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Abstract Adolescence is a critical time for the continued maturation of brain networks. Here, we

assessed structural connectome development in a large longitudinal sample ranging from

childhood to young adulthood. By projecting high-dimensional connectomes into compact manifold

spaces, we identified a marked expansion of structural connectomes, with strongest effects in

transmodal regions during adolescence. Findings reflected increased within-module connectivity

together with increased segregation, indicating increasing differentiation of higher-order

association networks from the rest of the brain. Projection of subcortico-cortical connectivity

patterns into these manifolds showed parallel alterations in pathways centered on the caudate and

thalamus. Connectome findings were contextualized via spatial transcriptome association analysis,

highlighting genes enriched in cortex, thalamus, and striatum. Statistical learning of cortical and

subcortical manifold features at baseline and their maturational change predicted measures of

intelligence at follow-up. Our findings demonstrate that connectome manifold learning can bridge

the conceptual and empirical gaps between macroscale network reconfigurations, microscale

processes, and cognitive outcomes in adolescent development.

Introduction
Adolescence is a time of profound and genetically mediated changes in whole-brain network organi-

zation (Larsen and Luna, 2018; Menon, 2013). Adolescent development is important for the matu-

ration in cognitive and educational functions and brain health more generally, a notion reinforced by

the overlapping onset of several neurodevelopmental and psychiatric disorders (Hong et al., 2019;

Khundrakpam et al., 2017; Paus et al., 2008). With increased capacity to carry out longitudinal

studies in large samples, it is now possible to track changes in brain network organization within sub-

jects, providing insights into maturational processes, their biological underpinnings, and their effects

on behavior and cognition.

By offering an in vivo window into brain organization, neuroimaging techniques, such as magnetic

resonance imaging (MRI), offer the ability to track adolescent brain development over time. Several

Park et al. eLife 2021;10:e64694. DOI: https://doi.org/10.7554/eLife.64694 1 of 32

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.64694
https://creativecommons.org/
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


cross-sectional and longitudinal studies in neurodevelopmental cohorts have focused on the analysis

of morphological changes (Gogtay et al., 2004; Shaw et al., 2006; Tamnes et al., 2017), including

MRI-based cortical thickness (Shaw et al., 2006; Tamnes et al., 2017) and volumetric measures

(Gogtay et al., 2004; Tamnes et al., 2017). Studies robustly show initial gray matter increases until

mid-late childhood followed by a decline for the rest of the lifespan. During adolescence, cortical

thickness decreases in widespread brain regions (Khundrakpam et al., 2013; Shaw et al., 2006;

Sotiras et al., 2017; Tamnes et al., 2017). Thus, contextualizing connectome alterations relative to

established patterns of cortical thickness findings may establish whether inter-regional network

changes occur above and beyond these diffuse effects of regional morphological maturation. More

recent work explored changes in intracortical microstructure, capitalizing on myelin-sensitive con-

trasts such as magnetization transfer ratio (MT) mapping, which generally suggest overall increases

in adolescence (Paquola et al., 2019a; Whitaker et al., 2016) together with depth-dependent shifts

in intracortical myelin profiles (Paquola et al., 2019a). Besides the increasingly recognized changes

in cortico-cortical connectivity, studying subcortical regions offer additional insights for understand-

ing brain maturation during adolescence. Indeed, an increasing body of connectome-level studies

emphasizes that subcortical structures contribute significantly to patterns of whole-brain organiza-

tion, dynamics, and cognition (Hwang et al., 2017; Müller et al., 2020; Shine et al., 2019). In prior

neurodevelopmental studies, it has been shown that the volumes of the striatum and thalamus

decrease between adolescence and adulthood, potentially paralleling processes resulting in cortical

gray matter reduction during this time window (Herting et al., 2018). A close inter-relationship

between cortical and subcortical development is also suggested by recent functional connectivity

work suggesting that cortico-subcortical pathways are intrinsically remodeled during adolescence

(Váša et al., 2020), and these changes affect cognitive functioning. Collectively, these prior findings

suggest measurable trajectories of cortical and subcortical structural organization and support asso-

ciations to cognitive development (Baum et al., 2020; Shaw et al., 2006).

Recent conceptual and methodological advances enable the study of brain organization, develop-

ment, and substrates underlying cognitive trajectories in humans. One key modality to track devel-

opmental changes in structural connectivity is diffusion MRI (dMRI), a technique sensitive to the

displacement of water in tissue that allows for the non-invasive approximation of inter-regional white

matter tracts. Prior cross-sectional and longitudinal studies in children and adolescents outlined

changes in the microstructure of major white matter tracts during development based on the analy-

sis of dMRI-derived tissue parameters (Lebel and Beaulieu, 2011; Schmithorst and Yuan, 2010).

These findings have been complemented by assessments of brain network topology using graph-

theoretical analysis (Baker et al., 2015; Hagmann et al., 2010; Lebel and Beaulieu, 2011;

Oldham and Fornito, 2019), which reported a relatively preserved spatial layout of structural hubs

across adolescent development on the one hand (Hagmann et al., 2010), yet with a continued

strengthening of their connectivity profiles, likely underpinned by the ongoing maturation of long-

range association fibers (Baker et al., 2015; Lebel and Beaulieu, 2011; Oldham and Fornito,

2019).

One emerging approach to address connectome organization and development comes from the

application of manifold learning techniques to connectivity datasets. By decomposing whole-brain

structural and functional connectomes into a series of lower dimensional axes capturing spatial gra-

dients of connectivity variations, these techniques provide a compact perspective on large-scale con-

nectome organization (Margulies et al., 2016; Paquola et al., 2019b; Vos de Wael et al., 2020a).

In addition, these techniques capture multiple, potentially overlapping gradients in connectivity

along cortical mantle, which can represent both subregional heterogeneity and multiplicity within a

brain region (Haak and Beckmann, 2020). In prior work, we showed that multiple dMRI gradients

can illustrate structural underpinnings of dynamic functional communication in the adult human con-

nectome (Park et al., 2021b). In line with prior conceptual accounts, the low-dimensional eigenvec-

tors (i.e., gradients) derived from these techniques provide continuous dimensions of cortical

organization, and thus the eigenvectors can jointly generate intrinsic coordinate systems of the brain

based on connectivity (Bijsterbosch et al., 2020; Haak et al., 2018; Huntenburg et al., 2018;

Margulies et al., 2016; Mars et al., 2018). Beyond these methodological considerations, prior work

has shown that the principal gradients estimated from resting-state functional (Margulies et al.,

2016), microstructural (Paquola et al., 2019b), and diffusion MRI (Park et al., 2021a) all converge

broadly along an established model of sensory-fugal hierarchy and laminar differentiation
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(Mesulam, 1998), allowing gradient mapping techniques to make conceptual contact to theories of

cortical organization, development, and evolution (Buckner and Krienen, 2013; Goulas et al.,

2018; Huntenburg et al., 2018; Sanides, 1969; Sanides, 1962). An emerging literature has indeed

shown utility of the gradient framework to study primate evolution and cross-species alignment

(Blazquez Freches et al., 2020; Valk et al., 2020; Xu et al., 2020), neurodevelopment (Hong et al.,

2019; Paquola et al., 2019a), as well as plasticity and structure-function coupling (Park et al.,

2021b; Valk Sofie et al., 2020; Vázquez-Rodrı́guez et al., 2019). In a recent assessment by our

team, manifold learning techniques have been applied to myelin sensitive intracortical MT data,

showing an increasing myeloarchitectural differentiation of association cortex throughout adoles-

cence (Paquola et al., 2019a). Still, the longitudinal maturation of dMRI connectomes in children

and adolescents using manifold techniques has not been tracked.

