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Ultimate squeezing through coherent quantum feedback
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Coherent feedback is the use of feedback loops not involving any measurements for the purpose of quantum
control. This can be contrasted to measurement-based feedback where the feedback signal is directed by the
result of measurements upon the system. Here, we develop a general framework to describe interferometric
coherent feedback loops and prove that, under any such scheme, the steady-state squeezing of a bosonic mode
subject to a rotating wave coupling with a white-noise environment and to any quadratic Hamiltonian must abide
by a noise-dependent bound that reduces to the 3-dB limit at zero temperature. Such a finding is compared, at
fixed dynamical parameters, with the performance of homodyne continuous monitoring of the output modes,
which allows one to beat coherent feedback and the 3-dB limit under certain dynamical conditions.

DOI: 10.1103/PhysRevResearch.2.043103

I. INTRODUCTION

Feedback is one of the main avenues to exert and refine
control on physical systems. In quantum mechanics, feedback
control may be applied in two, radically different, fashions:
As measurement-based feedback [1], where measurements
are used to purify the system and to inform operations on
it, or as coherent feedback [2], where only deterministic ma-
nipulations of subsystems coupled to the system of interest
are performed. While in measurement-based feedback the
quantum information is turned into classical information by
the act of measuring, in coherent feedback the information
stays quantum at all stages of the control loop. It might be ar-
gued that, since the manipulations involved are deterministic,
coherent feedback loops should not be considered as feed-
back control at all, but rather as a class of open-loop control
strategies where only certain auxiliary degrees of freedom are
accessible. However, quantum optics allows us to disregard
such a terminological dispute (although the discussion of this
issue in Ref. [3] is worth mentioning), through the adoption
of the input-output formalism, which is tailored to describe
the interaction of a countable set of localized modes (e.g., a
set of cavity modes) with a neighboring field’s continuum (the
electromagnetic field outside a cavity). We shall, as customary
in the context of quantum optics [4–6], define a coherent feed-
back loop as one where a set of output modes, interacting with
a system at an input-output interface, may be manipulated
through quantum CP maps and then fed back into a system
as input modes at another interface. This approach is similar
to that used in the established field of “cascaded quantum
systems,” where the output of one system is used as the input
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of another [7–10], and of the related “all-optical” feedback
[11], the difference being that here the output is fed back into
the system from whence it came.

Notice that the input-output paradigm finds successful and
broad application to a number of quantum systems where a
high degree of coherent control is achievable, ranging from
purely optical setups to optomechanics [12], nanoelectrome-
chanics, atomic ensembles, and cavity QED waveguides [13],
to mention but a few. Given the impressive recent advances in
the realization of quantum technologies, connectivities (espe-
cially via fibers and waveguides) are quickly nearing a point
where quantum control loops will be feasible and pivotal in
harnessing quantum resources, such as quantum coherence
and entanglement. Indeed, coherent control loops have been
demonstrated in optical [5,14] and solid-state [15] systems,
while measurement-based feedback has been by now applied
to a variety of systems, with the aim of performing quantum
operations, enhancing cooling routines [16], or entangling
quantum systems [17]. It is therefore paramount to understand
the ultimate limits of feedback strategies as well as which
class of loops, coherent or measurement based, is advanta-
geous to perform a given task or optimize a given figure of
merit.

After the seminal study [11]—which unlike the present
inquiry does not deal with a squeezing Hamiltonian acting
on the system but rather with more general forms of cou-
pling between system cavity and the feedback loop—such
a theoretical comparison has been addressed only for finite-
dimensional scenarios [3,18], for linear quadratic Gaussian
optimization [4], or for out-of-loop figures of merit [6] (i.e.,
concerning the relationship between input and output de-
grees of freedom). In our study, the input-output formalism,
compounded with a general description of passive linear op-
erations, will yield a framework for a comparison between
“interferometric” coherent feedback and measurement-based
feedback at given connectivities and other technical and en-
vironmental parameters (such as detection efficiencies and
temperature). Let us remark that, in practice, the generation
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and injection of squeezed light needed to go beyond purely
passive, interferometric schemes, would be highly challeng-
ing, while high-efficiency homodyne detection, which we
shall adopt for measurement-based protocols, is compara-
tively more straightforward [19].

Note that the set of operations encompassed by coherent
and measurement-based feedback differ, since the stochastic
dynamics originating from measurements cannot be reduced
to deterministic operations, which is the essence of the
so-called “measurement problem” of quantum mechanics.
Nevertheless, coherent feedback has been proven superior
in a number of tasks and contexts, so that our ability to
demonstrate situations where measurement-based schemes do
in principle prove superior is all the more striking and con-
sequential. It should be stressed that we are considering here
only figures of merit at steady state, rather than at any transient
time. Measurement-based strategies, it turns out, prove par-
ticularly effective in stabilizing in-loop figures of merit (i.e.,
quantities pertaining to the localized modes).

In this paper, we shall consider a set of bosonic modes
coupled to a white-noise continuum at finite temperature and
focus on the optimization of steady-state squeezing. First, as
proof of principle, we shall present a simple coherent feed-
back loop using a single feedback mode subject to losses,
show that it can enhance the achievable squeezing up to a 3-dB
limit [20], and contrast it with what is achievable through (fea-
sible) homodyne measurements of the output field. Then, we
will proceed to consider the most general harmonic coherent
feedback setup, letting an arbitrary number of output modes at
one interface undergo the most general deterministic Gaussian
completely positive (CP)-map before being fed back into the
system. We shall then restrict this framework to consider only
operations not involving any source of squeezing. The Gaus-
sian CP map in the feedback loop will be taken to be the most
general open, passive optical transformation, corresponding
in practice to leakage, beam splitters, and phase shifters, i.e.,
the most general “interferometric” scheme. This will allow
us to prove analytically that the simple setup considered be-
forehand is indeed optimal, within interferometric coherent
feedback, for the generation and stabilization of single-mode
squeezing. Furthermore, we shall extend our findings to cer-
tain multimode systems and show that the bound holds for
pure multimode steady states too. Notice that, not surprisingly,
steady-state squeezing could be enhanced if squeezing was
included in-loop, either by considering a nonpassive CP map
or by using a squeezed input state as in Ref. [21]. Since these
schemes would imply a separate source of squeezing, the very
resource whose generation we are tasked with optimizing, we
are disregarding them.

