
two forecasting methods. We conclude with the further discussion about potential practical 74 
applications and further research objectives in the final chapter. 75 

2. Literature Review  76 

2.1. People sensing technologies 77 

Much of the urban planning literature has revolved around estimating the collective movement 78 
of people through the cities in order to estimate demands on infrastructure (Hancke et al., 79 
2012). Traditionally, this data has been gathered by manual traffic counting, photoelectric 80 

sensors, surveys, and videotaping; however, the emergence of novel information and 81 
communication technologies has greatly extended our ability to capture the data pertaining to 82 
human activities. Nowadays innovative technologies enable dynamic and continuous data 83 
collection and applications. Akhter et al. (2019) offer a summary of the most extensively used 84 

methods in human counting, such as video and thermal cameras and passive infrared (PIR) 85 
sensors radio. A further methodology used to track human trajectories is Radio Frequency 86 
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Identification (RFID) technology where tags carrying a unique identifier attached to an object 87 
(e.g. shopping carts as in Hui et al. (2009); Kholod et al. (2010) or conference badge as in 88 

Cattuto et al. (2010)) transmit signals captured by a system of pre-installed readers. While 89 
those monitoring techniques provide means for reducing expensive manual surveys (Bai et 90 
al., 2017), they still suffer from an inability to accurately identify distinct individuals (PIR), 91 
require bespoke infrastructure (RFID), are prone to measurement errors in outdoor 92 

environments (thermal cameras) or violate the privacy of the pedestrians (video cameras). 93 

The advent of data from devices and services routinely carried by individuals has created 94 
viable alternatives for collecting data on human activity patterns with greater granularity and 95 
across large areas (D’Silva et al., 2017). Mobile devices are equipped with sensors (e.g. 96 

accelerometer and compass) and capabilities (e.g. Cellular radio, Bluetooth, Wi-Fi, GPS) that 97 
can be used for distributed urban sensing. The first set of research that utilised human mobility 98 
data derived through mobile devices used the cellular data from call detail records (CDRs) 99 
(e.g. Reades et al. (2007), Becker et al. (2011)), but as this data is collected and stored 100 

primarily by a small number of big telecommunications firms, the access to this data source 101 
for research purposes is limited.   102 

GPS is another popular technology used to capture data on human mobility at large scales. 103 
Two primary sources of GPS data are GPS loggers carried by volunteers and GPS-enabled 104 

mobile applications installed in smartphones (Li et al., 2018). GPS data enables research on 105 
ambient population and mobility patterns in urban environments (Deville et al., 2014; Sila-106 
Nowicka et al., 2015). GPS tracking data is also a popular source of data in tourism research 107 
(Li et al., 2018) where it has been used to find out how tourists move around a city (Edwards 108 

& Griffin, 2013) and to predict the next destination of individual tourists (Zheng et al., 2017). 109 
However, since GPS data is collected at the device level, it requires user permission to be 110 
accessed (Soundararaj et al., 2019a), radically reducing the sample size. Furthermore, GPS 111 
does not perform satisfactorily in indoor areas (Heidari & Pahlavan, 2008). 112 

In the past decade, Wi-Fi has emerged as one of the most used technologies in providing 113 
high-speed internet access to mobile devices such as smartphones, tablets and laptops in 114 
public and private spaces (Torrens, 2008). This has resulted in multiple Wi-Fi networks being 115 
available at almost every location in dense urban environments. Traversing through this 116 

overlapping mesh of Wi-Fi networks, modern mobile devices with Wi-Fi network interfaces 117 
regularly broadcast a special type of signal known as a ‘probe request’ in order to discover the 118 
Wi-Fi networks available to them. This helps these devices to connect and switch between the 119 
Wi-Fi networks seamlessly. Probe requests are captured by Wi-Fi networks regardless of 120 

whether the device connects to a specific network (Johnson et al., 2019) making it a non-121 
intrusive and passive data collection method, thus improving the participation rate. In the early 122 
studies, Wi-Fi signals were mainly used to study mobility at hyperlocal scales such as 123 
university campuses (Henderson et al., 2004; Sevtsuk et al., 2008), at event venues (Bonne 124 

et al., 2013) and in public transportation terminals (Shlayan et al., 2016), but as argued by 125 
Kontokosta & Johnson (2017), with enough infrastructure to collect the Wi-Fi probe requests, 126 
we can even aim to generate a real-time census of the city. Data derived through Wi-Fi- 127 
networks have also been used in predictive analytics to estimate user destinations based on 128 