Imaging-transcriptomics approaches allow for the identification of cellular and molecular factors

that co-vary with imaging-based findings (Arnatkeviciute et al., 2019; Fornito et al., 2019;

Gorgolewski et al., 2014; Hawrylycz et al., 2015; Thompson et al., 2013). Recently established

resources, such as the Allen Human Brain Atlas (Arnatkeviciute et al., 2019; Hawrylycz et al.,

2015), can be utilized to spatially associate macroscale imaging/connectome data with the expres-

sion patterns of thousands of genes. These findings have already been applied in the study of

healthy adults (Hawrylycz et al., 2015; Park et al., 2020) and typically developing adolescents

(Mascarell Maričić et al., 2020; Padmanabhan and Luna, 2014; Paquola et al., 2019a;

Vértes et al., 2016; Whitaker et al., 2016), as well as individuals suffering from prevalent brain dis-

orders (Altmann et al., 2018; Hashimoto et al., 2015; Klein et al., 2017; Park et al., 2021a;

Patel et al., 2021; Romero-Garcia et al., 2019). The gene sets that co-vary with in vivo findings can

furthermore be subjected to gene set enrichment analyses to discover potentially implicated molec-

ular, cellular, and pathological processes (Ashburner et al., 2000; Carbon et al., 2019; Chen et al.,

2013; Dougherty et al., 2010; Kuleshov et al., 2016; Morgan et al., 2019; Romero-Garcia et al.,

2018; Subramanian et al., 2005). For example, studies in newborns have shown that cortical mor-

phology reflects spatiotemporal patterns of gene expression in fetuses, linking molecular mecha-

nisms to in vivo measures of cortical development in early life (Ball et al., 2020). Work in

adolescents has furthermore shown that developmental changes in regional cortical thickness meas-

ures and myelin proxies spatially co-localize with the expression patterns of genes involved in synap-

tic and oligodendroglial function (Paquola et al., 2019a; Whitaker et al., 2016). Building on these

prior investigations, the current study aimed at exploring whether adolescent structural connectome

reconfigurations, assessed using manifold learning techniques, reflect the expression patterns of

specific genes in order to identify potential molecular signatures of macroscale structural network

development.

Here, we charted developmental changes in structural connectome organization, based on an

accelerated longitudinal neuroimaging study involving 208 participants investigated between 14 and

26 years of age (Kiddle et al., 2018; Whitaker et al., 2016). Compared to cross-sectional designs,

longitudinal studies track within-subject change, separating developmental effects from between-

subject variability (Louis et al., 1986). We first estimated longitudinal changes in structural connec-

tome manifolds across age. This compact and lower dimensional space furthermore allowed for the

integration of connectome-level findings with changes in MRI-based measures of cortical morphol-

ogy and intracortical myelin. We furthermore projected subcortico-cortical connectivity patterns into

the manifold space to assess parallel developmental shifts of these pathways in the studied time win-

dow. Connectome manifold changes were contextualized at the molecular level via transcriptomic

association and developmental enrichment analyses based on post-mortem datasets, which further-

more allowed for data-driven exploration of time windows of spatially co-localized gene sets. To

also assess behavioral associations of connectome manifold changes, we utilized supervised machine

learning to predict future measures of cognitive function quantified via the intelligence quotient (IQ).

IQ is a widely used marker of general cognitive abilities, which shows good test–retest reliability

(Brown and May, 1979; Watkins and Smith, 2013; Catron, 1978; G.-Matarazzo et al., 1973;

Snow et al., 1989; Wagner and Caldwell, 1979) and has previously been applied to index overall

cognitive function during development (Crespi, 2016; Garde et al., 2005; Garde et al., 2000;

Koenis et al., 2018; Park et al., 2016; Ramsden et al., 2011; Shaw et al., 2006; Suprano et al.,

2020). In the study of neurodevelopment, neuroimaging reports have previously assessed associa-

tions between IQ and large-scale network measures in children to adolescents (Koenis et al., 2018;
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Ramsden et al., 2011; NSPN Consortium et al., 2018; Shaw et al., 2006; Suprano et al., 2020).

Multiple sensitivity analyses were conducted at several steps to verify the robustness of our findings,

and analytical code is made fully accessible to allow for independent replication of our findings.

Results
These findings were based on the Neuroscience in Psychiatry Network (NSPN) cohort (Kiddle et al.,

2018; Whitaker et al., 2016). In brief, we studied 208 healthy individuals enrolled in an accelerated

longitudinal study, with approximately equal numbers of males and females in each of five age-

related strata that collectively spanned the time period from 14 to 25 years coinciding with transition

from adolescence to young adulthood. Participants (48% female) had a mean age of 18.82 years

(range = 14–25 years) at baseline and 19.95 years (15–26 years) at follow-up. The average interval

between baseline and follow-up scan was 11.28 months (range = 6–12 months). See Materials and

methods for details on participant selection, image processing, and analysis.

Macroscale structural connectome manifold
For every participant, we built cortex-wide structural connectome manifolds formed by the eigenvec-

tors displaying spatial gradients in structural connectome organization using non-linear dimensional-

ity reduction techniques (Vos de Wael et al., 2020a; Vos de Wael et al., 2020b, https://github.

com/MICA-MNI/BrainSpace). Individual manifolds were aligned to a template manifold estimated

from a hold-out dataset (see Materials and methods) (Langs et al., 2015; Vos de Wael et al.,

2020a). Three eigenvectors (E1, E2, and E3) explained approximately 50% of information in the tem-

plate affinity matrix (i.e., 20.7/15.8/13.5% for E1/E2/E3, respectively), with each eigenvector showing

a different axis of spatial variation across the cortical mantle (Figure 1A). Eigenvectors depicted a

continuous differentiation between medial and lateral cortices (E1), between inferior and superior

cortices (E2), and between anterior and posterior areas (E3). For each participant and time point, we

calculated manifold eccentricity, which depicts how far each node is located from the center of the

template manifold (see Materials and methods). It thus quantifies the changes in eigenvectors

between the time points in terms of expansion and contraction instead of comparing multidimen-

sional connectome manifolds (Bethlehem et al., 2020). The manifold eccentricity showed high val-

ues in frontal and somatomotor regions, while temporoparietal, visual, and limbic regions showed

low values (Figure 1B).

Changes in manifold eccentricity across age
Leveraging linear mixed effect models that additionally controlled for effects of sex, site, head

motion, and subject-specific random intercepts (Worsley et al., 2009), we assessed changes in man-

ifold eccentricity across age (see Materials and methods). Manifold eccentricity expanded as age

increased, especially in bilateral prefrontal and temporal areas, as well as left early visual and right

lateral parietal cortices (false discovery rate [FDR] < 0.05; Benjamini and Hochberg, 1995;

Figure 1C). Stratifying these effects along four cortical hierarchical levels, defined using an estab-

lished taxonomy based on patterns of laminar differentiation and tract-tracing data in non-human

primates (Mesulam, 1998), we identified peak effects in heteromodal association and paralimbic

areas (Figure 1D). Convergent findings were observed when analyzing the effects with respect to

intrinsic functional communities (Yeo et al., 2011), showing highest effects in default mode and lim-

bic areas followed by visual and frontoparietal cortices. No significant contraction of manifold eccen-

tricity was observed. In addition, we could not find any significant effects when we fitted the model

with a quadratic form of age (i.e., age2), indicating the manifold eccentricity linearly increases across

age.

To conceptualize the findings derived from manifold eccentricity with respect to conventional net-

work topologies, we correlated manifold eccentricity changes with several graph-theoretical meas-

ures of structural connectome (Figure 1—figure supplement 1; Rubinov and Sporns, 2010). We

first defined six spatially contiguous clusters within the regions that showed significant age-related

changes in manifold eccentricity (see Figure 1C) and correlated within-subject changes in manifold

eccentricity with developmental changes in degree centrality, connectivity distance, and modular

parameters (i.e., within-module degree and participation coefficient based on modules defined via

Louvain’s community detection algorithm [Blondel et al., 2008]; see Materials and methods;
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Figure 1. Structural connectome manifolds. (A) Systematic fiber tracking based on diffusion magnetic resonance imaging generated a cortex-wide

structural connectome, which was subjected to diffusion map embedding. As shown in the scree plot, three eigenvectors (E1, E2, E3) accounted for

approximately 50% information of connectome data, and each depicted a different gradual transition across the cortical mantle. (B) Manifold

eccentricity measured by Euclidean distance between the template center and each data point. Arrows depict average positional change in

Figure 1 continued on next page

Park et al. eLife 2021;10:e64694. DOI: https://doi.org/10.7554/eLife.64694 5 of 32

Research article Neuroscience

https://doi.org/10.7554/eLife.64694


Figure 1—figure supplement 2). We found significant positive associations for degree centrality

and within-module degree, suggesting that connectome manifold expansion reflects a concurrent

increase of overall connectivity, particularly within modules. Stratifying changes in manifold eccen-

tricity, as well as connectome topology measures, according to the discretized age bins confirmed

these age-related trends (Figure 1—figure supplement 3). Indeed, except for participation coeffi-

cient, values in general increased from childhood to young adulthood.

