TREM2 Variants as A Possible Cause of Frontotemporal Dementia with Distinct Neuroimaging Features

Short Title: Clinical Features of Pathogenic TREM2 Variants

Bedia Samanci¹, MD, Başar Bilgiç¹, MD, Özlem Gelişin¹, #a, MD, Fatih Tepgeç², PhD, Gamze Guven³, PhD, Zeynep Tüfekçioğlu¹, MD, Merve Alayhoğlu⁴, PhD, Hasmet A. Hanagasi¹, MD, Hakan Gürvit¹, MD, Rita Guerreiro⁵, PhD, John Hardy⁶, PhD, Murat Emre¹, MD

¹Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.

²Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.

³Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.

⁴Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.

⁵Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA.

⁶Department of Neurodegenerative Disorders, Institute of Neurology, University College London, London, UK.

#a Current Address: Department of Neurology, Faculty of Medicine, Bezmialem University, Istanbul, Turkey.

Corresponding author: Başar Bilgiç, MD

Address: Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey

Phone: +90 212 414 2000

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/ENE.14908

This article is protected by copyright. All rights reserved
ABSTRACT

Background: Nasu-Hakola disease (NHD) is a rare, autosomal recessive disorder characterized by skeletal and neurological symptoms. Behavioral symptoms with cognitive impairment may mimic the behavioral variant of frontotemporal dementia (bvFTD) and other early-onset dementias. We analyzed our patients and reviewed the literature to delineate neurological and neuroimaging findings suggestive of NHD.

Method: Fourteen patients carrying a pathogenic mutation in the TREM2 gene were found in our database. Demographic, clinical, laboratory, radiological data were retrieved and analyzed.

Results: Presenting clinical picture was behavioral changes with cognitive decline resembling bvFTD in all patients. The mean age was 37.1±4.97 years, the mean duration of the disease was 8.9±3.51 years. Only two patients had typical bone cysts. Seven patients had bilateral calcification of the basal ganglia in the computerized tomography of the brain. Magnetic resonance imaging (MRI) of the brain revealed severe atrophy of the corpus callosum, enlargement of the ventricles, atrophy of the caudate nuclei, periventricular white matter changes in all patients. Symmetrical global atrophy of the brain, mainly affecting frontoparietal and lateral temporal regions were observed in all cases, and 13 patients had atrophy of hippocampus. Cerebrospinal fluid examination of ten patients showed elevated protein levels in six and the presence of oligoclonal bands in four patients.

Conclusion: A combination of white matter changes, enlarged ventricles, atrophy of caudate nuclei, thinning of the corpus callosum in MRI strongly suggests NHD in patients with FTD.
INTRODUCTION

Nasu-Hakola disease (NHD), also known as polycystic lipomembranous osteodysplasia with sclerosing leukencephalopathy (PLOSL), is a rare, autosomal recessive disorder of the skeletal and nervous system, characterized by multifocal bone cysts, early-onset dementia with a frontal lobe syndrome. The first cases with autopsy findings were published by Nasu and Hakola [1, 2], and the course of the disease was divided into four stages: a) latent, b) osseous, c) early neurologic, and d) late neurologic. Patients in the late stage usually die by the age of 50 years [1, 3]. Mutations in two genes, triggering receptor expressed on myeloid cells-2 (TREM2) [4-15] (Supplementary Table) and tyrosine kinase-binding protein (TYROB, also known as DAP12), have been associated with NHD.

Clinical manifestation of NHD may present with the involvement of the central nervous system (CNS) in the absence of characteristic skeletal symptoms [5, 9]. CNS symptoms are usually cognitive decline and behavioral changes, resembling behavioral variant frontotemporal dementia (bvFTD) [10, 15]. Although FTD, other early-onset dementia diseases, and NHD may share common clinical symptoms, it is critical to differentiate these disorders as management and genetic approach substantially vary in these diseases. There have been a few case series regarding neuroimaging findings in NHD patients, but less is known in patients with neurological onset. Herein, we describe clinical and neuroimaging characteristics of fourteen cases carrying TREM2 gene mutations presented with neurological symptoms and twelve of whom had no joint pain or characteristic bone cysts in our series.