the locations they have visited in the past (Danalet et al., 2014). 129 

A media access control address (MAC address) assigned by the manufacturer to the mobile 130 
devices, when hashed, can act as a unique identifier without compromising participants’ 131 
privacy. This has enabled a set of research looking at individual travel patterns (Rekimoto et 132 

al., 2007; Sapiezynski et al., 2015) and links between location (Phan et al., 2005). User 133 
trajectories have been used to create origin-destination matrices of customer journeys that 134 
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enable a detailed analysis of passenger demand (Ji et al., 2017; Transport for London, 2017) 135 
and replace the need for manual counting (as in Ceder(1984)).  136 

However, this data collection method is not without pitfalls. Worries have been expressed 137 
about potential misuse and threats to the device owner’s privacy. In terms of regulation, 138 
legislation such as Europe’s General Data Protection Regulation (GDPR) and some vendors 139 
have introduced randomisation of MAC addresses of their customers’ devices (Vanhoef et al., 140 

2016). 141 

2.2. Applications of people sensing technologies in retail sector  142 

The emergence of people sensing technologies has led to a diverse range of new data sources 143 

that provide objective measures on people’s movement (Cukier & Mayer-Schönberger, 2015) 144 
for informed decision making. The competitive advantage of successful exploitation of new 145 
technologies (McAfee & Brynjolfsson, 2012) has also been recognised in retail sector. 146 

Novel examples of the use of innovative ‘smart’ technologies include the use of Bluetooth 147 

beacons (Betzing, 2018) to monitor consumer in-store journeys and location-based marketing 148 
notifications that are delivered to consumers’ mobile devices (Banerjee & Dholakia, 2008; Van 149 
De Sanden et al., 2019). Recent academic studies that have made use of new sources of data 150 
of people’s movement include the applications of GPS traces to study consumer behaviour 151 

(Sila-Nowicka & Fotheringham, 2016) and walking patterns in retail areas (Hahm et al., 2017). 152 
In addition, several studies have looked at the importance of urban morphology and street 153 
networks on retail prosperity in urban spaces (Kang, 2016; Sevtsuk, 2014) and found that 154 
micro-location characteristics and retail composition in the area are important to explaining 155 

the retail landscape. Arunraj et al. (2016), Appelqvist et al. (2016) and Badorf & Hoberg (2020) 156 
studied the impact of weather on retail sales and found that the magnitude of the weather 157 
effect is not uniform and depend on the store location and the sales theme. 158 

The benefits of accurate measures of footfall has been widely discussed in the context of retail 159 

location analysis. These data provide retailers robust evidence in site selection processes for 160 
assessing potential revenue and performance of a new venue (Brown, 1993; Waddington et 161 
al., 2019). As Wood & Browne (2007) and Berry et al. (2016) have highlighted, prior 162 
understanding of the fluctuations in footfall patterns is particularly important for smaller 163 

comparison goods retailers in urban areas, who are unlikely to have much influence on traffic 164 
volume and are therefore dependent on existing pedestrian flows.  165 

Assessing footfall patterns around existing retail units helps retailers to make informed 166 
decisions around store operation (Fan, 2019). For example, a number of research studies 167 

have demonstrated the benefits of traffic-based scheduling to optimise staffing costs (Begley 168 
et al., 2018; Chapados et al., 2014; Chuang et al., 2016) and a recent report on high street 169 
vitality (Parker et al., 2017) emphasised the importance of matching the store trading hours 170 
with the human activity-patterns in the area as one of the key priorities in improving the store 171 

performance.  172 

In addition, continuous and up-to-date footfall data provides robust empirical evidence for 173 
uncovering early warnings of changes that can negatively impact trading success (Wehrle, 174 
2017). Adapting to the changes in the retailing environment has proven to be of critical 175 

importance over the last decade. The retail sector has been fundamentally changed by the 176 
growth of online retail that now takes up 21.3% (Office for National Statistics, 2018) of all the 177 
retail sales and the fall in market share has created major issues for traditional store-based 178 
retailers. Well-established retailers (e.g. Marks & Spencer) have had to downsize their store 179 

networks while others (e.g. Debenhams, Mothercare, Jamie’s Italian, Patisserie Valerie) have 180 