Effects of cortical morphology and microstructure
Previous studies demonstrated significant changes in cortical morphology and microstructure during

adolescence, showing co-occurring reductions in cortical thickness and MT skewness, the latter

being an index of depth-dependent intracortical myelin changes in multiple lobes (Gogtay et al.,

2004; Khundrakpam et al., 2017; Paquola et al., 2019a; Shaw et al., 2006). We replicated these

findings by showing cortical thinning in almost all brain regions across the studied age window as

well as reductions in depth-dependent MT skewness, suggestive of supragranular enrichment of

myelin (Figure 2A). To evaluate whether the age-related changes in manifold eccentricity were

robust above and beyond these regional changes in cortical thickness and MT, we implemented lin-

ear mixed effect models including cortical thickness and MT as covariates in the analysis of develop-

mental change in manifold eccentricity (Figure 2B). While we observed virtually identical spatial

patterns of manifold eccentricity changes in models that controlled for thickness, MT skewness, and

both, age-related effects in regions of significant manifold eccentricity findings (see Figure 1C) were

reduced in models that additionally controlled for these covariates (average reduction of t-value in

models controlling for thickness/MT skewness/both = 42/18/68%).

Age-related changes in subcortico-cortical connectivity
Besides visualizing these changes in cortico-cortical connectivity, we also capitalized on the manifold

representation to assess adolescent changes in the connectivity of subcortical regions, to obtain a

more holistic insight into whole-brain connectome reconfigurations during this time period, and to

examine whether subcortical connectivity patterns undergo parallel developmental trajectories

(Hwang et al., 2017; Shine et al., 2019). Specifically, we assessed changes in subcortical-weighted

manifolds across age, defined by projecting the streamline strength of subcortical regions to cortical

Figure 1 continued

connectivity space from baseline to follow-up. The color of each arrow represents each brain region mapped on the surface on the bottom. (C) The

histogram represents age distribution of all subjects at baseline and follow-up. The colors on brain surfaces indicate t-statistics of regions showing

significant longitudinal changes in manifold eccentricity across age, following multiple comparisons correction with a false discovery rate < 0.05.

Datapoint colors in the scatter plot represent t-statistics. Identified regions are represented with arrows that originate from baseline to follow-up. (D)

Stratification of age-related changes in manifold eccentricity according to prior models of cortical hierarchy (Mesulam, 1998) and functional magnetic

resonance imaging communities (Yeo et al., 2011).

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Source files for connectome manifolds and age-related changes in manifold eccentricity.

Figure supplement 1. Association between structural connectome manifold and connectome topology measures.

Figure supplement 2. Modular structures.

Figure supplement 3. Age-related trends in connectome topology measures.

Figure supplement 4. Structural connectome manifolds using Schaefer 300 atlas.

Figure supplement 5. Sensitivity analysis for site and sex.

Figure supplement 6. Longitudinal changes in manifold eccentricity, after excluding participants with the lowest correspondence to template
manifolds.

Figure supplement 7. Structural connectome manifolds generated using principal component analysis.

Figure supplement 8. Longitudinal changes in graph measures across age.

Figure supplement 9. Longitudinal changes in manifold eccentricity calculated using all eigenvectors.

Figure supplement 10. Connectome manifolds estimated using group consistency method.

Figure supplement 11. Structural connectome manifolds using a structural parcellation.

Figure supplement 12. Longitudinal changes in edge weights of structural connectome.

Figure supplement 13. Longitudinal changes in manifold eccentricity using a subset of participants who completed Tanner scale.

Figure supplement 14. Structural connectome manifolds using different template dataset.

Figure supplement 15. A schema of manifold eccentricity for three eigenvectors.
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targets to the manifold space (see Materials and methods). Such an analysis situates changes in sub-

cortico-cortical pathways in the macroscale context of cortico-cortical connectivity identified in the

previous analyses. After multiple comparisons correction, the caudate and thalamus showed signifi-

cant age-related effects on subcortical-weighted manifolds (FDR < 0.05; Figure 3), and marginal

effects were observed in the putamen, pallidum, and hippocampus (FDR < 0.1).

Transcriptomic association analysis
Connectome organization, in general, and macroscale gradients, in particular, have been argued to

reflect genetic expression profiles, underscoring the close link between the physical layout of the

brain and innate transcriptional patterning (Buckner and Krienen, 2013; Fornito et al., 2019). Here,

we carried out a transcriptomic association analysis and developmental enrichment analyses to con-

textualize the age-related manifold eccentricity changes with respect to patterns of post-mortem

gene expression from a sample of independent adults (Figure 4A). Specifically, leveraging mixed

effect models, we associated the spatial patterns of manifold change across age in the NSPN sample

(controlling for covariation of cortical thickness and MT) with cortical maps of post-mortem gene

expression data from the Allen Institute for Brain Sciences (Arnatkeviciute et al., 2019;

Gorgolewski et al., 2015; Gorgolewski et al., 2014; Hawrylycz et al., 2012; Markello et al.,

Figure 2. Age-related effects on macro- and microstructural metrics of cortical anatomy. (A) The t-statistics of identified regions that showed significant

age-related changes in cortical thickness (upper row) and magnetization transfer ratio MT (bottom row), and stratification of t-statistics according to

cortical hierarchy (Mesulam, 1998) and functional community (Yeo et al., 2011). (B) Age-related changes in manifold eccentricity after controlling for

cortical thickness and MT.

The online version of this article includes the following source data for figure 2:

Source data 1. Source files for age-related changes in cortical thickness and magnetization transfer ratio.
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2020). Among the list of most strongly associated genes (FDR < 0.05), we selected only genes that

were consistently expressed across different donors (r > 0.5) (Arnatkeviciute et al., 2019;

Hawrylycz et al., 2012; Markello et al., 2020; Supplementary file 1). We performed developmen-

tal gene set enrichment analysis using the cell-type-specific expression analysis (CSEA) tool, which

compares the selected gene list with developmental enrichment profiles (see Materials and methods)

(Dougherty et al., 2010; Xu et al., 2014). This analysis highlights developmental time windows

across macroscopic brain regions in which genes are strongly expressed. We found marked expres-

sion of the genes enriched from childhood onward in the cortex, thalamus, and cerebellum

(FDR < 0.001; Figure 4B). Although signal was reduced, genes were also enriched for expression in

the striatum at the transition from childhood to adolescence (FDR < 0.05). On the other hand, identi-

fied genes were not found to be expressed in the hippocampus and amygdala.

Association between connectome manifold and cognitive function
Finally, to establish associations between connectome reconfigurations and cognitive functioning,

we utilized supervised machine learning to predict full IQ at follow-up using manifold eccentricity

features. Independent variables were combinations of cortical and subcortical manifold features at

baseline and their age-related trajectory data. We used elastic net regularization with nested ten-

fold cross-validation (Cawley and Talbot, 2010; Parvandeh et al., 2020; Tenenbaum et al., 2000;

Varma and Simon, 2006; Zou and Hastie, 2005) (see Materials and methods), and repeated the

prediction 100 times with different training and test dataset compositions to mitigate subject selec-

tion bias. Across cross-validation and iterations, 6.24 ± 5.74 (mean ± SD) features were selected to

predict IQ using manifold eccentricity of cortical regions at baseline, 6.20 ± 5.14 cortical features at

baseline and maturational change, 5.45 ± 5.99 cortical and subcortical features at baseline, and

5.16 ± 5.43 at baseline and maturational change, suggesting that adding more independent varia-

bles may not per se lead to improvement in prediction accuracy. The manifold eccentricity of cortical

regions at baseline significantly predicted future IQ score (mean ± SD r = 0.14 ± 0.04; mean absolute

error [MAE] = 8.93 ± 0.16, p=0.09). Prediction performance was slightly improved when we com-

bined the manifold eccentricity both at baseline and differences between follow-up and baseline

(r = 0.18 ± 0.04; MAE = 9.10 ± 0.19, p=0.04) (Figure 5A). Notably, prediction accuracy was

improved if we additionally considered subcortical manifold features (baseline: r = 0.17 ± 0.03;

MAE = 8.74 ± 0.11, p=0.04; baseline and maturational change: r = 0.21 ± 0.02; MAE = 8.86 ± 0.14,

p=0.01) (Figure 5B). The regions showing strongest predictive validity for IQ were prefrontal, parie-

tal, and temporal cortices, as well as the caudate and thalamus. The probability map of the selected

brain regions (bottom right of Figure 5B) was further decoded using Neurosynth (Yarkoni et al.,

Figure 3. Longitudinal changes in subcortical-weighted manifolds. The t-statistics of age-related changes in subcortical-weighted manifolds. The effects

of each subcortical region are reported on the radar plot. FDR: false discovery rate.

The online version of this article includes the following source data for figure 3:

Source data 1. Source files for age-related changes in subcortical-weighted manifolds.
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2011), revealing strong associations with higher-order cognitive and social terms (Figure 5—figure

supplement 1). We compared the prediction performance of our model with a baseline model,

where IQ of the test set was simple average of training set (r = �0.15 ± 0.06, MAE = 8.98 ± 0.04,

p=0.12; see Materials and methods). We found that our model outperformed this baseline model

Figure 4. Transcriptomic analysis. (A) Gene decoding process by associating t-statistics from the linear mixed

effect model with post-mortem gene expression maps. (B) We identified genes that were spatially correlated with

the input t-statistic map (false discovery rate [FDR] < 0.05) and selected only those that were furthermore

consistently expressed across different donors (r > 0.5). These genes were input to a developmental enrichment

analysis, showing strong associations with cortex, thalamus, striatum, and cerebellum during the childhood-to-

adulthood time window. The degree of gene expression for developmental windows is reported on the bottom.