The paper is organized as follows: In Sec. II, we introduced
the general formalism of bosonic continuous variables and of
input-output interfaces, which will be used to describe coher-
ent feedback; in Sec. III, we report known benchmarks on
the steady-state squeezing that can be attained without control
and with homodyne monitoring; Sec. IV contains the general
formalism and all our main findings on the optimal squeez-
ing achievable through interferometric coherent feedback for
single-mode systems; Sec. V contains some considerations on
the multimode extension of our optimality results; Sec. VI
concludes the paper with a summary and future perspec-

tives. The detailed technical arguments and derivations are
deferred to the Appendixes: Appendix A recalls the calcu-
lation of the squeezing achievable via homodyne detection,
Appendix B contains all the derivations concerning coherent
feedback, and in Appendix C, we flesh out two technical
arguments regarding the multimode extension of our study.

II. PRELIMINARIES

A. Continuous variable systems

A system of n bosonic modes can be described as a vec-
tor of operators r̂ = (x̂1, p̂1 . . . x̂n, p̂n)T. These obey canonical
commutation relations (CCR) [x̂ j, p̂k] = iδ jk1̂, where h̄ = 1.
The CCR for multiple modes can be described using the
symmetrized version of the commutator [22]: [r̂, r̂T] = r̂r̂T −
(r̂r̂T )T = i�n where �n is a 2n × 2n matrix known as the sym-
plectic form, �n = ⊕n

j=1 �1, with �1, jk = δ j+1,k − δ j,k+1 for
j, k = 1, 2. We will often omit the subscript from �, letting
the context specify the appropriate dimension. The second
statistical moments of a state are defined as follows: σ =
Tr[{(r̂ − r̄), (r̂ − r̄)T}ρ̂], in terms of a real, symmetric covari-
ance matrix (CM) σ.

The steady states we will focus on are Gaussian states,
which may be defined as the ground and thermal states of
quadratic Hamiltonians and are fully characterized by first
and second statistical moments. We shall be concerned with
the properties of the second moments only, and thus neglect
the first moments in what follows. Unitary operations which
map Gaussian states into Gaussian states are those generated
by a quadratic Hamiltonians. The effect of such operations on
the vector of operators is a symplectic transformation r̂ → Sr̂
where S is a 2n × 2n real matrix which satisfies S�ST = �.
The corresponding effect on the covariance matrix of the
system is the transformation σ −→ SσST. In this study, we will
make use of so-called “passive” transformations, which do not
add any energy to the system and therefore do not perform
any squeezing. Passive transformations must satisfy the extra
constraint that S is orthogonal, i.e., SST = 1.

B. The input-output formalism

The input-output formalism is a method for dealing with
the evolution of systems coupled to a noisy environment, con-
sisting of a continuum of modes (e.g., the free electromagnetic
field) [23]. The interaction of the system with such an environ-
ment can be modeled as a series of instantaneous interactions
with different modes at different times. These modes can be
thought of as interacting instantaneously with the system and
then being scattered away, never to interact again. The incom-
ing mode which interacts with the system at time t is known as
the input mode and is called x̂in(t ), while the mode scattered
at time t is called x̂out (t ) and is known as the output mode. The
input modes satisfy the continuous CCR: [r̂in(t ), r̂T

in(t ′)] =
i�δ(t − t ′), where r̂in(t ) = (x̂in,1, p̂in,1 . . . x̂in,m, p̂in,m)T. The
most general coupling to the input fields is given by the
Hamiltonian ĤC = r̂TCr̂in, in terms of the 2n × 2m coupling
matrix C. The Heisenberg evolution of the system operators
is given by a stochastic differential equation known as the
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quantum Langevin equation [22]:

d r̂(t ) = Ar̂(t ) dt + �Cr̂in(t ) dt , (1)

where the drift matrix A is given by A = �HS + 1
2�C�CT,

with the symmetric square matrix HS specifying the sys-
tem Hamiltonian according to ĤS = 1

2 r̂THS r̂. The vector
r̂in(t ) is a quantum stochastic process known as a quantum
Wiener process which, in analogy with the classical Wiener
process, obeys the relations [r̂in(t ), r̂T

in(t )](dt )2 = i� dt and
Tr[{r̂in(t ), r̂T

in(t )}�̂](dt )2 = σ indt , where σ in is the covariance
matrix of the input modes. This relationship implies δ corre-
lations between bath modes interacting at different times (the
well-known white-noise condition) and hence the Markovian-
ity of the free dynamics, which we are thus assuming.

The definition of σ and Eq. (1) can be combined to obtain
an equation for the evolution of the system covariance matrix,
σ̇ = Aσ + σAT + D, where D = �Cσ inCT�T is known as the
diffusion matrix. Setting σ̇ = 0 yields a Lyapunov equation
for the steady-state (stationary) solution, which exists if and
only if the matrix A is “Hurwitz,” i.e., if all its eigenvalues
have negative real parts. If this condition is satisfied, then the
steady-state solution reads

σ∞ =
∫ ∞

0
eAt DeATt dt . (2)

III. BENCHMARKS

A. Squeezing with no control

Our figure of merit to quantify squeezing is σ11, the el-
ement of the covariance matrix corresponding to twice the
variance of the x̂ quadrature. As the value of σ11 decreases,
so does the uncertainty on x̂, and the squeezing increases.
As a typical case, let us consider here a single bosonic cav-
ity mode, subject to the Hamiltonian Ĥ = ĤS + ĤC , where
ĤS = −χ

4 {x̂, p̂} with χ > 0, corresponding to a Hamiltonian
matrix HS = −χ

2 σx (where σx is the Pauli x matrix). Cavity
losses are modeled by the external field coupling,