Trasberg T, Soundararaj B and Cheshire J, Computers, Environment and Urban Systems, 2021 
 

gone into administration (Centre for Retail Research, 2019). Vacancy rates on British high 181 
streets are 10.3% (BBC, 2019) marking the highest level since January 2015 and in some 182 

regions the footfall has dropped by 17.9% (ITV, 2020) over the last decade. Further discussion 183 
of the challenges in high street retailing is out of scope in this study but has been thoroughly 184 
studied in the papers by (Grimsey et al., 2018; Parker et al., 2017; Portas, 2011).  185 

Despite the benefits research has attributed to the use of movement data in retail analytics, 186 

there is a lack of data-driven studies that have provided robust empirical evidence about the 187 
impact of footfall on retail turnover. Previous attempts (Graham et al., 2019; Matzler et al., 188 
2010) to analyse the relationship between pedestrian flows and retail turnover, have had to 189 
rely on manual counts, modelled data and consumer interviews, because the academic 190 

research in this field is often restricted by limited data access due to the perceived commercial 191 
value and also potentially sensitive nature of the data. Private sector companies have reported 192 
a close correlation between spend and footfall (Ipsos Retail Performance, 2018; Springboard, 193 
2020; The Local Data Company, 2020), but they haven’t made empirical evidence public.  194 

2.3. Dynamic Regression Model 195 

Footfall and retail sales typically contain both daily trends and seasonal patterns, presenting 196 
challenges in developing effective regression models. Over the last few decades several 197 

approaches such as Monte Carlo method (Nelson & Schwert, 1982), K-nearest neighbour 198 
algorithms (Habtemichael & Cetin, 2016) and artificial neural networks have been studied to 199 
address these components (Ramos et al., 2015). More recently, machine learning-based 200 
techniques such as tree-based methods, Support Vector Regression (Smolak et al., 2020) 201 

and Random Forests and deep-learning based algorithms such as Recurrent Neural Network 202 
and Long Short-Term Memory have gained traction. In this study we select a dynamic 203 
regression model (Hyndman & Athanasopoulos, 2018) approach since it is most commonly 204 
used in short-term forecasting and valued for its accuracy (Smolak et al., 2020). Dynamic 205 

regression applies an Autoregressive Integrated Moving Average (ARIMA) process (Box & 206 
Jenkins, 1970) to model both trend and seasonal patterns and then fits a linear regression 207 
model to calculate the dependency between variables. We compare the predictive power of 208 
dynamic regression model against a seasonal ARIMA (SARIMA) model where the variable of 209 

interest is forecasted using only its past values. Similar comparisons between SARIMA and 210 
dynamic regression model performance have been conducted in previous studies by Arunraj 211 
et al. (2016) and Elamin & Fukushige (2018), however, to best of our knowledge, this is the 212 
first attempt to improve retail sales forecasting performance by integrating footfall counts to 213 

the forecasting model.  214 

2. Data & Methodology  215 

3.1. Data 216 

This research employs two datasets: Wi-Fi probe requests and retailer transactions. The 217 
former is used to generate estimates of pedestrian activity at selected locations and the latter 218 
is aggregated to calculate total sales volumes at the same locations during the corresponding 219 
times. This section describes these data sources in detail along with the methods and 220 

techniques used to clean, process and link them before using them to conduct a comparative 221 
analysis. 222 
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3.1.1. Footfall Data  223 

The ‘Smart Street Sensor’ project is a collaboration between the Economic and Social 224 

Research Council (ESRC) Consumer Data Research Centre (CDRC) and The Local Data 225 
Company and aims to produce a national level dataset of footfall in the United Kingdom’s retail 226 
areas with unprecedented spatial and temporal granularity. The project deploys a network of 227 
sensors installed in the front of retail stores across the UK.  228 

All mobile devices with Wi-Fi capability regularly broadcast special signals called probe 229 
requests directed towards all Access Points in the vicinity in order to keep a list of available 230 
access points. Using a Wi-Fi transponder, the sensors collect all these probe requests and 231 
transfer them to a centralised location. Before being sent to the server these raw probe 232 

requests are aggregated by their MAC addresses for every 5 minutes and the MAC address 233 
itself is obfuscated using a cryptographic hashing algorithm. The final aggregated information 234 
sent for each unique MAC address at 5-minute intervals are listed in Table 1.  235 

Since 2015, the project had a footprint of approximately 1000 locations across 105 towns and 236 

cities across the UK. In addition to these sensors, the project also collected manual counts of 237 
pedestrians at each location for 15-minute interval when these sensors were installed. This 238 
15-minute manual counting was collected to allow for validation as well as calibration (detailed 239 
in Section 3.1.1.2). 240 

Field Description 

Packets Total number of packets collected interval. 