The curve represents log transformed FDR-corrected p-values, averaged across the brain regions for each of the

time windows reported on the bottom. ***FDR < 0.001, ** FDR < 0.01, *FDR < 0.05.

The online version of this article includes the following source data for figure 4:

Source data 1. Source files for developmental enrichment profiles.
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(Meng’s z-test p < 0.001) (Meng et al., 1992). We also predicted the change of IQ between the

baseline and follow-up, instead of IQ at follow-up, using the imaging features. However, we could

not find significant results.

Sensitivity analysis
Spatial scale
Repeating the longitudinal modeling with a different spatial scale (i.e., 300 parcels), findings were

highly consistent (Figure 1—figure supplement 4).

Site and sex effects
Furthermore, manifold eccentricity of the identified cortical regions and age consistently correlated

positively across different sites and within both biological sexes, yielding non-significant interaction

effects (Figure 1—figure supplement 5).

Figure 5. Intelligence quotient (IQ) prediction by baseline and follow-up measures of cortical and subcortical manifolds. (A) Probability of selected

brain regions across ten-fold cross-validation and 100 repetitions for predicting future IQ using only baseline manifold eccentricity (left), and both

baseline and maturational change in the feature (right). Correlations between actual and predicted IQ are reported. Black lines indicate mean

correlation, and gray lines represent 95% confidence interval for 100 iterations with different training/test dataset. (B) The prediction performance when

both cortical and subcortical features were considered. MAE: mean absolute error.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Source files for selected probability as well as actual and predicted intelligence quotient.

Figure supplement 1. Cognitive decoding of the selected regions for intelligence quotient (IQ) prediction.

Figure supplement 2. Intelligence quotient (IQ) prediction using regression tree approach.
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Different parameters for diffusion map embedding
When we changed parameters of diffusion map embedding for generating connectome manifolds

(see Materials and methods), t-statistic maps of age-related changes in manifold eccentricity were

largely consistent (mean ± SD linear correlation r = 0.92 ± 0.10).

Gradient alignment fidelity
When calculating linear correlations between template and individual manifolds before and after

alignment, we found significant increases after alignment (r = 0.92 ± 0.03/0.93 ± 0.03/0.94 ± 0.03)

compared to before alignment (�0.02 ± 0.03/–0.001 ± 0.37/0.003 ± 0.12) for E1/E2/E3, respectively,

supporting effectiveness of alignment. After excluding 10% of subjects with poor alignment (cutoff

r = 0.83; the new set was correlated with the template manifold, r = 0.94 ± 0.01), we found consis-

tent age-related changes in manifold eccentricity (Figure 1—figure supplement 6), with the t-statis-

tic map showing strong correlation to the map derived in the whole sample (r = 0.97, p<0.001).

Connectome manifold generation using principal component analysis
In a separate analysis, we generated eigenvectors using principal component analysis (Wold et al.,

1987), instead of diffusion map embedding (Coifman and Lafon, 2006), and found consistent spa-

tial maps (linear correlation = 0.998 ± 0.001 across E1/E2/E3; Figure 1—figure supplement 7A) and

longitudinal findings (Figure 1—figure supplement 7B).

Longitudinal changes in graph-theoretical measures
Repeating the longitudinal modeling using graph-theoretical centrality measures, we found signifi-

cant age-related longitudinal changes in degree and eigenvector centrality, while betweenness cen-

trality did not reveal significant effects, in similar regions to those that had significant age-related

changes in manifold eccentricity (Figure 1—figure supplement 8). Correlating the effect size maps

for manifold eccentricity and each graph measure, we found a significant yet variable spatial similar-

ity of the effect maps (betweenness centrality: r = 0.18, spin-test p = 0.02; degree centrality:

r = 0.57, p < 0.001; eigenvector centrality: r = 0.47, p < 0.001).

Manifold eccentricity based on all eigenvectors
Repeating manifold eccentricity calculation and age modeling using all eigenvectors, instead of

using only the first three, we observed relatively consistent results with our original findings (linear

correlation of manifold eccentricity r = 0.54, p<0.001; t-statistic map r = 0.68, p<0.001), also point-

ing to manifold expansion in transmodal cortices (Figure 1—figure supplement 9).

Robustness of group representative structural connectome
We compared gradients derived from the group representative structural connectome, based on (i)

distance-dependent thresholding (Betzel et al., 2019) and (ii) consistency thresholding (Wang et al.,

2019; Figure 1—figure supplement 10). We found high similarity in spatial maps of the estimated

manifolds (r = 0.89 ± 0.01 for E1; 0.93 ± 0.004 for E2; 0.85 ± 0.01 for E3 across six different thresh-

olds), indicating robustness.

Connectome manifolds based on structural parcellation
We repeated our analyses with a structural parcellation, defined using a sub-parcellation of folding

based on the Desikan–Killiany atlas (Desikan et al., 2006; Vos de Wael et al., 2020a; Figure 1—fig-

ure supplement 11). Despite slight differences in the topography of manifold eccentricity in lateral

prefrontal, temporal, and occipital cortices, we could replicate strong age-related effects in hetero-

modal association areas, together with effects in caudate and hippocampus (FDR < 0.05), and mar-

ginally in thalamus (FDR < 0.1).

Longitudinal modeling using edge weights
Repeating the longitudinal modeling across age using connectome edge weights, we found signifi-

cant increases in edge weights within frontoparietal and default mode networks, as well as in
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attention and sensory networks (FDR < 0.05; Figure 1—figure supplement 12), consistent with find-

ings based on manifold eccentricity.

Manifold eccentricity and pubertal stages
We repeated the longitudinal modeling within a subset of participants who completed the Tanner

scale (n = 73) (Marshall and Tanner, 1970; Marshall and Tanner, 1969) and found relatively consis-

tent albeit weaker age-related changes in manifold eccentricity as for the overall sample (Figure 1—

figure supplement 13A). Notably, manifold eccentricity within the identified regions derived from

overall sample and Tanner scale revealed a significant interaction effect (t = 2.36, p=0.01; Figure 1—

figure supplement 13B), suggesting that participants in early pubertal stages show more marked

changes in manifold eccentricity across age compared to those in later stages.

IQ prediction using nonlinear model
We predicted IQ at follow-up using a regression tree method (Breiman et al., 1984), instead of lin-

ear regression model, but we could not find improved prediction performance (Figure 5—figure

supplement 2).

Discussion
The current study tracked whole-brain structural connectome maturation from adolescence to young

adulthood in an accelerated longitudinal imaging cohort (Kiddle et al., 2018; Whitaker et al.,

2016). Capitalizing on advanced manifold learning techniques applied to dMRI-derived connec-

tomes, we established that higher-order association cortices in prefrontal, medial and superior tem-

poral areas, as well as parieto-occipital regions, expanded in their connectome manifold

representation indicative of an increased differentiation of these systems from the rest of the brain

in adolescence. Parallel topological analysis based on graph theory indicated that these changes

anatomically coincided with increases in the within-module connectivity of transmodal cortices. Find-

ings were consistent across the different acquisition sites and biological sexes, and similar albeit

slightly weaker when correcting connectivity manifolds for MRI-based measures of macrostructure

(cortical thickness) and microstructure (skewness of MT depth profile). In addition to the cortical

manifold expansion, we found parallel reconfigurations of subcortical connectivity patterns for the

caudate and thalamus. Decoding our findings with post-mortem gene expression maps implicated

genes enriched in adolescence and young adulthood, again pointing to both cortical as well as sub-

cortical targets. Finally, the combination of both cortical and subcortical manifold measures pre-

dicted behavioral measures of intelligence at follow-up, with higher performance than cortical or

subcortical data alone. Collectively, our findings provide new insights into adolescent structural con-

nectome maturation and indicate how multiple scales of cortical and subcortical organization can

interact in typical neurodevelopment.

Leveraging advanced manifold learning, we depicted macroscale connectome organization along

continuous cortical axes. Similar approaches have previously been harnessed to decompose micro-

structural (Paquola et al., 2019b; Paquola et al., 2019a) and functional MRI (Bethlehem et al.,

2020; Hong et al., 2019; Margulies et al., 2016; Murphy et al., 2019; Vos de Wael et al., 2020a).