METHOD

Patient Selection, Clinical and Laboratory Evaluations

Keywords: Nasu-Hakola disease, behavioral variant of frontotemporal dementia, neuroimaging, genetic analysis, TREM2.
NHD patients were identified from the database of the Behavioral Neurology and Movement Disorders Unit of Istanbul University including 10080 patients from November 1, 1999, through January 1, 2010. Forty three of 390 dementia patients with bvFTD phenotype were screened for TREM2 and DAP12 gene mutations for possible NHD, and 14 patients, who admitted to our clinic between 2006 and 2020, with a genetically confirmed diagnosis of NHD were included in this study. The estimated prevalence of these mutations was 0.14%. All patients had agreed to genetic analysis at the time of initial clinical evaluation, and their blood samples were analyzed for mutations in TREM2 and DAP12 genes.

Demographic data and clinical parameters including somatic neurological findings, mental state examination, X-ray of extremities, and cerebrospinal fluid (CSF) exam including cell count, biochemistry, oligoclonal band (OCB) patterns, and amyloid-beta 1-42, phosphorylated tau, and total tau levels were analyzed. X-rays of the lower extremities of the patients (except for the patients with bone cysts) were evaluated for cortical thickness index (CTI) to show whether there was asymptomatic bone involvement. CTI was defined as the ratio of the femoral diaphyseal diameter (outer diameter) minus the intramedullary canal diameter (inner diameter) to the femoral diaphyseal diameter. These diameters were measured 10 cm below the midpoint of the lesser trochanter [16].

Evaluation of Neuroimaging Findings

Brain computed tomography (CT) and MRI scans had been performed at the time of diagnosis and were re-analyzed. All CT scans were evaluated for the presence of calcification, and MRI scans were evaluated for cerebral atrophy pattern, quantitative analysis of hippocampal atrophy [17], and white matter changes.

Fluorodeoxyglucose - positron emission tomography (FDG-PET) scans were available for three patients, and these were evaluated for metabolic changes.

Standard Protocol Approvals, Registrations, and Patient Consents

This retrospective study with prospectively managed data was authorized by the local institutional review board (IRB: 26.02.2021-94695). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and...
its later amendments or comparable ethical standards. Informed consent forms for genetic analysis and consent to publish were obtained from all participants.

RESULTS

Clinical and Laboratory Findings

Seven male and seven female NHD patients carrying a pathogenic mutation in TREM2 were included in the study. There was no patient with a pathogenic mutation in the DAP12 gene in our database. The mean age was 37.1 ± 4.97 years (range: 31-45 years), and the mean age of onset was 33 ± 5.29 years (range: 20-39 years). Mean disease duration was 8.9 ± 3.51 years (range: 4-13 years), and the mean duration of follow-up was 5.6 ± 3.16 years (range: 2-12 years).

None of the female patients had alopecia, and two male patients had male-pattern hair loss (P7 and P13). Bilateral optic atrophy was detected in the ophthalmological evaluation in one patient (P7) who had no visual complaints and had normal visual acuity. The parents of all patients, except for two siblings, had consanguineous marriages.

All 14 patients had presented with behavioral symptoms along with a dysexecutive syndrome fulfilling the criteria for “possible” bvFTD [18]. Seizures were present in 9 patients and preceded the onset of dementia symptoms in two patients (Table 1, P3, and P14), who were not diagnosed at the time of seizures. All patients had an akinetic-rigid syndrome leading to severe disability, which did not respond to L-dopa or dopamine agonists. Two patients who had homozygous p.D86V mutations had bone cysts detected in routine screening, and one of them had a history of bone fracture. The median value of CTI in patients without detectable bone cysts was 0.65 (range: 0.61-0.67) (Supplementary Figure).

Demographic, clinical, and genetic features [19] are presented in Table 1.
Table 1. Clinical, demographic, and genetic features of the patients with Nasu-Hakola disease.