VendorPart The first part of the MAC address showing the 

manufacturer of the hardware. 

MacAddress The second part of the MAC address that is 

transformed in to a cryptographic hash. 

Signal The minimum signal strength reported among the 

packets for the unique MAC address. 

PacketType Code corresponding to the type of the packet 

captured. Since only management type packets 

are collected, this is always ’1’ 
 

Table 1: The aggregated information sent by Smart Street Sensor on probe requests with 241 
Unique MAC addresses every 5 minutes. 242 

3.1.1.1. Cleaning the Data 243 

The first source of uncertainty arises from devices that stay around the sensors for extended 244 
periods, thus generating multiple probe requests over multiple intervals. Though this can be 245 
solved by aggregating them based on unique MAC addresses, it is exacerbated by MAC 246 

address randomisation, which started with the introduction of iOS8 in 2015 but has been 247 
increasing steadily and reached a critical point when iOS 10 implemented a more aggressive 248 
randomisation technique. The impacts of this are shown in Figure 1a.  249 

In addition, the dataset suffers from missing data both sporadically over short time periods 250 

(=less than 30 minutes) as well as for longer durations. An example of this is shown in Figure 251 
1b where the six sensors across a single street - Tottenham Court Road (London) - show 252 
missing data across a day. The list of causes includes connectivity failures, the reboot cycle 253 
of the sensors and accidental unplugging by store staff. Gaps of longer duration (=longer than 254 

30 minutes) tend to result from hardware failures and also the opening times of retail 255 
establishments that cut their power when closed. Errors can also arise from the uncertain field 256 
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of measurement – that is the size of the area that each sensor can detect probe requests 257 
within - which makes it challenging to convert the sensor-based counts to a particular corridor 258 

of pedestrian footfall.  259 

It is also noted that the dataset suffers from systemic biases due to varying mobile phone 260 
ownership across locations and across time. For example, the ownership of mobile devices 261 
with Wi-Fi capability has increased steadily over the past decade leading to a steady inflation 262 

of the number of probe requests collected. 263 

 
(a) The proportion of randomised vs non 

randomised from 2016-18 showing 
increase in randomised MAC addresses in 

Smart Street Sensor Data. 

(b)The coverage of data over a day from 6 
sample sensors at Tottenham Court Road, 
London showing short-term and long-term 

missing data. 

Figure 1: Uncertainties in the data 264 

For non-randomising devices it is straightforward to account for devices that dwell for long 265 

periods within reach of the sensor as we can simply remove all the packets that have MAC 266 
addresses repeating in any rolling-window of 30 minutes. This is possible since we have 267 
ensured that the uniqueness of the hashes are preserved within a one-week period using a 268 

weekly rotation of random salt value. But the above methods don’t work with devices that 269 
randomise MAC addresses and causes massive over-counting. Since 2015 there have been 270 
multiple attempts at bypassing the randomisation to derive unique device identification using. 271 
Most of these utilise techniques such as manufacturer profiling (Martin et al., 2016), scrambler 272 

attack (Bloessl et al., 2015), timing attacks (Matte et al., 2016) or using information elements 273 
(Vanhoef et al., 2016). Though effective, these techniques often require intrusive collection of 274 
data, thus risking the privacy of users being surveyed and are therefore discounted here. An 275 
alternative method for solving this problem using the sequence numbers has been explored 276 

by Soundararaj et al. (2019a) but was found too computationally expensive for the volume of 277 
data used here. Instead, a simpler approach was implemented that utilised the ratio of the 278 
number of probe requests generated by the devices that don’t randomise their MAC address 279 
against those that do to calculate a “compression” factor for each five-minute interval at every 280 

location and use it to adjust the randomised probe requests. Assuming that, on average, both 281 
randomising and non-randomising devices emit similar number of probe requests in a given 282 
time interval at a certain location, we can estimate the number of randomising devices (Nr) for 283 
a given interval from the number of non-randomising devices (Nnr) and the number of probes 284 

requests generated by both randomised (Pr) and non-randomised (Pnr) devices as explained 285 
in equation 1, 286 
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   (1) 287 