ĤC = √
γ ( p̂x̂in − x̂ p̂in ), (3)

corresponding to a coupling matrix C = √
γ�T

1 where γ is
the strength of the coupling. When this is the form of system-
environment coupling, the so-called input-output boundary
condition relates the system modes to the input and output
as follows [23]:

r̂out (t ) = √
γ r̂(t ) − r̂in(t ) . (4)

Throughout this paper, we will consider input fields in Gibbs
thermal states of their free Hamiltonian, so that σ in = N1,
where N = 2N̄ + 1 and N̄ � 0 is the mean number of thermal
excitations in the environment, which can be related to tem-
perature and frequency through the Bose law. The steady-state
squeezing is σ11 = Nγ /(χ + γ ). The condition for stability is
that |χ | < γ , which means that, if the loss rate or squeezing
parameter can be tuned, and the input fields are taken to be
vacua (so N = 1) the maximum steady-state squeezing that
can be achieved is σ11 = 1

2 . This is known in the literature
as the 3-dB limit, as 10 log10(2) ≈ 3.01 (this is the noise, in
decibels, associated with the smallest eigenvalue of σ in units
of vacuum noise).

B. Homodyne monitoring

Let us now modify the setting above by the continuous
monitoring of the output x̂ quadrature through a homodyne
detector with efficiency ζ , which yields a relevant CM’s ele-
ment given by

σ m
11 = a + √

a2 + b

2ζ
, (5)

for a = [2Nζ − (1 + (N − 1)ζ )(1 + χ

γ
)] and b = 4Nζ (1 −

ζ ) (see Appendix A for a derivation of this). This monitoring
maximizes the steady-state squeezing among all general-dyne
detections at zero temperature, i.e., for N = 1 [24], but is
beneficial at finite temperature too (for N > 1); we do not
report the finite-temperature optimisation here, since it would
require the unrealistic access to purifications of the bath [25].
Note that since the conditional CM (and hence the squeezing)
does not depend on the measurement outcome, merely mon-
itoring achieves the optimal feedback performance, without
the need to perform any other control action.

IV. COHERENT FEEDBACK

A. “Simple” coherent feedback

Let us begin our inquiry into coherent feedback by re-
porting on the performance of the simplest possible coherent
feedback loop, obtained by feeding the output of one interface
into the input of the other after undergoing losses [22]. We
will therefore consider a system mode coupled to two input
fields, each through a Hamiltonian of the form given in (3).
To avoid ambiguity, we will use the subscript e to refer to ex-
ternal, unmodified environmental modes. Coherent feedback
involves setting r̂in,1 = r̂e,1 and r̂in,2(t ) = 
(r̂out,1(t )), where

 is the CP map corresponding to losses. These losses can be
modeled as mixing at a beam splitter with an environmental
mode r̂e,2. This means that coherent feedback can be achieved
by setting

r̂in,2 = √
η r̂out,1 +

√
1 − η r̂e,2

= √
η (

√
γ r̂ − r̂e,1) +

√
1 − η r̂e,2, (6)

where η is the loss rate and we have used the input-output
relation (B7). We are assuming instantaneous feedback, with
no delays between the mode put out at interface 1 and fed
back at interface 2, which will preserve the Markovianity of
the dynamics. Making this substitution into Eq. (3) results
in the system r̂ being effectively coupled to the environment
r̂e,tot = (r̂T

e,1, r̂T
e,2)T through the coupling matrix C = √

γ (1 −√
η �T

1 ,
√

1 − η �T
1 ). Such a system requires γ (1 − √

η) >
χ

2
in order to be stable. The steady-state squeezing achieved in
these conditions is σ11 = Nγ (1−√

η)
χ

2 +γ (1−√
η) . This is minimized by let-

ting
√

η → 1 − χ

2γ
, which results in a squeezing of σ11 → N

2 .
Thus, at zero temperature (i.e., for N = 1), coherent feedback
allows the 3-dB limit to be approached (but not beaten) for
any choice of parameters satisfying 0 <

χ

2γ
< 1. Notice that,

regardless of the strength χ , no stable squeezing is achievable
if N � 2.

This is a very remarkable result, showing that a coher-
ent feedback loop is in principle capable to amplify the
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FIG. 1. The general coherent feedback scheme considered in this
paper. System modes are labeled in blue, the modes involved in
the coherent feedback loop are red, and ancilla modes are black. A
transformation Z is made jointly on the feedback and ancilla modes,
before some are traced out and the remaining modes are fed back
into the cavity. Our framework allows for the possibility of some
feedback modes being discarded before the rest are fed back into the
system.

strength of any squeezing Hamiltonian up to the 3-dB stability
limit. However, a homodyne measurement-based loop, whose
steady-state squeezing is given by Eq. (5), outperforms this
coherent feedback scheme when the efficiency ζ of the detec-
tor satisfies

ζ � 2(γ − χ )

2(γ − χ ) + N (2χ − γ )
(7)

and the denominator of the right-hand side (RHS) of (7) is
positive [26]. For χ < γ /2, either the denominator is negative
or the bound above is larger than 1, which proves that homo-
dyne monitoring does not beat coherent feedback at such weak
interaction strengths. For χ � γ /2, there is always a detection
efficiency threshold above which the coherent feedback loop
we considered is outperformed by homodyne monitoring;
this threshold, quite interestingly, decreases with increasing
noise (although the absolute performance of monitoring at
given χ still deteriorates as the noise increases). As the upper
limit for stability χ = γ is approached, the efficiency thresh-
old falls to zero, so that detection with any efficiency will
be better than our coherent loop in this limit. The ultimate
performance of homodyne monitoring is obtained at ζ = 1,
where σ m

11 = N (1 − χ/γ ): Hence, monitoring can in princi-
ple achieve stable squeezing (σ m

11 < 1) for all values of N ,
although only for χ > γ (1 − 1/N ). Notice that, in principle,
arbitrarily high squeezing may be stabilized at all noises (tem-
peratures), whereas the coherent feedback loop we studied is
bounded by the value N/2. In order to achieve a conclusive
comparison between coherent and measurement-based loops,
we need to extend our treatment beyond a specific coherent
feedback loop to include any possible interferometric scheme
without additional sources of squeezing.