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>Gender</th>
<th>Age of onset</th>
<th>Presentation</th>
<th>Family history</th>
<th>Epileptic seizures</th>
<th>Fracture history/Bone cysts</th>
<th>Parkinsonism</th>
<th>Disease duration/Status</th>
<th>Mutation</th>
<th>Pathogenicity*</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1*</td>
<td>M</td>
<td>20</td>
<td>bvFTD-like</td>
<td>No</td>
<td>+</td>
<td>-/-</td>
<td>+</td>
<td>13 years, Dead</td>
<td>Homozygous p.Q33X</td>
<td>Pathogenic</td>
</tr>
<tr>
<td>P2</td>
<td>M</td>
<td>35</td>
<td>bvFTD-like</td>
<td>No</td>
<td>+</td>
<td>-/+ (Bilateral talus)</td>
<td>+</td>
<td>5 years, Dead</td>
<td>Homozygous p.D86V</td>
<td>Pathogenic</td>
</tr>
<tr>
<td>P3**</td>
<td>F</td>
<td>40</td>
<td>bvFTD-like</td>
<td>Yes*</td>
<td>+</td>
<td>-/-</td>
<td>+</td>
<td>9 years, Alive</td>
<td>Compound heterozygous p.[(Y38C);[(D86)]</td>
<td>Pathogenic</td>
</tr>
<tr>
<td>P4**</td>
<td>F</td>
<td>30</td>
<td>bvFTD-like</td>
<td>Yes*</td>
<td>+</td>
<td>-/-</td>
<td>+</td>
<td>13 years, Dead</td>
<td>Compound heterozygous p.[(Y38C);[(D86)]</td>
<td>Pathogenic</td>
</tr>
<tr>
<td>P5</td>
<td>F</td>
<td>35</td>
<td>bvFTD-like</td>
<td>No</td>
<td>+</td>
<td>+/- (Bilateral humerus)</td>
<td>+</td>
<td>10 years, Alive</td>
<td>Homozygous p.D86V</td>
<td>Likely Pathogenic</td>
</tr>
<tr>
<td>P6</td>
<td>F</td>
<td>25</td>
<td>bvFTD-like</td>
<td>No</td>
<td>+</td>
<td>-/-</td>
<td>+</td>
<td>12 years, Alive</td>
<td>Homozygous p.Y38C</td>
<td>Pathogenic</td>
</tr>
<tr>
<td>P7</td>
<td>M</td>
<td>36</td>
<td>bvFTD-like</td>
<td>No</td>
<td>-</td>
<td>-/-</td>
<td>+</td>
<td>4 years, Alive</td>
<td>Homozygous p.D86V</td>
<td>Likely Pathogenic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>bvFTD-like</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Homozygous</td>
<td>Likely Pathogenic</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>P8</td>
<td>F</td>
<td>38</td>
<td>Yes**</td>
<td>+</td>
<td>-/-</td>
<td>+</td>
<td>11 years, Alive</td>
<td>p.D86V</td>
<td>Likely Pathogenic</td>
<td></td>
</tr>
<tr>
<td>P9</td>
<td>F</td>
<td>33</td>
<td>No</td>
<td>-</td>
<td>+/-</td>
<td>+</td>
<td>4 years, Alive</td>
<td>p.D86V</td>
<td>Likely Pathogenic</td>
<td></td>
</tr>
<tr>
<td>P10</td>
<td>F</td>
<td>33</td>
<td>Yes***</td>
<td>-</td>
<td>-/-</td>
<td>+</td>
<td>6 years, Alive</td>
<td>p.T66M</td>
<td>Pathogenic</td>
<td></td>
</tr>
<tr>
<td>P11</td>
<td>M</td>
<td>31</td>
<td>No</td>
<td>-</td>
<td>-/-</td>
<td>+</td>
<td>4 years, Alive</td>
<td>D119Efs70</td>
<td>Pathogenic</td>
<td></td>
</tr>
<tr>
<td>P12</td>
<td>M</td>
<td>39</td>
<td>No</td>
<td>-</td>
<td>-/-</td>
<td>+</td>
<td>11 years, Dead</td>
<td>p.T66M</td>
<td>Pathogenic</td>
<td></td>
</tr>
<tr>
<td>P13</td>
<td>M</td>
<td>35</td>
<td>No</td>
<td>+</td>
<td>-/-</td>
<td>+</td>
<td>10 years, Dead</td>
<td>p.T66M</td>
<td>Pathogenic</td>
<td></td>
</tr>
<tr>
<td>P14</td>
<td>M</td>
<td>33</td>
<td>No</td>
<td>+</td>
<td>-/-</td>
<td>+</td>
<td>12 years, Dead</td>
<td>p.Y38C</td>
<td>Pathogenic</td>
<td></td>
</tr>
</tbody>
</table>

M: Male, F: Female, bvFTD: Behavioral variant of frontotemporal dementia. *Siblings, **Her sister was reported to have similar clinical features, but she had died without specific diagnosis. ***Her brother was reported to have similar clinical features, but he had died without specific diagnosis.

* The detailed clinical and laboratory features of the patients P1, P3, P4, P12, and P14 were reported in separate publications [9, 10].