 288 

The result of such a simple cleaning method proves effective especially against the changes 289 
in the software of the mobile devices over the long term. The results for this adjustment for a 290 
particular sensor in Cardiff is shown in Figure 2.  291 

 
 

Figure 2: Results comparing the weekly counts of the number of devices at a chosen 
location before and after adjusting the number of devices with randomised MAC 

addresses 

We can observe that the adjusted device number estimates still preserve the seasonal 292 
variations while avoiding the huge increase of probe requests caused by the changes in 293 
method of randomisation around 2017. 294 

The missing data are filled by imputing the values from the historic data at the locations using 295 

imputeTS (Moritz & Bartz-Beielstein, 2017). The gaps shorter than 15 minutes are imputed 296 
using a straightforward spline-based method from the data preceding and following them. The 297 
longer gaps are filled in using seasonally decomposed missing value imputation while treating 298 
the data as time series data with seasonal variations at appropriate scales. For example, the 299 

hourly gaps are filled by assuming that the time series varies seasonally every 24 hours and 300 
the daily gaps are filled by assuming that the time series varies with seasonality of every 7 301 
days.  302 

Finally, these estimates of the number of mobile devices at each location are converted into 303 

pedestrian footfall estimates by using the “adjustment factor” - a simple ratio derived for each 304 
location by comparing the manual counts conducted at each location to the counts reported 305 
by the sensor at the corresponding times. Calibrating with ground truth was necessary since 306 
the proportions of mobile device ownership amongst the passing population was an external 307 

uncertainty to our study and could arise from a variety of spatio-temporal and demographic 308 
factors. This calibration can be carried out periodically to improve the quality of the estimation. 309 
In addition to this the overall, long-term inflation of number of devices due to mobile ownership 310 
has been adjusted assuming an underlying 0.2% weekly increase caused by the increase in 311 

smartphone penetration across UK population (Deloitte, 2018) resulting in a more continuous 312 
and reasonable estimate of number of devices present at these locations.  313 
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The overall data processing pipeline is shown in Figure 3 which starts with the central data 314 
repository which contains the raw data from the sensors to 5-minute aggregated footfall 315 

estimates. The pipeline was built to suit the scale, size and complexity of this particular dataset 316 
using standard Unix tools and parallelised whenever possible (Soundararaj et al., 2019b). 317 

 

Figure 3: The complete data processing pipeline that takes the raw probe requests from Smart 318 
Street Sensor. The pre-processing part of the pipeline mainly concerns with producing a safe 319 

version of the raw data by removing the personally identifiable information present in them. 320 
The data cleaning involves all the methods discussed above to produce an estimate of the 321 
number of devices present around a given sensor. The post-processing is concerned with 322 
converting the device numbers into other estimates pertaining to their use which is pedestrian 323 

footfall in this case. 324 

3.1.2. Transactions Data  325 

This research benefits from also having access to store level transactions data. The data is 326 
provided under the CDRC Data Sharing Agreement and is hosted in a secure environment 327 

(Consumer Data Research Centre, 2020). Data is provided under conditions of nondisclosure 328 
and anonymity and therefore retailers are referred to using the broad categorisation of their 329 
retail type. It pertains to 11 Fast Food Retailer stores, and 23 Family Restaurant retail units. 330 
The transactions data covers the year 2017 (01 January 2017 – 31 January 2017) and is 331 

aggregated to daily transaction volumes representing the total number of transactions made 332 
at the retail unit in a day. Each retail unit included in the transactions dataset is equipped with 333 
a footfall sensor allowing an integrated analysis of footfall flows and retail turnover. Spatial 334 
distribution of the sample is shown in Figure 4.  335 
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 336 

Figure 4: Spatial distribution of the available data. Out of the 34 locations in the sample, 12 337 
(9 Fast Food Retailer, 3 Family Restaurant) are in London and 2 in Brighton (1 Fast Food 338 
Retailer, 1 Family Restaurant) as well as in Birmingham (1 Fast Food Retailer, 1 Family 339 
Restaurant). Remaining 18 locations are distributed across the country. 340 