B. General coherent feedback

Let us therefore consider the most general coherent feed-
back protocol, as depicted in Fig. 1. A system consisting of
s bosonic modes is coupled to p + q input modes through a

coupling Hamiltonian of the same form as (3). Each system
mode r̂ j is coupled to l j + mj input-output interfaces with l j ,
mj such that p = ∑s

j=1 l j and q = ∑s
j=1 mj . We will give the

label a to the modes interacting at the first p input-output inter-
faces, and the label b to the modes interacting at the remaining
q interfaces. The first p input modes are environmental white
noise, meaning we can write r̂in,a = r̂e,a = (r̂T

e,1 . . . r̂T
e,p)T. The

corresponding output modes then undergo the most general
Gaussian CP map. This is achieved by applying a symplectic
transformation Z on the output modes, along with n ancillary
white noise modes before tracing out the ancillas. Later, we
restrict ourselves to the case where this CP map is passive and
therefore includes no extra source of squeezing, (a scenario
which we refer to as “interferometric,” since it can be repro-
duced entirely with passive optics). After the transformation,
the resulting q modes are fed into the system through the re-
maining q input interfaces. We shall assume that the additional
ancillary modes are also affected by the same thermal noise as
the environment, so that it is still σ in = N1[27].

The transformation on the output and ancilla modes can be
represented as an symplectic, 2(p + n)-dimensional, square
matrix Z:

r̂in,b ⊕ r̂anc, f = Z (r̂out,a ⊕ r̂anc,i ) , (8)

where r̂in,b = (r̂T
in,(p+1) . . . r̂T

in,(p+q) )
T and r̂out,a =

(r̂T
out,1 . . . r̂T

out,p)T. Later, by requiring that this matrix is
also orthogonal, we ensure that it corresponds to a passive
transformation involving no extra squeezing. The initial
and final states of the ancilla modes are given by r̂anc,i and
r̂anc, f respectively where r̂anc,i = (r̂T

e,(p+1)...r̂
T
e,(p+n) )

T. The
symplectic matrix Z can be decomposed into block matrices
Z = (E F

G H ). This representation of Z allows us to write
r̂in,b = E r̂out,a + F r̂anc,i. It is shown in Appendix B that
the overall effect of this coherent feedback protocol is to
couple the system modes to the white-noise environment,
now given by r̂e,a ⊕ r̂anc, through the coupling matrix
Cc f = (Kp − KqE | KqF ), where Kp = ⊕s

j=1 Clj , and Cj is
the 2 × 2 j-dimensional matrix of the form

√
γ (�T . . . �T ).

The matrix Kq is of the same form as Kp, but with dimension
2s × 2q. It is also shown that adding coherent feedback
modifies the system Hamiltonian matrix HS by addition of the
matrix Hc f = HS + KqEB + BTETKT

q , where B = ⊕n
j=1 �l j ,

and �l = √
γ (12 . . .12)T is a 2l × 2 matrix.

C. Optimal interferometric feedback

An elegant and compact description of all interferometric
schemes mediating the coherent feedback loop is achieved by
requiring that the matrix Z is orthogonal as well as symplectic,
amounting to EET + FF T = 1. As shown in Appendix B 3,
after this restriction is made the drift matrix takes the form

Ac f = �Hc f − 1
2 D0 , (9)

where D0 is the diffusion matrix of the system under the same
setup at zero temperature, i.e., D0 = D/N .

Let us now now determine the optimal single-mode steady-
state squeezing achievable through interferometric coherent
feedback and show that the 3-dB squeezing limit cannot be
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beaten, even allowing for arbitrary control on the quadratic
system Hamiltonian.

The steady-state CM, σ∞, solves the Lyapunov equation
σ∞AT + Aσ∞ + D = 0. For a single mode, the squeezing is
given by the CM’s smallest eigenvalue, which we will label
σ1, with a corresponding eigenvector v. The Lyapunov equa-
tion implies: σ1 = −v†Dv

v†(A+AT )v . After substituting Eq. (9) for A
and D = ND0, we obtain

σ1 = Nv†D0v

v†D0v − v†(�Hc f + Hc f �T )v
= Nδ

δ − α
, (10)

where δ = v†D0v > 0 and α = v†(�Hc f + Hc f �)v. Now, the
vector w = �v is orthogonal to v, due to the skew symmetry
of �. Since σ∞ is a 2 × 2 symmetric matrix, w must also be
an eigenvector of σ∞ with eigenvalue σ2.

In Appendix B, it is shown that D0 satisfies �TD0� = D0.
It can also be seen that �T(�Hc f + Hc f �

T )� = −(�Hc f +
Hc f �

T ), because � is skew symmetric and orthogo-
nal. Hence, w†D0w = v†D0v = δ and w†(�Hc + Hc�

T )w =
−v†(�Hc + Hc�

T )v = −α. The second eigenvalue of σ∞
can therefore be found by multiplying the Lyapunov equation
from the left and right by w and rearranging, yielding σ2 =

Nw†D0w
w†D0w−w†(�Hc f +Hc f �)w = Nδ

δ+α
. But then, σ2 > 0 implies α >

−δ, which can be inserted into Eq. (10) to get σ1 = Nδ
δ−α

> N
2 .

We therefore conclude that interferometric coherent feedback
cannot beat the 3-dB limit and that the simple setup described
earlier is indeed optimal. Note that this bound was derived for
a fully general (quadratic) system Hamiltonian.