* Pathogenicity of the variants were determined according to ACMG 2015 criteria [19].
Ten patients underwent lumbar puncture. One had CSF mild pleocytosis (10 lymphocytes/mm3), protein levels were above the normal limits (>45 mg/dL) in 6 patients. Patterns of OCBs were as follows: six patients had pattern 1 (no bands in CSF and serum), two had pattern 3 (OCBs in CSF and identical OCBs in serum and CSF), and two had pattern 4 (identical pattern of OCBs in CSF and serum). The patient with CSF pleocytosis had elevated CSF protein levels with positive OCB (pattern 3). After corticosteroid and intravenous immunoglobulin treatment for possible autoimmune encephalitis in this patient, CSF cell count returned to normal, and OCB pattern reverted to pattern 1 without clinical benefit. CSF amyloid-beta 1-42, phosphorylated tau, and total tau levels were available for two patients showing increased tau levels with normal amyloid beta concentrations. Detailed CSF results of the patients are shown in Table 2.

Table 2. Cerebrospinal fluid (CSF) analysis of the patients who underwent lumbar puncture.

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>Pleocytosis</th>
<th>Protein level (mg/dl)</th>
<th>OCB pattern</th>
<th>CSF amyloid-beta 1-42 (pg/ml)</th>
<th>CSF phosphorylated tau (pg/ml)</th>
<th>CSF total tau (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>No</td>
<td>N/A</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>P2</td>
<td>No</td>
<td>25.7</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>P3</td>
<td>10 lymphocytes/mm3</td>
<td>51</td>
<td>3</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>P5</td>
<td>No</td>
<td>75</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>P6</td>
<td>No</td>
<td>26</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>P7</td>
<td>No</td>
<td>45</td>
<td>1</td>
<td>1544</td>
<td>80</td>
<td>795</td>
</tr>
<tr>
<td>P10</td>
<td>No</td>
<td>41.8</td>
<td>4</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>P11</td>
<td>No</td>
<td>71</td>
<td>1</td>
<td>1460</td>
<td>42</td>
<td>423</td>
</tr>
<tr>
<td>P12</td>
<td>No</td>
<td>67.8</td>
<td>4</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>P13</td>
<td>No</td>
<td>57.2</td>
<td>3</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

OCB: Oligoclonal band, CSF: Cerebrospinal fluid, N/A: Not available.
During the clinical follow-up period, the father of patients P3 and P4, and the father of patient P5 developed Parkinson’s disease, and the father of patient P6 developed Alzheimer’s disease (AD) in his early 60s. In 2020, patient P7 had test-proven COVID-19 disease with mild symptoms, including fever and cough, which were recovered in two days.

Neuroimaging Features

Brain CT scans performed after a mean period of 4.8 ± 3.19 years following initial symptoms were available in thirteen patients. Seven had bilateral calcification of the basal ganglia. Calcifications were mostly restricted and not as widespread as seen in Fahr’s disease.

MRI scans performed after a mean period of 4.9 ± 3.36 years following initial symptoms revealed significant thinning of the corpus callosum and marked enlargement of the lateral and third ventricles in all patients. None of the patients had dilated fourth ventricle or stenosis of the aqueduct. Thinning of the corpus callosum was diffuse in all subjects, although splenium was relatively spared (Figure 1). Global atrophy of the brain, predominantly involving frontoparietal and lateral temporal areas and bilateral atrophy of the caudate nuclei were present in all patients and thirteen of the patients had also atrophy of the hippocampus to various degrees. All patients had diffuse, confluent white matter lesions that were mildly hyperintense on T2-weighted and fluid-attenuated inversion recovery (FLAIR) sequences. These white matter abnormalities were more prominent in the areas adjacent to the anterior and posterior horns of the lateral ventricles. Neuroimaging features of the patients are presented in Table 3. There was a follow-up MRI scan in four patients after a mean period of 2.3 ± 1.89 years. In contrast to the marked progression of cortical atrophy, a notably slow progression of white matter involvement was observed in one patient with a radiological follow-up of 5 years (Figure 2). No significant progression was detected in the white matter and corpus callosum of the other three patients who had a radiological follow-up interval of less than 2 years. Four patients with calcification in their CT scan had consecutive CT scans after a mean period of 2.8 ± 1.71 years, and no progression was observed in the number and size of the calcifications (Figure 3). No different pattern of neuroradiological findings were observed in patients with bone lesions.
Three patients had brain FDG-PET scans, which showed widespread cortical hypometabolism, including basal ganglia (see Table 3 for details).
Table 3. Neuroimaging findings of the patients.