3.1.3. Linking transactions data to footfall data 341 

Although, transactions data is available for the whole year 2017, the availability of the footfall 342 
data varies across the locations as the footfall sensors were installed gradually throughout the 343 
year 2017 and the data is prone to missing values (discussed in Section 3.1.1.1.).  344 

Therefore, we extract the longest consecutive period without missing values in year 2017 for 345 
each sensor and link the aggregated daily total footfall counts to the transactions data using 346 
date and sensor number as common denominators. The temporal availability of the sample 347 
data is visualised in the Appendix A. 348 

3.2. Methodology  349 

To understand if footfall has an impact on retail turnover we compare the performance of two 350 

time-series modelling approaches - univariate (= only sales) seasonal Autoregressive 351 
Integrated Moving Average model (SARIMA) and seasonal Autoregressive Integrated Moving 352 
Average with Explanatory Variable (SARIMAX) (Hyndman & Athanasopoulos, 2018), also 353 
referred to as dynamic regression (Nagy & Simon, 2018; Pankratz, 1991). The former is an 354 

autoregressive model, meaning the variable of interest is modelled using linear combination 355 
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of past values of the variable. The latter adds an external variable (= footfall) into the model 356 
using linear regression and then models the data using SARIMA model.  357 

 358 
A SARIMA model is notated as follows: 359 

 360 
 361 

where: 362 
p = non-seasonal autoregressive (AR) order 
d = non-seasonal differencing 
q = non-seasonal moving averages (MA) order 
 

P = seasonal AR order 
D = seasonal differencing 
Q = seasonal MA order 
m = number of periods per season 
 

The first step in the SARIMA modelling is identifying the parameters for the above described 363 
components. For the purpose of cross-validation, the time series datasets are classified into 364 

training data and testing data. The testing data includes 14 last observations (=2 week) of 365 
each time-series. The ratio of testing data relative to the training data depends on the 366 
availability of the data at a specific retail unit (s. Figure in Appendix A) and varies between 367 
4.7% and 15.4% of the total length of available data.  368 

The parameters for the models are defined using only training data. We define the parameters 369 
based on autocorrelation (ACF) and partial autocorrelation functions (PACF) plots (Figure 5). 370 
The seasonal part is defined as follows: because the ACF plot (Figure 5) has significant spikes 371 
at lag 7 and at further lags which are multiples of 7, we set the seasonal period m to 7. Since 372 

the seasonal pattern is stable over time we set D = 1. For the non-seasonal part, we set the d 373 
to 1, which indicates the order of differencing. Differencing is required when the time series 374 
explicit a trend and is therefore not stationary. Rest of the parameters are determined through 375 
trial and error and examining the significant lags at the ACF and PACF plots. We find that the 376 

set of parameters that yield in average the best forecasting results across all 34 retail locations 377 
are SARIMA(1,1,0)(0,1,1)[7]. To confirm that parameters are suitable, we conduct plot Ljung-378 
Box test for each time series to check that the residuals have no remaining autocorrelations. 379 
We acknowledge that the selected set of parameters might not be the most optimal for each 380 

time series studied in this research, but our aim is to compare the performance of two models 381 
under the same conditions and we are not looking to maximise the forecasting performance. 382 
Furthermore, although Fast Food Retailer and Family Restaurant have variation in their sales 383 
patterns (e.g. Family Restaurant is busier over the weekend, Fast Food Retailer is busier over 384 

the working week), the seasonality at lag 7 and autocorrelation in all data sets are similar.  385 

  386 
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Time series decomposition 387 

388 

 389 

Figure 5: Trend and seasonality in the data – 390 
example based Fast Food Retailer sales data from London (Strand). 391 

The model is then used to predict 14 days’ worth of observations at each retail location. We 392 
use the forecast function available in the forecast R package developed by Hyndman & 393 
Athanasopoulos (2018). To compare the performance of the models, we calculate the average 394 
difference between the forecasted values and the observed values (=testing data) expressed 395 

as mean absolute percentage error (MAPE). The model with lower MAPE values is considered 396 
to be the more accurate. Finally, the Wilcoxon signed-rank test is used to test for statistically 397 
significant difference between MAPE measures of the SARIMA and SARIMAX models.  398 