V. THE MULTIMODE CASE

Our general framework extends to multiple system modes.
However, the proof above does not, and it can in fact be shown
(see Appendix C) that the smallest eigenvalue of a multimode
σ∞ can be decreased below 0.5. Yet, several interesting re-
marks can be made. For many modes, the smallest eigenvalue
of σ∞ does not quantify the squeezing any longer, since it will
not in general represent the noise of a physical quadrature.
This is the case only if σ∞ may be diagonalized by an orthog-
onal symplectic transformation: Under such a condition, the
3-dB bound still applies, as proven in Appendix B. Notably,
this is the case of globally pure Gaussian states (whose CM
may always be diagonalized by a passive symplectic [22]), so
a coherent feedback scheme that also purifies the global state
cannot beat the 3-dB bound. Moreover, since all single-mode
CMs may be diagonalized by passive symplectic transfor-
mations (i.e., 2 × 2 rotations), no scheme that would purify
locally the degree of freedom attaining maximum squeezing
can beat the 3-dB bound (more generally, this extends to all
schemes that would render such a mode uncorrelated with
all other system modes). Numerical evidence suggests the
3-dB bound does hold for all diagonal elements attainable
from a multimode σ∞ through orthogonal symplectic trans-
formations (that is, for the noise of any physical quadrature),
although we do not possess conclusive proof in this regard, so
we leave it as a conjecture.

VI. CONCLUSIONS AND SUMMARY

To summarize, we have developed a general treatment
of interferometric coherent feedback in the Gaussian regime
and shown that no protocol within this framework can beat
the 3-dB squeezing limit at steady state. In contrast, homo-
dyne monitoring of output fields can stabilize arbitrarily high
squeezing at sufficiently low noise provided that detection
efficiency is high enough.

Specifically, in regard to the squeezing Hamiltonian
−χ

4 {x̂, p̂}, coherent feedback loops are superior for χ < γ /2
(and, quite remarkably, attain optimal performances indepen-
dent from the interaction strength), while measurement-based,
homodyne feedback is better for χ � γ /2 and efficiencies
satisfying (7). Our comparison is definitive at zero temper-
ature, for N = 1, in the sense that both measurement-based
and coherent feedback were fully optimized for vacuum in-
put noise (homodyning is then optimal), and that at optical
frequencies one has (N − 1) ≈ 10−6. Our findings hinge on
the phase-insensitive nature of the input-output coupling (3),
which implies a diffusion matrix D proportional to the iden-
tity, and would not apply, for instance, to quantum Brownian
motion. In this sense, our results may be considered as an
extension of the well-known 3-dB squeezing limit that affects
phase-insensitive amplifiers [20]. Beside the phase insensitiv-
ity of the coupling (3), stability is the other essential ingredient
to establish the bound as, it should be noted, unstable coherent
feedback loops would be able to achieve higher squeezing (but
are typically not desirable in practice).

This study lays the groundwork for further inquiries on
interferometric coherent feedback, which may be extended to
the optimisation of entanglement, to more general noise mod-
els, and to the cooling of concrete systems, such as quantum
optomechanics [28–30].
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APPENDIX A: HOMODYNE MONITORING
AT FINITE TEMPERATURE

Continuous, general-dyne monitoring of the output field
turns the diffusive equation σ̇ = Aσ + σAT + D into the fol-
lowing Riccati equation (see, e.g., Ref. [22] for a complete
treatment of the theory):

σ̇ = Ãσ + σÃT + D̃ − σBBTσ , (A1)

for

Ã = A + GBT, D̃ = D − GGT, (A2)

B = C�(σ in + σm)−1/2 G = �Cσ in(σ in + σm)−1/2 ,

(A3)

where the covariance matrix σm parametrizes the choice of
measurement. We will consider the homodyne detection of
the output field of a single-input, single-output system as
described in the section titled “Squeezing with no control.”
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Homodyne detection of the x̂ quadrature with efficiency ζ is obtained by setting

σm = lim
z→0

( z+1−ζ

ζ
0

0
1
z +1−ζ

ζ

)
, (A4)

which leads to a diagonal quadratic equation for the monitored steady-state covariance matrix, whose diagonal elements σ m
11 and

σ m
22 must satisfy (the off-diagonal elements vanish)

γ ζ

ζ (N − 1) + 1
σ m 2

11 +
[
γ + χ − 2

γ ζN

ζ (N − 1) + 1

]
σ m

11 + γ ζN2

ζ (N − 1) + 1
− γ N = 0 , (A5)

(γ − χ )σ m
22 − γ N = 0 , (A6)

with physical solutions

σ m
11 =

2Nζ − [1 + (N − 1)ζ ]
(
1 + χ

γ

) +
√{

2Nζ − [1 + (N − 1)ζ ]
(
1 + χ

γ

)}2 + 4Nζ (1 − ζ )

2ζ
, (A7)

σ m
22 = N

1 − χ

γ

. (A8)

The other solution for σ m
11 must be discarded since it is nega-

tive or zero and would thus violate the strict positivity of σm,
stemming from the uncertainty principle. The solution for σ m

22
shows that, even under monitoring, the condition |χ | < γ is
necessary for stability.

APPENDIX B: A GENERAL FRAMEWORK FOR
GAUSSIAN COHERENT FEEDBACK

We will consider s bosonic system modes interacting with
an environment hosting a coherent feedback loop according to
the general scheme of Fig. 1. Each mode will be coupled to an
arbitrary number of environmental white noise modes through
an exchange of excitations Hamiltonian. The jth system mode
will be coupled to l j + mj input-out interfaces. The outputs
of the first l j interfaces for each mode will be used to create
a coherent feedback loop. We will label the total number of
output modes used in coherent feedback as p = ∑

j l j . The
number of interfaces whose outputs are not used for coherent
feedback is given by q = ∑

j m j . The p output modes are then
collectively subjected to the most general Gaussian CP map.
After this, they will then be fed back into the remaining q
input-output interfaces.