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>Thinning of the CC*</th>
<th>WM involvement</th>
<th>Ventricular dilatation</th>
<th>Cortical atrophy</th>
<th>Hippocampal atrophy (MTA score)</th>
<th>FDG-PET</th>
<th>Calcification on CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>+</td>
<td>+</td>
<td>Lateral ventricle: +</td>
<td>Frontal (more prominent), parietotemporal, perisylvian, caudate</td>
<td>3</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>P2</td>
<td>+</td>
<td>+</td>
<td>Lateral ventricle: +</td>
<td>Frontoparietal, perisylvian, caudate</td>
<td>2</td>
<td>N/A</td>
<td>Yes</td>
</tr>
<tr>
<td>P3</td>
<td>+</td>
<td>+</td>
<td>Lateral ventricle: +</td>
<td>Frontotemporoparietal, perisylvian, caudate</td>
<td>3</td>
<td>N/A</td>
<td>Yes</td>
</tr>
<tr>
<td>P4</td>
<td>+</td>
<td>+</td>
<td>Lateral ventricle: +</td>
<td>Global, caudate</td>
<td>3</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>P5</td>
<td>+</td>
<td>+</td>
<td>Lateral ventricle: +</td>
<td>Frontoparietal, perisylvian, caudate</td>
<td>3</td>
<td>N/A</td>
<td>Yes</td>
</tr>
<tr>
<td>P6</td>
<td>+</td>
<td>+</td>
<td>Lateral ventricle: +</td>
<td>Frontal, caudate</td>
<td>2</td>
<td>Hypometabolism in bilateral frontal, parietal, posterior cingulate, left anterior and lateral temporal, bilateral basal ganglia and thalamus</td>
<td>Yes</td>
</tr>
<tr>
<td>P7</td>
<td>+</td>
<td>+</td>
<td>Lateral ventricle: +</td>
<td>Parietal (more prominent), frontal, perisylvian, caudate</td>
<td>2</td>
<td>Hypometabolism in right frontal, bilateral parietal, anterior temporal, right basal ganglia</td>
<td>Yes</td>
</tr>
<tr>
<td>Patient</td>
<td>Lateral Ventricle</td>
<td>3rd Ventricle</td>
<td>4th Ventricle</td>
<td>Location</td>
<td>Hypometabolism</td>
<td>Sign of Calcification</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>P8</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Frontotemporal (more prominent), global, caudate</td>
<td>3</td>
<td>N/A</td>
<td>Yes</td>
</tr>
<tr>
<td>P9</td>
<td>+</td>
<td>+</td>
<td></td>
<td>Parietal (more prominent), frontal, perisylvian, caudate</td>
<td>2</td>
<td>Hypometabolism in bilateral parietal, left anterior temporal, right basal ganglia</td>
<td>No</td>
</tr>
<tr>
<td>P10</td>
<td>+</td>
<td>+</td>
<td></td>
<td>Global, caudate</td>
<td>2</td>
<td>N/A</td>
<td>Yes</td>
</tr>
<tr>
<td>P11</td>
<td>+</td>
<td>+</td>
<td></td>
<td>Frontoparietal (more prominent), global, perisylvian, caudate</td>
<td>1</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>P12</td>
<td>+</td>
<td>+</td>
<td></td>
<td>Frontal (more prominent), global, caudate</td>
<td>3</td>
<td>N/A</td>
<td>N/A (No sign of calcification on the MRI)</td>
</tr>
<tr>
<td>P13</td>
<td>+</td>
<td>+</td>
<td></td>
<td>Frontal (more prominent), perisylvian, caudate</td>
<td>3</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>P14</td>
<td>+</td>
<td>+</td>
<td></td>
<td>Frontal (more prominent), global, caudate</td>
<td>2</td>
<td>N/A</td>
<td>No</td>
</tr>
</tbody>
</table>

*Marked atrophy in CC in the 1/3 anterior and 1/3 medial, and less atrophy in the 1/3 posterior area.
DISCUSSION

Traditionally, the clinical course of NHD has been divided into four stages: (a) latent, (b) osseous, (c) early neurological, and (d) late neurological [1, 3]. Patients in our series presented with neurological symptoms. Only two had bone cysts in their routine diagnostic workup, and one of them had a history of bone fracture. Our study consisting of 14 NHD patients is the largest case series published to date, and all our patients were admitted to memory clinic with symptoms of early-onset dementia. We did not detect any skeletal deformity in one patient with prior bone fracture, which was attributed to a fall. Our findings put into question the traditional clinical concept of disease progression in NHD.