4.  Results  399 

4.1. Exploratory analysis of footfall data  400 

Figure 6 shows the normalised weekly footfall of 10 different locations across Cardiff for the 401 
years 2017 and 2018. The patterns in the footfall reveal events that were happening in Cardiff 402 
and the unusually high or low footfall in the corresponding weeks. The most significant event 403 

was in February 2018, when all sensors reported the lowest numbers they have ever recorded. 404 
This coincided with the cold wave in UK nicknamed ‘Beast from the East’ (Wikipedia, 2018), 405 
which brought adverse weather conditions all over the UK and led to a significant reduction in 406 
footfall. The other identifiable events are bank holiday weekends which result in higher than 407 

normal footfall and FIFA World Cup which took place in the summer of 2018.  408 
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 409 

Figure 6: Long term footfall profiles at 10 locations in Cardiff in 2017 and 2018. Bank holiday 410 
weekends, the festive season and FIFA World Cup increased footfall, whereas the ‘Beast from 411 
the East’ cold weather in February 2018 triggered a major decrease.   412 

Footfall patterns can also reveal the function of the place. For example, Figure 7 shows the 413 
daily footfall profile of three locations in London for two weeks in 2019. It can be observed that 414 
all three locations have completely different patterns of usage. Leicester Square is mostly a 415 
night-time destination where the footfall peaks around evening while Regent Street is a mostly 416 

office location with three distinct peaks corresponding to morning commute, evening commute 417 
and lunch. These insights can be crucial for retailers operating in these places for optimising 418 
their business operation in terms of store opening times, scheduling shifts etc. 419 

 420 

Figure 7: Footfall profiles at locations across London demonstrating the difference in their 421 
nature. The graph shows hourly profiles from 08th March 2019 to 13th March 2019 across 3 422 
locations in London. 423 

4.2. Exploratory analysis of the relationship between footfall and transactions 424 

 425 

The dynamic regression model assumes linear relationship between variables. Therefore, to 426 
confirm that the relationship between sales and footfall is indeed linear we plot the variables 427 
on a scatterplot, fit a regression line between the variables and calculate the correlation. The 428 
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results for some of the retail units are visualised in Figure 8. The fitted lines have a positive 429 
slope, reflecting the positive, linear relationship between sales and footfall. At Fast Food 430 

Retailer locations, Sunday and Saturday values are significantly lower than the values from 431 
Monday to Friday forming clusters seen on the scatterplots. This confirms the weekly (7 day) 432 
seasonality observed on the ACF and PACF plots in section 3.2.  433 
 434 

Linear relationship between daily footfall and sales 
 

 
Figure 8: The scatterplots show linear relationship at all retail locations, which is stronger at 435 
Fast Food Retailers, especially at the retail units located in London.  436 

In order to calculate the correlation coefficients (r), we need to remove the seasonality from 437 
the data because seasonal patterns can cause spurious regression outputs (Granger & 438 

Newbold, 1974). This is achieved through seasonal adjustment whereby we subtract an 439 
observation from the previous observation from the same season (in this case from the same 440 
weekday in the prior week). Seasonal-differencing is also applied in forecasting models in 441 
Section 4.3. 442 

Correlation (r) between daily footfall and sales 

 
 

Figure 9: Correlation (r) between daily footfall and sales. There is a significant correlation 443 
between footfall and sales at 9 (out of 11) Fast Food Retailer locations and the median 444 
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correlation is 0.42 (excluding non-significant correlations). The correlation is significant at 17 445 
Family Restaurants and the median correlation is 0.34.  446 

4.3. Forecasting results 447 

Figure 10 shows the comparison between the two forecasting models. In the case of Family 448 
Restaurant, the forecasting was improved in 17 cases out of 23 and MAPE dropped from 449 
19.6% to 18.4%. In the case of Fast Food Retailer, adding footfall data to the model improved 450 

forecasting in 8 cases out of 11 and the MAPE dropped from 8.4% to 6.2%. Therefore, we 451 
conclude that footfall has an impact on the transactions and integrating footfall counts to sales 452 
forecasting models improves the forecasting results. The Wilcoxon signed-rank test confirms 453 
that MAPE measures of dynamic regression model (SARIMAX) are significantly lower than 454 

the MAPE values of univariate SARIMA model that uses only past sales data to predict future 455 
values.  456 