When no coherent feedback is present, all of the p + q
interfaces couple the system to a white-noise environment.
The coupling Hamiltonian matrix ĤC for this interaction can
be described in terms of a coupling Hamiltonian H which
satisfies ĤC = 1

2 r̂T
totH r̂tot. The vector r̂tot is the total vector of

all system and input modes r̂tot = r̂ ⊕ r̂in,tot where r̂ = r̂1 ⊕
r̂2 · · · ⊕ r̂s is the vector of system modes and r̂ j = (x̂ j, p̂ j )T.
Similarly, the total vector of all input modes is given by
r̂in,tot = r̂in,1 ⊕ r̂in,2 · · · ⊕ r̂in,p+q. The Hamiltonian coupling
matrix HC is given by

HC =

⎛
⎜⎜⎝

0s×s Kl Km

KT
l 0 0

KT
m 0 0

⎞
⎟⎟⎠ , (B1)

with

Kl =

⎛
⎜⎜⎜⎜⎝

Cl1 0 0 . . . 0

0 Cl2 0 . . . 0
...

. . .
...

0 . . . 0 . . . Cls

⎞
⎟⎟⎟⎟⎠ (B2)

and

Km =

⎛
⎜⎜⎜⎜⎝

Cm1 0 0 . . . 0

0 Cm2 0 . . . 0
...

. . .
...

0 . . . 0 . . . Cms

⎞
⎟⎟⎟⎟⎠ , (B3)

where Cj indicates a 2 × 2 j matrix of the form√
γ (�T . . . �T ).
We will use the label a to indicate the set of interfaces

whose outputs are used for coherent feedback, so r̂out,a,1 is
a 2l1-dimensional vector of output modes corresponding to
system mode 1. The total output at a will be labeled by the 2p-
dimensional vector r̂out,a = r̂out,a,1 ⊕ r̂out,a,2 ⊕ · · · ⊕ r̂out,a,s.

These output modes can be related to the system and
environmental white-noise modes through an input-output
relation. For a single-system mode coupled to multiple input-
output interfaces, this relation takes the form

r̂out,a, j =

⎛
⎜⎜⎜⎜⎜⎝

r̂out,a,1,1

r̂out,a,1,2

...

r̂out,a,1,l j

⎞
⎟⎟⎟⎟⎟⎠ = (�l j −12l j )

(
r̂ j

r̂in,a, j

)
, (B4)

where �k indicates a 2k × 2 matrix of the form√
γ (12 . . .12)T and r̂in,a, j is a 2l j-dimensional vector of

input modes r̂in,a, j = (r̂in,a, j,1 ⊕ · · · ⊕ r̂in,a, j,l j ).
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The multimode version of the input output relation therefore reads

r̂out,a =

⎛
⎜⎜⎝

r̂out,a,1

...

r̂out,a,s

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

�l1 0 . . . 0 −12l1 0 . . . . . . 0

0 �l2 0 . . . 0 −12l2 0 . . . 0

0 0 . . . 0 . . . 0 . . . . . . 0

0 . . . 0 �ls 0 . . . 0 . . . −12ls

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r̂1

r̂2

...

r̂s

r̂in,a,1

r̂in,a,2

...

r̂in,a,s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B5)

We will define the matrix B as

B =

⎛
⎜⎜⎜⎜⎝

�l1 0 . . . 0

0 �l2 . . . 0
...

...
. . . 0

0 0 0 �ls

⎞
⎟⎟⎟⎟⎠ , (B6)

which allows us to write the multimode input-output relation
as

r̂out,a = (B −12p)

(
r̂

r̂in,a

)
. (B7)

We will now consider the action of a Gaussian CP map on
these output modes. This involves a symplectic operation on
the joint state of the output modes and an arbitrary number
of ancilla modes, which are then traced out. The symplectic
matrix corresponding to this transformation will be called Z
and we will write it in terms of its block matrices:

Z =
(

E F

G H

)
. (B8)

The action of Z on the output and ancilla modes is

Z (r̂out,a ⊕ r̂anc) =
(

E F

G H

)(
r̂out,a

r̂anc,i

)

=
(

E r̂out,a + F r̂anc,i

Gr̂out,a + F r̂anc,i

)
, (B9)

where r̂anc,i indicates a 2n-dimensional vector representing
the initial state of n ancilla modes, which are taken to be
white-noise environmental modes. After tracing out the an-
cilla modes, this corresponds to a CP map of the which sends
r̂out,a �→ E r̂out,a + F r̂anc,i. We note that later on, we will as-
sume that the operation performed in loop is passive, so it
adds no extra squeezing. This means that Z is orthogonal so
ZZT = 1. However, the framework developed in this section
makes no such assumption and is therefore completely general
in the Gaussian regime.

To avoid ambiguity, from now on we will use a subscript e
to indicate white noise modes and a subscript in to indicate the
input modes interacting through at the input-output interface.
We will label the remaining q input-ouput interfaces (whose
outputs are not used for coherent feedback) with b. Adding
coherent feedback involves setting r̂in,b = E r̂out,a + F r̂anc and

r̂in,a = r̂e,b. Writing this in matrix form gives

⎛
⎜⎝

r̂

r̂in,a

r̂in,b

⎞
⎟⎠ =

⎛
⎜⎝
12s 0 0 0

0 12p 0 0

0 0 E F

⎞
⎟⎠

⎛
⎜⎜⎜⎝

r̂

r̂e,a

r̂out,a

r̂anc

⎞
⎟⎟⎟⎠ . (B10)

We can also use the multimode input-output relation (B7) to
write ⎛

⎜⎜⎜⎝
r̂

r̂e,a

r̂out,a

r̂anc

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
12s 0 0

0 12p 0

B −12p 0

0 0 12n

⎞
⎟⎟⎟⎠

⎛
⎜⎝

r̂

r̂e,a

r̂anc

⎞
⎟⎠ . (B11)

Combining these two equations, we can write

⎛
⎜⎝

r̂

r̂in,a

r̂in,b

⎞
⎟⎠ =

⎛
⎜⎝
12s 0 0 0

0 12p 0 0

0 0 E F

⎞
⎟⎠

⎛
⎜⎜⎜⎝
12s 0 0

0 12p 0

B −12p 0

0 0 12n

⎞
⎟⎟⎟⎠

⎛
⎜⎝

r̂

r̂e,a

r̂anc

⎞
⎟⎠ = R

⎛
⎜⎝

r̂

r̂e,a

r̂anc

⎞
⎟⎠. (B12)