Differential diagnosis of patients with early-onset dementia can be challenging. Underlying pathology can be a common neurodegenerative disease such as AD or frontotemporal dementia as well as rare diseases like NHD. Diagnosis may necessitate extensive diagnostic workup. Characteristic neuroimaging findings detectable in routine MRI can aid the diagnosis, as is the case for NHD. Our data revealed that all fourteen NHD patients with neurological onset had four common neuroimaging findings in MRI: (a) thinning of the corpus callosum, (b) diffuse periventricular white matter abnormalities, (c) atrophy of caudate nuclei, and (d) enlargement of the lateral and third ventricles with sparing of the fourth ventricle. Although all our patients had diffuse cortical atrophy mainly in the frontoparietal and temporal regions, no specific atrophy pattern was observed. Consistent with the postmortem histopathological studies in NHD [20], various degree of hippocampal atrophy was evident in the MRI in the majority of patients. Approximately half of the patients exhibited calcifications in the basal ganglia, constituting a suggestive but not pathognomonic finding for NHD.

Although the clinical course of NHD follows a classical pattern with early and late neurological symptoms following osseous symptoms, all the patients in our cohort presented with neurological symptoms. This finding is contrary to majority of previous studies and the underlying factors remain largely unknown. Neurological presentation of NHD in our series consisted of early-onset dementia with personality changes, progressive behavioral symptoms, and subsequent cognitive impairment, resembling FTD. As the differential diagnosis of these two diseases is essential, the presence of seizures, which is unusual in FTD, maybe a hint for NHD. Two of our patients had a history of epileptic seizures before the onset of other symptoms, and seven patients developed seizures after the onset of
dementia symptoms. Another different clinical aspect of NHD compared to FTD seems the age of onset of dementia symptoms. While the age of onset in majority of the FTD patients was between 45-65 or even more [21], all of NHD patients in our series developed the disease before the age of 41. Also, neuroimaging findings are very helpful to differentiate NHD from bvFTD. Thinning of the corpus callosum with calcifications in basal ganglia make the diagnosis of FTD unlikely, some FTD patients may have white matter changes, ventricular dilatation, and atrophy of the caudate nuclei. Even some FTD patients carrying mutations in the progranulin gene may have significant white matter hyperintensities in the MRI, the presence of confluent white matter hyperintensities in FTD is rare [22, 23]. Patients with adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) usually have thinning of the corpus callosum, calcifications, and white matter changes. Calcifications in ALSP, however, tend to be located in the periventricular white matter, whereas they tend to be confined to basal ganglia in NHD. White matter changes in FLAIR and T2-weighted images are likely to be more intense in NHD compared to ALSP [24].

Neuroimaging findings in NHD have been described previously in several case reports. Diffuse cortical atrophy, ventricular enlargement, and calcification without white matter changes were described in one patient [25]. In another report, ventricular enlargement and white matter abnormalities were described in MRI [26]. Two infantile NHD patients from Tunisia with both skeletal and CNS involvement were reported to have ventricular dilatation and thinning of the corpus callosum [27]. In a case series including eight NHD patients with skeletal and neurological symptoms, ventricular enlargement was present in all, and five patients had diffuse white matter hyperintensities [3]. In several reports including NHD patients with symptomatic or asymptomatic bone cysts, three of the four common neuroimaging findings found in the current study were described, including thinning of the corpus callosum, ventricular enlargement, and white matter changes [28-31]. A limited number of case reports described neuroimaging findings in NHD patients presented with neurological symptoms [5, 9, 32, 33], three findings mentioned above were present in all these cases. Regarding all the reported patients in these papers, only 11 (including 3 patients in the present study) of 32 patients were reported to lack characteristic bone lesions. Contrary to this, majority of the patients (86%) in our series had no characteristics skeletal lesions. Also, the median CTI value, which is a radiological (X-ray) marker for bone mineral density, was found to be over the threshold values determined in the age 50 years and over population for osteoporosis and fracture risk reported as 0.56 and 0.62, respectively [34]. Although we
had no chance to compare the CTI values of NHD patients with age-matched control subjects, increased age is known to be associated with thinner cortex of the femoral bone [35, 36]. Therefore, CTI values in relatively young NHD patients may still represent a pathological state. In line with this assumption, one of our patients had suffered from bone fracture even she had no cystic bone lesion and with normal CTI values. It is unfortunate that our study is limited by the lack of more detailed techniques such as bone density scan (DXA) and MRI or CT for extremities to further analyze the presence of skeletal abnormalities in NHD patients.