These techniques are appealing as they offer a low-dimensional perspective on connectome reconfi-

gurations in a data-driven and spatially unconstrained manner. In our longitudinal study, we could

identify marked connectome expansion during adolescence, mainly encompassing transmodal and

heteromodal association cortex in prefrontal, temporal, and posterior regions, the territories known

to mature later in development (Gogtay et al., 2004; Shaw et al., 2006). Findings remained consis-

tent when we considered a linear dimensionality reduction technique, suggesting robustness to

methodological details of this analysis. Connectome expansion can be understood as an overall

greater differentiation of the connectivity of these areas from the rest of the brain as they would

then cover wider portions of the corresponding manifold space. Manifold expansion in higher-order

areas correlated with an increase in their within-module connectivity, but not with participation coef-

ficient and connectivity distance measures that would be more reflective of their between-module

connectivity. In light of potential limitations of dMRI tractography in detecting long-distance fiber

tracts (Betzel et al., 2019; Maier-Hein et al., 2017), we cannot rule out a reduced sensitivity of our
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approach for the study of long-range inter-regional connections. Nevertheless, our diffusion model-

ing was based on constrained spherical-deconvolution approaches together with SIFT2-based tracto-

gram filtering, in addition to using a distance-dependent thresholding approach that may have

partially mitigated these limitations (Betzel et al., 2019). Thus, our findings do overall confirm and

extend prior dMRI studies that have focused on specific tracts and that have indicated considerable

developmental shifts in diffusion parameters, such as increases in fractional anisotropy and decreases

in mean diffusivity in early and late adolescence (Olson et al., 2009). Other studies have furthermore

reported increased streamline count estimates (Genc et al., 2020). In this context, our macroscale

manifold findings likely reflect an ongoing consolidation of transmodal cortical communities. These

findings align with prior graph-theoretical studies, which have pointed to concurrent increases in net-

work integration and consolidation of network hubs from late childhood to early adulthood

(Baker et al., 2015; Lebel and Beaulieu, 2011; Oldham and Fornito, 2019). Considering their dis-

tributed regional substrate, these network effects are likely driven by the ongoing maturation of

fiber bundles that interconnect these higher-order cortices, including superior longitudinal fascicules,

but also thalamic and basal ganglia pathways (Tamnes et al., 2010), throughout adolescence.

Projecting manifold solutions back onto cortical surfaces allowed us to integrate our connectome

manifold results with morphometric and intracortical intensity indices obtained via structural and

quantitative MRI contrasts in the same participants. We were thus able to balance the network-level

effects against trajectories of intracortical remodeling. Longitudinal changes in these cortical fea-

tures were overall in agreement with prior work, suggesting marked reductions in cortical thickness

in adolescence (Khundrakpam et al., 2017; Shaw et al., 2006), possibly reflecting synaptic pruning

processes (Petanjek et al., 2011) together with decreases in the skewness of intracortical MT pro-

files, a feature sensitive to preferential myelination of supragranular layers (Paquola et al., 2019a).

Although we still observed significant age-related changes in manifold eccentricity after controlling

for these intracortical and morphological measures, the effect sizes of our findings were reduced.

This effect was particularly evident when running a parallel analysis that additionally controlled for

depth-dependent shifts in cortical microstructure, a finding in line with more generally demonstrated

links between cortical microstructural depth profiles and inter-regional connectivity (Paquola et al.,

2019b). In the context of adolescence and prior findings in the NSPN dataset (Paquola et al.,

2019a), these results thus suggest a coupled process that affects depth-dependent shifts in cortical

myeloarchitecture, on the one hand, and adolescent shifts in macroscale connectome organization,

on the other hand, as shown by our longitudinal manifold analyses.

In addition to emphasizing a distributed set of association cortices and their cortico-cortical con-

nections, analysis of subcortico-cortical connectivity patterns highlighted parallel developmental pro-

cesses in several subcortical structures and their connections, particularly the caudate and thalamus.

These findings were independently supported by transcriptomic association studies and develop-

mental enrichment analyses, which implicated genes expressed in cortical regions and these subcor-

tical structures during late childhood, adolescence, and young adulthood. The caudate nucleus of

the striatum has long been recognized to play an important role in mediating large-scale cortical

network organization (Aglioti, 1997; Alexander and Crutcher, 1990; Graybiel, 1995), a finding

also increasingly recognized in the connectome literature (Hwang et al., 2017; Müller et al., 2020;

Shine et al., 2019). It is known to modulate activity in prefrontal association areas during memory-

driven internal thought processes (Aglioti, 1997), and higher-order cognitive functions, notably

motivational processes, decision making, as well as cognitive control and executive functions more

generally (Aglioti, 1997; Graybiel, 1995). Regions of the striatum participate in dense cortico-sub-

cortical feedback loops and exchange neural activity through dense connections with adjacent basal

ganglia structures as well as the thalamus (Aglioti, 1997; Alexander and Crutcher, 1990;

Shine, 2021). Associating macroscopic changes in manifold eccentricity with post-mortem microar-

ray data provided by the Allen Human Brain Atlas (Arnatkeviciute et al., 2019; Fornito et al.,

2019; Gorgolewski et al., 2014; Hawrylycz et al., 2015; Thompson et al., 2013), we identified

gene sets expressed in cortical regions and subcortical structures of the thalamus and striatum dur-

ing late childhood, adolescence, and young adulthood. Despite these findings being associative and

based on separate datasets, they overall support our results that brain network maturation from late

childhood until early adulthood implicates micro- and macroscale factors in both subcortical and cor-

tical networks. Coupled network and molecular changes may ultimately change subcortical and corti-

cal circuit properties, including the balance of excitation and inhibition (E/I). Human brain
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development involves spatio-temporal waves of gene expression changes across different brain

regions and developmental time windows (Ip et al., 2010; Kang et al., 2011; Shin et al., 2018). In

the study of adolescent development, prior studies have suggested shifts in E/I balance, evolving

from a dominant inhibitory bias in early developmental stages towards stronger excitatory drive in

later stages, and suggested that these may underlie the maturation of cognitive functions such as

working memory and executive control (Dorrn et al., 2010; Lander et al., 2017; Liu et al., 2007). In

common neurodevelopmental disorders, including autism, schizophrenia, and attention-deficit

hyperactivity disorder, imbalances in cortical E/I and cortico-subcortical network function have been

demonstrated (Cellot and Cherubini, 2014; Gandal et al., 2018; Lee et al., 2017; Lewis et al.,

2005; Nelson and Valakh, 2015; Park et al., 2021a; Sohal and Rubenstein, 2019; Trakoshis et al.,

2020), potentially downstream to perturbations of different neurotransmitter systems, such as inter-

neuron-mediated GABA transmission (Bonaventura et al., 2017; Kilb, 2012; Liu et al., 2007;

Park et al., 2021a; Silveri et al., 2013; Trakoshis et al., 2020; Tziortzi et al., 2014).

Higher-order cognitive function implicates functionally relevant whole-brain network mechanisms,

and its prediction may thus leverage structurally governed principles of network integration and seg-

regation. Application of a supervised machine learning framework with cross-validation and regulari-

zation to our cohort demonstrated that it is possible to predict inter-individual variations in future IQ

from structural connectome manifold data. These findings complement conceptual accounts linking

brain organization to cognitive function (Margulies et al., 2016; Mesulam, 1998) and earlier efforts

to predict IQ measures from inter-regional measures of connectivity and graph-theoretical indices of

network topology (Greene et al., 2018). Notably, evaluations of several feature combinations

highlighted that predictive performance was highest when including both baseline and trajectory

data, and when complementing cortical and subcortical manifold features. These findings re-empha-

size the benefits of incorporating subcortical nodes in the characterization of large-scale cortical net-

work organization and overall cognitive function (Alves et al., 2019; Müller et al., 2020;

Shine, 2021; Shine et al., 2019). Of note, although our model significantly outperformed a baseline

model, the relationship between the actual and predicted IQ scores did not locate on the equality

line and the strength of the association was rather weak. Further improvements in brain-based IQ

prediction in adolescence, for example, through combinations of structural and functional imaging

features, will be a focus of future work.

Adolescence is a time characterized by ongoing brain changes (Baum et al., 2020; Gogtay et al.,

2004; Larsen and Luna, 2018; Menon, 2013; Shaw et al., 2006), gradually increasing indepen-

dence from caregivers, accompanied by strong increments in knowledge and our ability to think

more abstractly and to cooperate with our peers to achieve common goals. On the other hand, ado-

lescence is also a sensitive time window for risk taking, the development of addictions, and is associ-

ated with high rates of onset of several psychiatric disorders (Hong et al., 2019;

Khundrakpam et al., 2017). Our study has shown that structural brain network organization contin-

ues to mature significantly during this time period, with higher-order association cortices in prefron-

tal and posterior regions especially showing an expansion of their corresponding connectome

manifold signature. Findings were related to an increased strengthening of intra-community connec-

tivity as well as cortico-subcortical connectivity to thalamo-striatal regions. Although the current

work was restricted to a longitudinal sample of typically developing adolescents, our framework may

be useful to explore multiscale network perturbations in cohorts with a psychiatric diagnosis or those

at risk for addiction or atypical neurodevelopment.