The effect of adding coherent feedback is therefore to
couple the system to a white-noise environment given by
(r̂T

e,a, r̂anc
T )T through a coupling Hamiltonian characterized by

the matrix Hc f
C = RTHCR. This matrix is

Hc f
C =

⎛
⎜⎝

KmEB + BTETKT
m Kl − KmE KmF

KT
l − ETKT

m 0 0

F TKT
m 0 0

⎞
⎟⎠ , (B13)

which couples the system to the environment through the
Hamiltonian operator

Ĥc f
C = 1

2

(
r̂T, r̂T

e,a, r̂T
anc

)
Hc f

C

(
r̂T, r̂T

e,a, r̂T
anc

)T
. (B14)

Notice that this results in a matrix equal to KmEB + BTETKT
m

being added to the system Hamiltonian matrix and changes
the effective coupling matrix to

Cc f = (Kl − KmE | KmF ) . (B15)
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These changes, along with a system Hamiltonian and envi-
ronmental input state, fully characterize the evolution of the
system under coherent feedback.

1. Properties of the orthogonal symplectic matrix

We have considered a symplectic matrix of the form

Z =
(

E F

G H

)
, (B16)

which transformed a vector of operators as per r̂ �→ Z r̂. Here,
E is a (2m × 2l ) matrix and F is a (2m × 2n) matrix. We
will now restrict Z to be an orthogonal symplectic matrix,
which means that the operation it corresponds to is passive
and therefore does not perform any squeezing. The condition
of orthogonality means that ZZT = 1, which gives us the
following conditions on the submatrices:

ZZT =
(

E F

G H

)(
ET GT

F T HT

)

=
(

EET + FF T EGT + FHT

GET + HF T GGT + HHT

)
=

(
1 0

0 1

)
.

(B17)

In particular, we shall make use of the relation EET + FF T =
1. The condition of symplecticity means that Z�ZT = �.
Recall that we are using the convention that the dimension
of � is specified by the context. In terms of the submatrices,
this means that

Z�ZT =
(

E F

G H

)(
� 0

0 �

)(
ET GT

F T HT

)

=
(

E�ET + F�F T E�GT + F�HT

G�ET + H�F T G�GT + H�HT

)

=
(

� 0

0 �

)
. (B18)

From this, we obtain the condition E�ET + F�F T = �,
which will be key later.

The vector of operators r̂ was ordered so that r̂ =
(x̂1, p̂1 . . . x̂n, p̂n)T. We can also consider an orthogonal sym-
plectic matrix S acting on a vector of differently ordered
operators: ŝ −→ Sŝ, where ŝ = (x̂1 . . . x̂n, p̂1 . . . p̂n). In this
case, the transformation matrix takes the form [22]

S =
(

X Y

−Y X

)
with XY T − Y X T = 0n (B19)

and

XX T + YY T = 1n . (B20)

When we use the ordering of variables ŝ =
(x̂1 . . . x̂n, p̂1 . . . p̂n)T, the symplectic condition is SωST = ω,
where ω is the alternatively ordered symplectic form

ω =
(

0n 1n

−1n 0n

)
. (B21)

Transforming between the two representations means that we
can write each 2 × 2 submatrix of Z as

Z =

⎛
⎜⎝

Z11 . . . Z1n

...
. . .

...

Zn1 . . . Znn

⎞
⎟⎠ Zjk =

(
x jk y jk

−y jk x jk

)
, (B22)

where x jk and y jk are the elements of matrices X and Y
respectively. This fact will be used later.

2. The diffusion matrix for passive coherent feedback

We will now find an expression for the diffusion matrix
in this setup. In the section titled “A general framework for
Gaussian coherent feedback,” the operation Z was assumed to
be a general symplectic. Now, we will add the extra restric-
tion that the coherent feedback must be passive, so Z is also
orthogonal, meaning ZZT = 1. This gives us the condition
EET + FF T = 1. Recall that the diffusion matrix is given by

D = �Cσ inCT�T . (B23)

We will allow the environment to be a thermal state, so
σ in = N1. Note that we can calculate the zero-temperature
diffusion matrix D0 by setting N = 1 and then easily modify
this for nonzero temperature by multiplying by an appropriate
value of N . Using the convention that the dimension of � is
specified by the context, and plugging in expression (B15) for
the coupling matrix under coherent feedback, we obtain

D0 = (�Kl − �KmE )
(
KT

l �T − ETKT
m�T) + �KmFF TKT

m�T . (B24)

Multiplying this out, and using the orthogonal condition EET + FF T = 1 gives

D0 = �
(
Kl K

T
l + KmKT

m

)
�T − �Kl E

TKT
m�T − �KmEKT

l �T . (B25)

We note that Kl KT
l = γ diag(l1, l1 . . . ls, ls) and KmKT

m = γ diag(m1, m1 . . . ms, ms). We will write

�(Kl K
T
l + KmKT

m )�T = γ diag(l1 + m1, l1 + m1 . . . ls + ms, ls + ms) = � . (B26)

After doing this, our expression for the zero-temperature diffusion matrix becomes

D0 = � − �KlE
TKT

m�T − �KmEKT
l �T . (B27)
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We will call J = �KmEKT
l �T, allowing us to write

D0 = � − JT − J . (B28)

At this point, we will note the form of �Kl and �Km, which are given by

�Kl =

⎛
⎜⎜⎝

�T
l1

. . . 0
...

. . .
...

0 . . . �T
ls

⎞
⎟⎟⎠ = Gl and �Km =

⎛
⎜⎜⎝

�T
m1

. . . 0
...

. . .
...