There may be a wide spectrum of skeletal involvement in NHD, ranging from asymptomatic bone mineral density deficits to characteristic bone cysts leading to pathological fractures. TREM2 signaling remains poorly understood and receptor-ligand interactions are complex as there are a variety of ligands of TREM2 receptor such as lipoproteins (low-density lipoprotein) and apolipoproteins (APOE), and bacterial anionic molecules [37, 38]. Activation and regulation of the TREM2 pathway is also a complex process critically dependent on tissue context and intracellular state. At a cellular level, TREM2 signaling in various contexts induces significant changes in cellular phenotypes and functions, which seems to be a consequence of several TREM2-dependent processes, including induction of phagocytosis, lipid metabolism, and metabolic shift, promoting cell survival and countering inflammatory activation [39]. The complex nature of the TREM2 pathway and possible other genetic and epigenetic interactions may be the underlying cause of phenotypic variations especially in the skeletal system in NHD patients as seen in the five patients in the current study whom carrying same homozygous p.D86V mutation but only the two of them showed characteristic bone cysts.

Neuroimaging findings may be an early feature of NHD and may be present in asymptomatic cases. White matter changes, atrophy of the brain, thinning of the corpus callosum, and calcification in the basal ganglia became evident before the onset of cognitive decline and behavioral symptoms in patients with skeletal involvement only [40]. Less is known about the course of the neuroimaging findings, and our study suggests a relatively slow progression of white matter involvement in contrast to the gradual atrophy of the cortical areas after the disease onset. Our data also point out a stable nature of calcifications if present.
There are few case reports on FDG-PET and SPECT findings in NHD patients, which described global hypometabolism or hypoperfusion in the cortex and basal ganglia [31, 41-43]. FDG-PET was available in three of our patients, and all had hypometabolism in basal ganglia and parietal lobe as well as hypometabolism in various cortical areas. Although Ghezzi et al reported the presence of amyloid accumulation shown by amyloid PET imaging with decreased CSF amyloid level in one NHD case carrying the homozygous mutation (Q33X) in TREM2 gene [29], this was not confirmed in two other patients, who had c.391+1G>A and R47C mutations, respectively [28, 44]. Recently Maderna et al. [45] has reported the neuropathologic findings of a patient who was carrying the same Q33X mutation and the patient showed neuropathological findings consistent with both NHD and AD. In our study, CSF biomarker analysis was available for two patients, and none had decreased amyloid-beta levels compatible with the findings as reported by Ghezzi et al [29]. Type of mutation may be the underlying cause of concomitant amyloid deposition in NHD patients, however, several questions on the deposition of amyloid in NHD patients remain to be answered, and considerably more work will need to be done to determine the presence of ongoing pathological depositions in NHD patients.

The main pathological finding underlying MRI findings in NHD is sclerosing leukoencephalopathy. Postmortem examination in eight patients revealed marked atrophy of the white matter, loss of myelin sheaths, and nerve fibers with prominent gliosis [46]. Immunochemistry showed leakage of plasma proteins into the parenchyma and increased vascular density in the white matter, small vessel walls also appeared thickened. Recent immunohistochemical studies revealed diffuse microglial activation and inflammation in the white matter. This is not surprising as TREM2 is expressed on microglia [47], it modulates the activation of microglia as well as microglia-mediated inflammatory responses [20, 48], and modulation of phagocytosis [49, 50]. Impairment in tissue debris removal by microglial cells and accompanying proinflammatory state might be the main pathophysiology in TREM2 mutations [28, 51]. Possibly indicating inflammatory process in the CNS, elevated CSF protein was found in six, and OCBs were present in four patients. The presence of OCBs was reported in a few previous studies [33, 52]. Furthermore, Errichiello et al. [30] hypothesized that defined as a multisystem immunological disorder, anti-inflammatory medications, or repositioning/repurposing of myeloid-specific compounds might be effective in the early stages of NHD to prevent progressive neurodegeneration. One of our patients with pleocytosis elevated CSF protein, and OCB positivity did not benefit from corticosteroid and
intravenous immunoglobulin treatments in the first year of the disease. This observation may suggest the ineffectiveness of corticosteroid and intravenous immunoglobulin treatments when initiated after the onset of neurological symptoms. However, these treatments may still have the potential to slow down neurodegeneration if initiated before the onset of neurological symptoms. Interventions on asymptomatic mutation carriers or patients diagnosed in the osseous stage would help to establish a higher degree of accuracy on this matter.