Materials and methods

Participants
We obtained imaging and phenotypic data from the NSPN 2400 cohort, which contains question-

naire data on 2402 individuals (with MRI data on a subset of ~300) from adolescence to young adult-

hood in a longitudinal setting (Kiddle et al., 2018; Whitaker et al., 2016). The NSPN study was

ethically approved by the National Research Ethics Service and conducted in accordance with NHS

research governance standards. All participants provided informed consent in writing, with addi-

tional parental consent for participants aged less than 16 years at enrollment. Included participants

completed quality-controlled (see Data preprocessing section) multimodal MRI scans consisting of
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T1-weighted, MT, and dMRI for at least two time points. Our final sample consisted of a total of 208

participants (48% female; mean [range] age = 18.82 [14–25] years at baseline and 19.95 [15–26] at

follow-up; inter-scan interval of 11.28 [6–12] months), collected from three different UK sites: Wolf-

son Brain Imaging Centre and MRC Cognition and Brain Sciences Unit in Cambridge; and University

College London. We divided the participants into template and non-template cohorts with matched

age, sex, and site ratio. The template dataset (n = 30; 50% female; mean [range] age = 18.69 [15–

24] years at baseline and 19.84 ± 2.66 [16–25] at follow-up) was used for constructing the group

mean template manifold and the non-template dataset (n = 178; 47% female; mean [range]

age = 18.84 [14–25] years at baseline and 19.97 [15–26] at follow-up) was used for conducting main

analyses. Of note, changing the template dataset composition did not markedly affect main findings

(Figure 1—figure supplement 14).

MRI acquisition
Imaging data were obtained using Siemens Magnetom TIM Trio 3T scanners. T1-weighted and MT

sequences were acquired using a quantitative multiparameter mapping sequence (repetition time

[TR]/flip angle = 18.7 ms/20˚ for T1-weighted and 23.7 ms/6˚ for MT; six equidistance echo times

[TE] = 2.2–14.7 ms; voxel size = 1 mm3; 176 slices; field of view [FOV] = 256 � 240 mm; matrix

size = 256 � 240 � 176) (Weiskopf et al., 2013). The dMRI data were acquired using a spin-echo

echo-planar imaging sequence (TR = 8700 ms; TE = 90 ms; flip angle = 90˚; voxel size = 2 mm3; 70

slices; FOV = 192 � 192 mm2; matrix size = 96 � 96 � 70; b-value = 1000 s/mm2; 63 diffusion direc-

tions; and 6 b0 images).

Data preprocessing
T1-weighted data were processed using the fusion of neuroimaging preprocessing (FuNP) pipeline

integrating AFNI, FSL, FreeSurfer, ANTs, and Workbench (Avants et al., 2011; Cox, 1996;

Fischl, 2012; Glasser et al., 2013; Jenkinson et al., 2012; Park et al., 2019), which is similar to the

minimal preprocessing pipeline for the Human Connectome Project (Glasser et al., 2013). Gradient

nonlinearity and b0 distortion correction, non-brain tissue removal, and intensity normalization were

performed. The white matter and pial surfaces were generated by following the boundaries between

different tissues (Dale et al., 1999), and they were averaged to generate the midthickness contour,

which was used to generate the inflated surface. The spherical surface was registered to the

Conte69 template with 164k vertices (Van Essen et al., 2012) and downsampled to a 32k vertex

mesh. Quality control involved visual inspection of surface reconstruction of T1-weighted data, and

cases with faulty cortical segmentation were excluded. Surface-based co-registration between T1-

weighted and MT weighted scans was performed. We generated 14 equivolumetric cortical surfaces

within the cortex and sampled MT intensity along these surfaces (Paquola et al., 2019a). The ver-

tex-wise MT profiles for each surface depth were averaged based on the Schaefer atlas with 200 par-

cels (Schaefer et al., 2018). The dMRI data were processed using MRtrix3 (Tournier et al., 2019),

including correction for susceptibility distortions, head motion, and eddy currents. We visually

inspected the quality of co-registration between the adolescence data and adult-driven surface tem-

plate as well as parcellation atlas, and all data showed reasonable registration results.

Structural connectome manifold identification
Structural connectomes were generated from preprocessed dMRI data (Tournier et al., 2019).

Anatomically constrained tractography was performed using different tissue types derived from the

T1-weighted image, including cortical and subcortical gray matter, white matter, and cerebrospinal

fluid (Smith et al., 2012). Multi-shell and multi-tissue response functions were estimated

(Christiaens et al., 2015), and constrained spherical-deconvolution and intensity normalization were

performed (Jeurissen et al., 2014). The tractogram was generated with 40 million streamlines, with

a maximum tract length of 250 and a fractional anisotropy cutoff of 0.06. Subsequently, spherical-

deconvolution informed filtering of tractograms (SIFT2) was applied to reconstruct whole-brain

streamlines weighted by the cross-section multipliers, which considers the fiber bundle’s total intra-

axonal space across its full cross-sectional extent (Smith et al., 2015). The structural connectome

was built by mapping the reconstructed cross-section streamlines onto the Schaefer 7-network

based atlas with 200 parcels (Schaefer et al., 2018) then log-transformed to adjust for the scale
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(Fornito et al., 2016). We opted for this atlas as it (i) allows contextualization of our findings within

macroscale intrinsic functional communities (Yeo et al., 2011), (ii) incorporates the option to assess

results across different granularities, and (iii) aligns the current study with previous work from our

group (Benkarim et al., 2020; Paquola et al., 2020; Park et al., 2021b; Park et al., 2021a; Rodrı́-

guez-Cruces et al., 2020) and others (Baum et al., 2020; Betzel et al., 2019; Osmanlıoğlu et al.,

2019).

Cortex-wide structural connectome manifolds were identified using BrainSpace (https://github.

com/MICA-MNI/BrainSpace; Vos de Wael et al., 2020a). First, a template manifold was estimated

using a group representative structural connectome of the template dataset. The group representa-

tive structural connectome was defined using a distance-dependent thresholding that preserves

long-range connections (Betzel et al., 2019). An affinity matrix was constructed with a normalized

angle kernel, and eigenvectors were estimated via diffusion map embedding (Figure 1A), a nonlin-

ear dimensionality reduction technique (Coifman and Lafon, 2006) that projects connectome fea-

tures into low-dimensional manifolds (Margulies et al., 2016). This technique is only controlled by a

few parameters, computationally efficient, and relatively robust to noise compared to other nonlin-

ear techniques (Errity and McKenna, 2007; Gallos et al., 2020; Hong et al., 2020;

Tenenbaum et al., 2000), and has been extensively used in the previous gradient mapping literature

(Hong et al., 2019; Hong et al., 2020; Huntenburg et al., 2017; Larivière et al., 2020a;

Margulies et al., 2016; Müller et al., 2020; Paquola et al., 2019a; Park et al., 2021b; Valk et al.,

2020; Vos de Wael et al., 2020a). It is controlled by two parameters a and t, where a controls the

influence of the density of sampling points on the manifold (a = 0, maximal influence; a = 1, no influ-

ence) and t controls the scale of eigenvalues of the diffusion operator. We set a = 0.5 and t = 0 to

retain the global relations between data points in the embedded space, following prior applications

(Hong et al., 2019; Margulies et al., 2016; Paquola et al., 2019a; Paquola et al., 2019b; Vos de

Wael et al., 2020a). Briefly, the eigenvectors estimated from the decomposition technique generate

a connectivity coordinate system (Bijsterbosch et al., 2020; Haak et al., 2018; Huntenburg et al.,

2018; Margulies et al., 2016; Mars et al., 2018) – the diffusion map, where Euclidean distances in

the manifold correspond to diffusion times between the nodes of the network (Coifman and Lafon,

2006). In this manifold space, interconnected brain regions with similar connectivity patterns are

closely located, and regions with weak similarity in connectivity patterns are located farther apart.

After generating the template manifold, individual-level manifolds were estimated from the non-

template dataset and aligned to the template manifold via Procrustes alignment (Langs et al., 2015;

Vos de Wael et al., 2020a). To analyze change in the low-dimensional manifold space, we simplified

the multivariate eigenvectors into a single scalar value that is., manifold eccentricity (Figure 1B).