0 . . . �T
ms

⎞
⎟⎟⎠ = Gm . (B29)

This notation can be used to write J = GmEGT
l . We also note the following easily verified relationships which we will use later:

�KT
m = −GT

m, �KT
l = −GT

l , �Gm�T = Gm, �Gl�
T = Gl . (B30)

Now, we will show that �D0�
T = D0. This result will be useful later. First we notice that due to the diagonal form of �, we

have �T�� = �. Next, using the relationships in (B30) and inserting the identity �T� = 1, we find that

�J�T = �GmEGT
l �T = �Gm�T�E�T�GT

l �T = Gm�E�TGT
l . (B31)

Writing E in terms of its 2 × 2 submatrices gives

E =

⎛
⎜⎝

E11 . . . E1p

...
. . .

...

Eq1 . . . Eqp

⎞
⎟⎠, where Ejk =

(
e jk

11 e jk
12

−e jk
12 e jk

11

)
.

(B32)

The form of the 2 × 2 submatrices comes from the orthogonal
symplectic condition discussed in the previous section. With
this form �Ejk�

T = Ejk , meaning that

�E�T =

⎛
⎜⎜⎝

�E11�
T . . . �E1p�

T

...
. . .

...

�Eq1�
T . . . �Eqp�

T

⎞
⎟⎟⎠ = E . (B33)

Plugging �E�T = E into (B31) gives us �J�T = J . Com-
bining this with ���T = � yields �D0�

T = D0, which is
the desired result. This relation holds for any number of sys-
tem modes.

We will now show explicitly that, for a single-system
mode, D0 is proportional to the identity. This is easily shown
by noticing that for a single mode, � = γ (l1 + m1)12, Gm =
�T

m1
, and GT

l = �l1 , meaning that J is just a sum over the 2 × 2
submatrices of E , multiplied by γ :

J = �T
m1

E�l1 = γ
∑

j,k

(
e jk

11 e jk
12

−e jk
12 e jk

11

)
=

(
a b

−b a

)
, (B34)

where we have defined a = γ
∑

j,k e jk
11 and b = γ

∑
j,k e jk

12. It
can now be seen that D0 = � − J − JT will be proportional
to the identity.

3. The drift matrix for passive coherent feedback

The drift matrix of the system takes the form

A = �HS + 1
2�C�CT . (B35)

We will take HS to be completely general and will examine the
form of the matrix �C�CT for the passive coherent feedback

setup by plugging in expression (B15):

�C�CT = (�Kl − �KmE )
(
�KT

l − �ETKT
m

)
+ �KmF�F TKT

m . (B36)

We can multiply this out and simplify using the symplectic
condition E�ET + F�F T = � to obtain

�C�CT = �Kl�KT
l + �Km�KT

m − �Kl�ETKT
m

− �KmE�KT
l . (B37)

First, we note that �Kl�KT
l + �Km�KT

m = −GlGT
l −

GmGT
m = −�, where � is defined by (B26) in the previous

section. Next, using the properties of Gm, we observe that
�KmE�KT

l = −GmEGT
l = −J . We can also manipulate

�Kl�ETKT
m by inserting 1 = ��T:

�Kl�ETKT
m = Gl�ETKm = Gl�ET��TKT

m

= Gl�ET�GT
m . (B38)

Using the property of E from (B33), we get �ET� = −ET,
which means that we can write

�Kl�ETKT
m = Gl�ET�GT

m = −GlE
TGT

m = −JT . (B39)

Combining this with our previous results means that we can
write

�C�CT = −� + J + JT = −D0 . (B40)

This means that the drift matrix for any passive coherent
feedback protocol can be written as

A = �HS − 1
2 D0 . (B41)

043103-9



ALFRED HARWOOD AND ALESSIO SERAFINI PHYSICAL REVIEW RESEARCH 2, 043103 (2020)

APPENDIX C: MULTIMODE CASE

1. Counterexample

It can be verified that, in the two-mode case, for D = 1 and
this choice of Hamiltonian matrix,

H = 1

3

⎛
⎜⎜⎜⎝

1 0 1 0

0 1 0 −1

1 0 −1 0

0 −1 0 1

⎞
⎟⎟⎟⎠ , (C1)

the matrix A = �H − 1
2 D is Hurwitz and the solution σ∞ to

the Lyapunov equation Aσ∞ + σ∞AT + D = 0 has minimum
eigenvalue equal to 0.48, thus showing that the 3-dB bound
does not apply to the eigenvalues of σ∞.

However, all the numerical evidence in our possession indi-
cates that the bound will still hold on all diagonal elements of
σ∞, as well as on all eigenvalues of single-mode reductions
of σ∞ and, more generally, on all diagonal elements after
application of any orthogonal symplectic transformation.

2. Orthogonal symplectic bases

Here, we will prove that, if the real vector v1 belongs to
an orthogonal and symplectic basis {v j, j ∈ [1, . . . , 2n]}, then
�v1 is proportional to a vector of the same basis.

By hypothesis, the orthogonal matrix R = (v1, . . . , v2n) is
also symplectic. Therefore,

R�RT =

⎛
⎜⎜⎝

vT
1 �v1 vT

1 �v2 · · ·
vT

2 �v1 vT
2 �v2 · · ·

...
...

. . .

⎞
⎟⎟⎠

=

⎛
⎜⎝

0 1 · · ·
−1 0 · · ·
...

...
. . .

⎞
⎟⎠ = � . (C2)

Thence one has vT
j �v1 = −δ j2: �v1 is orthogonal to all basis

vectors except v2, and we must conclude that �v1 = −v2,
Q.E.D.

In light of the above, if a covariance matrix σ is diagonal-
ized by an orthogonal symplectic and v is an eigenvector of σ,
then w = �v must be an eigenvector too.

This argument is instrumental in showing that, for any
number of system modes, an eigenvalue smaller than 1/2 of
a steady-state covariance matrix obtained through interfero-
metric coherent feedback cannot correspond to the variance
of a physical quadrature (defined from the original system
quadratures without applying any squeezing, which would
amount to cheating).
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