In our study, all of the patients had extrapyramidal signs, and two of the living fathers of the patients developed typical Parkinson’s disease during follow-up. Deficiencies of both TREM2 and DAP12 have been shown to significantly affect microglial activity in various types of neural diseases, including Parkinson’s disease [53, 54]. These disorders may share common pathways centered on microglial function in which TREM2 seems to have a pivotal role. It is possible that the degree of TREM2 protein defect and consequently microglial dysfunction or survival as well as the regional variations in microglial density and the localization of the defective inflammatory processes within the CNS may contribute to the different clinical phenotypes [54, 55].

There are several limitations to our study. Firstly, although we had the largest number of patients ever reported, the sample size is still small, studies with larger sample size are needed to confirm our findings. Secondly, no postmortem examination was available to reveal the underlying pathophysiology. Thirdly, PET imaging, and CSF analysis were performed only in a few patients. Additionally, only X-rays were used to evaluate the asymptomatic cystic bone lesions. CT scan or MRI, dual energy X-ray absorptiometry (DXA) can be better further imaging modalities in suspected patients.

In conclusion, neuroimaging findings consisting of thinning of the corpus callosum, ventricular enlargement, dilatation of the lateral ventricle, atrophy of the caudate nuclei, and periventricular white matter changes suggest a diagnosis of NHD and are useful in the differential diagnosis of early-onset dementias, particularly FTD. Pathological studies suggest vascular and inflammatory processes predominantly involving the white matter are responsible for these neuroradiological findings. Since NHD is an autosomal recessively inherited disorder, genetic analysis should be performed as a first-line investigation in suspected cases, especially in countries where there is a high rate of consanguineous
marriages. This result broadens the clinical spectrum associated with TREM2 mutations, which should be considered in patients with early-onset dementia with leuko-encephalopathy, and atrophy even in the absence of symptomatic skeletal symptoms.

Acknowledgment
The authors would like to thank the patients for their generous participations.

Funding
No support has been received for this study.

Disclosure of Conflict of Interest
The authors report no financial or other conflicts of interest.

Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.

Author Contribution
BS: Conceptualization, data curation, formal analysis, investigation, methodology, resources, writing-original draft; BB: Conceptualization, data curation, formal analysis, investigation, methodology, resources, supervision, writing-original draft and review§editing; ÖG: data curation, investigation, writing- review§editing; FT: formal analysis, investigation, methodology, writing- review§editing; GG: formal analysis, investigation, methodology, writing- review§editing; ZT: data curation, investigation, writing- review§editing; MA: formal analysis, methodology, writing- review§editing; HAH: data curation, investigation, supervision, writing- review§editing; HG: data curation, investigation, writing- review§editing; RG: formal analysis, investigation, methodology, writing-review§editing; JH: formal analysis, investigation, methodology, writing-review§editing; ME: Conceptualization, methodology, supervision, writing-original draft and review§editing. All authors read and approved the final manuscript.
REFERENCES:

[52]. Williamson JC, Larner AJ. Behavioral Variant Frontotemporal Dementia-like Syndrome With Novel Heterozygous TREM2 Frameshift Mutation. *Alzheimer Dis Assoc Disord*. 2019 **33**: 75-76.

FIGURE LEGENDS

Figure 1. An example of a normal corpus callosum (a), and thinning of the corpus callosum in 13 patients (b). Thinning is diffuse, but splenium is relatively spared.

Figure 2. Course of cortical atrophy and white matter involvement in two patients. (a) CT scans acquired in 2012 (left) and in 2017 (right) demonstrating the progressive atrophy of the fronto-temporal cortices during follow-up in Patient P3. (b) MRI scans of the same patient obtained in 2013 (left) and 2014 (right) showing stable appearance of white matter lesions. (c, d, e) MRI scans acquired in 2014 (left) and in 2019 (right) of another patient (P7) demonstrating progressive cortical atrophy and increased enlargement of lateral ventricles (c), mild progression of white matter lesions adjacent to posterior horn of lateral ventricles (d), and more pronounced atrophy of corpus callosum (e).

Figure 3. Bilateral calcification of the basal ganglia seen in Patient P3. No significant progression of the calcification was observed between the two consecutive CT scans acquired in 2012 (a) and 2017 (b).

Supplementary Figure. Measurement of cortical thickness of Patient P9. Cortical thickness was measured at a point 10 cm distal to the lesser trochanter. Cortical thickness index was calculated as the ratio of the femoral diaphysis width (29.3 mm for this patient) minus medullary canal width (11.1 mm for this patient) divided by femoral diaphysis width (29.3 mm for this patient) and found as 0.62.