Forecasting Results 

 
 Family Restaurant Fast Food Retailer 
 SARIMA SARIMAX SARIMA SARIMAX 

Median MAPE:  19.6% 18.4% 8.4% 6.2% 
 
Wilcoxon signed-rank test: 

p=0.004573 p= 0.009204 

Figure 10: Lower MAPE values indicate a lower error percentage and therefore a better 457 
model. p-value by Wilcoxon signed-rank test is in both cases <0.05 which confirms that MAPE 458 
measures by the dynamic regression model were significantly lower than by SARIMA model. 459 

Lewis (1982) has defined MAPE values that are less than 10% as “highly accurate forecasting” 460 
and values between 10%-20% as “good forecasting”. Therefore, Fast Food Retailer 461 
forecasting results can be considered as “highly accurate” and the 2.2% decrease in MAPE 462 
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values when adding footfall data to forecasting is a significant improvement. We conclude that 463 
footfall has a strong impact on Fast Food Retailer sales performance. In average, the 464 

performance of the forecasting model at Family Restaurant locations can be considered “good 465 
forecasting”; however, there are 9 locations where the MAPE values even after adding footfall 466 
to the forecasting model stay between 20%-50% which is considered as “reasonable 467 
forecasting”. The forecasting results could potentially be improved by adding further 468 

independent variables (e.g. weather, staffing levels, etc.) to the forecasting model. There are 469 
no locations were the MAPE value exceed 50% which would be considered inaccurate 470 
forecasting.   471 

a) 

 
b) 

 
c) 

 
 

 
Figure 11: Observed and predicted values.  The observed values in data are shown with a 472 
grey line and dots. The blue line and circles show the predicted values by seasonal ARIMA 473 
model and the red line and squares show the predicted values estimated by the dynamic 474 

regression model. 475 

Figure 11 shows the comparison between observed and predicted values. Example a) shows 476 
that dynamic regression predictions are more reactive to sudden changes than results of the 477 
SARIMA. Besides forecasting future sales, the difference between predicted and observed 478 

values could be used to evaluate the retail location performance in the given time period. A 479 
significantly lower observed value compared to predicted value as seen in example c) could 480 
be seen as an indicator of poor sales performance.  481 
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5. Conclusions 482 

We contributed to research on the big data analytics in ‘smart cities’ by developing a novel 483 
technology for estimating levels of pedestrian flows based on Wi-Fi probe requests using a 484 
network of sensors installed at the storefronts. We concluded that this method provides a good 485 

balance between precision and cost, is scalable and does not compromise the privacy of those 486 
involved. 487 

Our main objective in this study was to apply this pedestrian counting data to study the impact 488 
that passing footfall has on the retail sales. Our results indicate that footfall has a positive 489 

impact on retail turnover in most locations and integrating footfall measures into sales 490 
forecasting can significantly improve the forecasting results. However, there are spatial 491 
variations (e.g. Family Restaurant units in London are less impacted by the passing footfall 492 
than the retail units outside of London) as well as variations between retail types (compared 493 

to Family Restaurant, Fast Food Retailer’s trade is more impacted by the passing footfall). 494 
The prediction models could be used to evaluate potential turnover of at prospective locations 495 
where footfall data is available by training the model based on transactions data from a similar 496 
location (= similar footfall pattern, similar retailing environment). 497 

Based on our findings, we assume that other micro-site characteristics such as the socio-498 
demographic profile, in some cases are as important as footfall. In the future research, we aim 499 
to extend the analysis to further retail types as the data becomes available, add more 500 
independent variables to the dynamic regression model and study the forecasting results in 501 

spatial context in order to understand other factors besides footfall which might impact the 502 
turnover. The most important variables to further include in the research are information about 503 
the retail composition, socio-economic variables about the residential population (e.g. Output 504 
Area Classification) as well as about the working population (e.g. Workplace Zone 505 

Classification). This data is easily accessible but would require a different modelling approach 506 
than SARIMA models used in this research. Further variables that would provide interesting 507 
insights are the break-down of the sales data by the product type and indication about take 508 
away purchases. This information was not provided by the retailers.  509 

We conclude from our results that footfall has a strong impact on retail turnover as suggested 510 
in earlier studies (Berry et al., 2016; Graham et al., 2019; Wood & Browne, 2007); however, 511 
we expand the previous research by stating that footfall in not equally important for all retail 512 
types and at all locations and socio-economic variables should be accounted for as well.   513 
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