Manifold eccentricity was calculated as the Euclidean distance between the manifold origin and all

data points (i.e., brain regions) in manifold space. The template center was defined as the centroid

of the first three eigenvectors, which explained 50% variance. Specifically, manifold eccentricity was

defined as follows:
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CT is the template manifold origin, N the number of brain regions, T �ð Þ the template manifold,

ME the manifold eccentricity, I �ð Þ the individual manifold, and CT eð Þ the origin of e-th template mani-

fold. Simply, as shown in Figure 1—figure supplement 15, each brain region (i.e., each dot in the

scatter plot) is described as a vector from the manifold origin (i.e., triangular mark in the scatter

plot), and manifold eccentricity is simply a length (i.e., Euclidean distance) of that vector. Shifts in

connectivity patterns of a given region thus will lead to shifts in the vectors, which in turn changes

the manifold eccentricity. Thus, manifold eccentricity quantifies global brain organization based in

the connectivity space.
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Age-related changes in structural manifolds
We assessed changes in manifold eccentricity across age using a linear mixed effect model

(Worsley et al., 2009), controlling for effects of sex, site, head motion, and subject-specific random

intercept to improve model fit in accelerated longitudinal designs. The t-statistics of each brain

region were computed, and we corrected for multiple comparisons by using an FDR threshold of

q < 0.05 (Figure 1C; Benjamini and Hochberg, 1995). We stratified age-related effects based on a

seminal model of neural organization and laminar differentiation that contains four cortical hierarchi-

cal levels (Mesulam, 1998), as well as seven intrinsic functional communities (Yeo et al., 2011;

Figure 1D). To assess the effects with respect to age2, we repeated implementing a linear mixed

effect model by adding a quadratic term of age to the model.

To provide the underlying structure of manifold eccentricity, we compared the changes in mani-

fold eccentricity with those in connectome topology measures. We first defined clusters within the

identified regions based on their spatial boundaries (Figure 1—figure supplement 1A). Then, we

calculated degree centrality, as well as modular measures of within-module degree and participation

coefficient using the Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/)

(Rubinov and Sporns, 2010) and connectivity distance using a recently published approach

(Larivière et al., 2020b). Degree centrality is defined as the row-wise sum of the weighted connec-

tivity matrix, representing the connection strength of a given node (Rubinov and Sporns, 2010).

Connectivity distance is a given brain region’s geodesic distance to its structurally connected brain

areas within the cortex (Oligschläger et al., 2019), and it is defined as the multiplication between

the geodesic distance and the binarized structural connectome (Hong et al., 2019;

Oligschläger et al., 2019). Within-module degree and participation coefficient are nodal measures

reflecting different facets of community organization (Rubinov and Sporns, 2010). For each individ-

ual subject, community structure was defined using Louvain’s algorithm (Blondel et al., 2008) and a

consistency matrix was constructed, where each element of the matrix represents whether the two

different nodes are involved in the same community (i.e., 1) or not (i.e., 0) (Figure 1—figure supple-

ment 2A). We constructed the group-wise consistency matrix by averaging the consistency matrix of

all subjects and applied k-means clustering (Figure 1—figure supplement 2B). The optimal number

of clusters was determined using the silhouette coefficient, that is, the k that maximized the silhou-

ette coefficient (Kannan et al., 2010). We calculated within-module degree and participation coeffi-

cient based on these modules. Within-module degree is the degree centrality within a community,

indicating intra-community connection strength, while participation coefficient represents inter-com-

munity connectivity (Rubinov and Sporns, 2010). We calculated linear correlations between changes

in manifold eccentricity and those in each graph-theoretical measure for each cluster (Figure 1—fig-

ure supplement 1B). The significance of the correlation was corrected using 1000 permutation tests

by randomly shuffling subject indices in one of the data vectors, and we corrected for multiple com-

parisons across clusters using an FDR procedure (Benjamini and Hochberg, 1995). To visualize age-

related changes in these parameters, we stratified each measure according to discretized age bins

(<17, 17–19, 19–21, 21–23, �23; Figure 1—figure supplement 3).

Cortical morphology and microstructure
It has been shown that macroscale cortical morphology and microstructure significantly change dur-

ing development (Gogtay et al., 2004; Khundrakpam et al., 2017; Paquola et al., 2019a;

Shaw et al., 2006). Here, we confirmed these changes by assessing age-related changes in MRI-

based cortical thickness measures and intracortical measures of MT, an index sensitive to myelin con-

tent (Weiskopf et al., 2013), using linear mixed effect models (Figure 2A; Worsley et al., 2009).

We further regressed out cortical thickness and MT from the connectome manifold eccentricity met-

ric. We then implemented linear mixed effect models using the residuals of manifold measures to

assess whether age-related connectome manifold effects exist above and beyond age-related effects

on cortical morphology and microstructure (Figure 2B).

Subcortico-cortical connectivity
To assess age-related changes in subcortical manifold organizations in addition to cortical manifold

structures, we first parcellated the accumbens, amygdala, caudate, hippocampus, pallidum, puta-

men, and thalamus for each individual (Patenaude et al., 2011), and approximated cross-sectionl
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streamlines connect each subcortical region to the rest of the brain. For each individual and each

subcortical region, we projected the streamline strength to cortical manifold space by weighting the

cortical manifolds with the streamline strength of the connection between each subcortical region

and cortical parcels, yielding a matrix with the form of (number of brain regions � number of cortical

manifolds). We averaged the matrix across the axis of cortical manifolds to construct subcortical-

weighted manifold vector. We assessed age-related changes in the subcortical-weighted manifold

using a linear mixed effect model (Worsley et al., 2009), controlling for sex, site, head motion, and

subject-specific random intercept, and FDR corrected for multiple comparisons

(Figure 3; Benjamini and Hochberg, 1995).

Transcriptomic analysis
We performed spatial correlation analysis to post-mortem gene expression data and carried out a

developmental enrichment analysis (Figure 4). In brief, we first correlated the t-statistics map, which

represents age-related changes in manifold eccentricity that controlled for cortical morphology and

microstructure, with the post-mortem gene expression maps provided by the Allen Institute using

the Neurovault gene decoding tool (Gorgolewski et al., 2015; Gorgolewski et al., 2014;

Hawrylycz et al., 2012). Leveraging mixed effect models to associate the input t-statistic map with

the genes of six donor brains, Neurovault yields the gene symbols associated with the input spatial

map. Gene symbols that passed for a significance level of FDR < 0.05 were further tested whether

they are consistently expressed across different donors using abagen toolbox (Markello et al.,

2020; copy archived at https://github.com/rmarkello/abagen; Arnatkeviciute et al., 2019;

Hawrylycz et al., 2012). For each gene, we estimated whole-brain gene expression map and corre-

lated it between all pairs of donors. Leveraging CSEA developmental expression tool (http://genet-

ics.wustl.edu/jdlab/csea-tool-2; Dougherty et al., 2010; Xu et al., 2014), we evaluated the

significance of overlap between the genes showing consistent whole-brain expression pattern across

donors (FDR < 0.05) with RNAseq data obtained from BrainSpan dataset (http://www.brainspan.

org). The significance was calculated based on Fisher’s exact test (Fisher, 1922) with FDR correction

(Benjamini and Hochberg, 1995). The CSEA tool provides simplified results of gene enrichment

profiles along six major brain regions (i.e., cortex, thalamus, striatum, cerebellum, hippocampus,

amygdala) across 10 developmental periods (from early fetal to young adulthood) approximated

from mouse data, yielding a total of 60 combinations of developmental enrichment profiles

(Xu et al., 2014). We repeated developmental enrichment analysis using the genes identified from

the rotated maps of the age-related changes in manifold eccentricity (100 spherical rotations). For

each iteration, we obtained developmental expression profiles using the identified genes, where the

FDR-corrected p-values built a null distribution. For each brain division and developmental period, if

the actual p-value is placed outside 95% of the null distribution, it was deemed significant. As the

Allen Brain Institute repository is composed of adult post-mortem datasets, it should be noted that

the associated gene symbols represent indirect associations with the input t-statistic map derived

from the developmental data.

Association with the development of cognitive function
Leveraging a supervised machine learning with ten-fold cross-validation, we predicted full IQ score

measured by the Wechsler Abbreviated Scale of Intelligence (Wechsler, 1999) at follow-up using

cortical and subcortical features. Four different feature sets were evaluated: (i) manifold eccentricity

of the identified cortical regions at baseline and (ii) manifold eccentricity at baseline and its longitu-

dinal change (i.e., differences between follow-up and baseline), and (iii) cortical manifold eccentricity

and subcortical-weighted manifold of the identified regions at baseline and (iv) manifold eccentricity

and subcortical-weighted manifold at baseline and their longitudinal changes. For each evaluation, a

subset of features that could predict future IQ was identified using elastic net regularization (r=0.5)

with optimized regularization parameters (L1 and L2 penalty terms) via nested ten-fold cross-valida-

tion (Cawley and Talbot, 2010; Parvandeh et al., 2020; Tenenbaum et al., 2000; Varma and

Simon, 2006; Zou and Hastie, 2005). We split the dataset into training (9/10) and test (1/10) parti-

tions, and each training partition was further split into inner training and testing folds using another

ten-fold cross-validation. Within the inner fold, elastic net regularization finds a set of non-redundant

features to explain the dependent variable. Using a linear regression, we predicted the IQ scores of
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inner fold test data using the features of the selected brain regions by controlling for age, sex, site,

and head motion. The model with minimum MAE across the inner folds was applied to the test parti-

tion of the outer fold, and the IQ scores of outer fold test data were predicted. The prediction pro-

cedure was repeated 100 times with different training and test sets to reduce subject selection bias.

Prediction accuracy was indexed by computing linear correlations between the actual and predicted

IQ scores as well as MAE. A 95% confidence interval of the accuracy measures was also reported.

Permutation-based correlations across 1000 tests were conducted by randomly shuffling subject

indices to check whether the prediction performance exceeded chance levels. To assess whether our

model outperforms baseline model, we predicted IQ of test data using average of IQ of training

data (i.e., predicted IQ = mean(training set IQ)). The improvement of prediction performance was

assessed using Meng’s z-test (Meng et al., 1992). In addition to predicting future IQ, we performed

the same prediction analysis to predict the change of IQ between the baseline and follow-up.

Sensitivity analysis
Spatial scale
To assess the consistency of our findings across spatial scales, we additionally performed the linear

mixed effect modeling using a finer parcellation scheme of 300 parcels (Figure 1—figure supple-

ment 4; Schaefer et al., 2018).

Site and sex effect
Participants were recruited from three different sites. To assess whether the longitudinal changes in

manifold eccentricity across age are consistent across different sites, we calculated interaction

effects of the relationship between age and manifold eccentricity of the identified regions across

sites (Figure 1—figure supplement 5B). In addition, we computed interaction effect of the relation-

ship between age and manifold eccentricity across male and female subjects to assess whether the

age-related changes are affected by biological sexes (Figure 1—figure supplement 5C).

Different parameters for diffusion map embedding
To assess the sensitivity of our findings, we generated connectome manifolds with different parame-

ters for diffusion map embedding (a = 0.25, 0.5, 0.75; t = 0, 1, 2, 3). We assessed age-related

changes of the newly defined manifold eccentricity and calculated linear correlation with t-statistic

map of the default setting (a = 0.5; t = 0; Figure 1C).

Gradient alignment fidelity
To assess robustness of individual alignment, we computed linear correlations between the template

and individual manifolds before and after alignment. We also repeated the linear mixed effect

modeling after excluding 10% of subjects with the lowest alignment to the template manifold (Fig-

ure 1—figure supplement 6).

Connectome manifold generation using principal component analysis
To explore consistency of our results when using different dimensionality reduction techniques, we

generated connectome manifolds using principal component analysis (Wold et al., 1987), instead of

relying on diffusion map embedding (Coifman and Lafon, 2006), and performed longitudinal

modeling (Figure 1—figure supplement 7). We compared the eigenvectors estimated from diffu-

sion map embedding and principal component analysis using linear correlations.

Longitudinal changes in graph-theoretical measures
To compare longitudinal changes in manifold eccentricity with those in graph-theoretical centrality

measures, we calculated betweenness, degree, and eigenvector centrality of the structural connec-

tomes and built similar linear mixed effects models to assess longitudinal change (Figure 1—figure

supplement 8). Betweenness centrality is the number of weighted shortest paths between any com-

binations of nodes that run through that node, degree centrality is the sum of edge weights con-

nected to a given node, and eigenvector centrality measures the influence of a node in the whole

network (Lohmann et al., 2010; Rubinov and Sporns, 2010; Zuo et al., 2012). Spatial similarity
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between t-statistics of centrality and manifold measures was assessed with 1000 spin tests that

account for spatial autocorrelation (Alexander-Bloch et al., 2018).

Manifold eccentricity analysis based on all eigenvectors
We repeated our analysis by calculating manifold eccentricity from all eigenvectors to assess consis-

tency of the findings (Figure 1—figure supplement 9).

Robustness of group representative structural connectome
We compared the distance-dependent thresholding (Betzel et al., 2019) that was adopted for the

main analysis with a consistency thresholding approach (Wang et al., 2019). The latter averages sub-

ject-specific matrices, in addition to performing a 50, 40, 30, 20, and 10% thresholding, as well as

simple averaging (i.e., 0% thresholding) (Figure 1—figure supplement 10).

Connectome manifolds based on structural parcellation
To confirm whether functional and structural parcellation schemes yield consistent results, we

repeated our main analyses using 200 cortical nodes structural parcellation scheme, which preserves

the macroscopic boundaries of the Desikan–Killiany atlas (Desikan et al., 2006; Vos de Wael et al.,

2020a; Figure 1—figure supplement 11).

Longitudinal modeling using edge weights
In addition to the analyses based on manifold eccentricity, linear mixed effect modeling using con-

nectome edge weights assessed age-related longitudinal changes in streamline strength (Figure 1—

figure supplement 12).

Manifold eccentricity and pubertal stages
To assess the relationship between manifold eccentricity and pubertal stages, we selected a subset

of participants who completed Tanner scale (Marshall and Tanner, 1970; Marshall and Tanner,

1969), which quantifies pubertal stages from 1 (pre-puberty) to 5 (final phase of physical maturation).

However, the score was collected at baseline and for 73/208 participants only. To confirm robust-

ness, we performed linear mixed effect modeling using this subset (Figure 1—figure supplement

13A). In addition, we assessed interaction effects of Tanner scale and manifold eccentricity restricted

to the regions identified from the overall sample (Figure 1—figure supplement 13B).

IQ prediction using nonlinear model
We additionally predicted future IQ score using decision tree learning, a nonlinear approach that

builds a regression tree model a root node and split leaf nodes, where the leaf nodes contain the

response variables (Breiman et al., 1984; Figure 5—figure supplement 2).

Data and code availability
The imaging and phenotypic data were provided by the NSPN 2400 cohort. As stated in https://doi.

org/10.1093/ije/dyx117, the NSPN project is committed to make the anonymised dataset fully avail-

able to the research community, and participants have consented to their de-identified data being

made available to other researchers. A data request can be made to openNSPN@medschl.cam.ac.

uk. Codes for connectome manifold generation are available at https://doi.org/10.1038/s42003-020-

0794-7; https://github.com/MICA-MNI/BrainSpace (copy archived at swh:1:rev:

1fb001f4961d3c0b05b7715f42bcc362b31b96a5; Vos de Wael et al., 2020b), and those for calculat-

ing manifold eccentricity and subcortical-weighted manifold, as well as performing linear mixed

effect modeling to assess age-effects on these features, at out GitHub (https://github.com/MICA-

MNI/micaopen/tree/master/manifold_features; copy archived at swh:1:rev:

d3988d51e01940007595761dab6b846ce2506433; Park, 2021). Source data are provided with this

paper.
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uk. Codes for connectome manifold generation are available at https://doi.org/10.1038/s42003-020-

0794-7; https://github.com/MICA-MNI/BrainSpace (copy archived at https://archive.softwareherit-

age.org/swh:1:rev:1fb001f4961d3c0b05b7715f42bcc362b31b96a5/), and those for calculating mani-

fold eccentricity and subcortical-weighted manifold, as well as performing linear mixed effect

modeling to assess age-effects on these features at our GitHub (https://github.com/MICA-MNI/

micaopen/tree/master/manifold_features; copy archived at https://archive.softwareheritage.org/swh:

1:rev:d3988d51e01940007595761dab6b846ce2506433/).

The following datasets were generated:
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Oligschläger S, Xu T, Baczkowski BM, Falkiewicz M, Falchier A, Linn G, Margulies DS. 2019. Gradients of
connectivity distance in the cerebral cortex of the macaque monkey. Brain Structure and Function 224:925–
935. DOI: https://doi.org/10.1007/s00429-018-1811-1

Olson EA, Collins PF, Hooper CJ, Muetzel R, Lim KO, Luciana M. 2009. White matter integrity predicts delay
discounting behavior in 9- to 23-year-olds: a diffusion tensor imaging study. Journal of Cognitive Neuroscience
21:1406–1421. DOI: https://doi.org/10.1162/jocn.2009.21107, PMID: 18767918
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