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Abstract

The modal operators usually associated with the notions of possibility and
necessity are classically duals. This paper aims to defy that duality in a para-
consistent environment, namely in a Belnapian Hybrid logic where both proposi-
tional variables and accessibility relations are four-valued. Hybrid logic, which is
an extension of Modal logic, incorporates extra machinery such as nominals – for
uniquely naming states – and a satisfaction operator – so that the formula under
its scope is evaluated in the state whose name the satisfaction operator indicates.

In classical Hybrid logic the semantics of negation, when it appears before
compound formulas, is carried towards subformulas, meaning that eventual in-
consistencies can be found at the level of nominals or propositional variables but
appear unrelated to the accessibility relations. In this paper we allow inconsis-
tencies in propositional variables and, by breaking the duality between modal
operators, inconsistencies at the level of accessibility relations arise. We intro-
duce a sound and complete tableau system and a decision procedure to check if
a formula is a consequence of a set of formulas. Tableaux will be used to extract
syntactic models for databases, which will then be compared using different
inconsistency measures. We conclude with a discussion about bisimulation.
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1. Introduction

The introduction of a four-valued logic in the 70s by Nuel Belnap [3] consid-
ered an algebraic structure composed of, as the name indicates, four elements
{t, f,b,n}. These elements intuitively represent the notions of “true”, “false”,
“both true and false” (from a classical point of view, the same as inconsistent)
and “neither true nor false” (or, in a classical interpretation, incomplete). Thus
Belnap’s logic is not only paraconsistent, as it excludes the Principle of Ex-
plosion, but also paracomplete, as it drops also the Principle of the Excluded
Middle. Moreover, these four values may be arranged according to two par-
tial orders: the first one, ≤t, reflects the “quality” of the information, whereas
the second, ≤k, reflects the “quantity” of information. The bilattice structure
is represented in Figure 1. Four-valued logics have been studied in the con-
text of computer science and artificial intelligence and have been applied in
areas such as symbolic model checking [8], semantics of logic programs [11] and
inconsistency-tolerant systems.

Figure 1: Belnap’s bilattice.

In computer programs, relational structures provide a formalism to ab-
stractly depict connections between states; a logic able to formalize these con-
cepts is Modal logic. The notion of satisfiability in Modal logic is local, meaning
that formulas are evaluated at a state in a structure. Unfortunately, there is no
internal mechanism that allows us to focus on a specific state where we would
like to evaluate a formula. It is possible to overcome this limitation if we add
to Modal logic a new class of propositional variables, called nominals, which are
true at exactly one state, and a satisfaction operator @, that acts as a jump
operator. We are in the presence of a more powerful system in terms of expres-
sivity, however still decidable and as complex as standard Modal logic K, called
(Basic) Hybrid logic [5]. This extension allows us to refer to a specific state and
describe what happens there: the formula @iϕ holds at a state if and only if ϕ
holds at the state named by i – actually the state of evaluation of the @-formula
is not relevant, it either holds everywhere or nowhere; in particular, we are also
able to specify equalities and transitions between (named) states.

Inconsistencies are generally thought of as undesirable and many argue that
databases should be inconsistency-free; as such, there are tools designed to
eradicate contradictions in order to keep systems consistent. Nonetheless this
approach fails to use the benefits of paraconsistency and sometimes precious
information is lost, as is the case when contradictions are seen as mistakes and
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one fails to see that their root is a fraudulent operation. Therefore, since con-
tradictory information is everywhere and is actually the norm rather than the
exception in the real world, it should be embraced, formalized and used in our
favour. One possible use of paraconsistency is that it allows us to compare
between different sources and choose the most reliable one based on the infor-
mation we have in our hands. Observe that this is something that we naturally
do in our daily lives: there are situations where we even expect divergences,
something as simple as a set of different opinions about a certain subject is an
almost guaranteed source of contradictions. Paraconsistent logics are flexible
logical systems able to handle heterogeneous and complex data; they accommo-
date inconsistency in a sensible manner that treats inconsistent information as
informative. Four-valued logics are in this category.

The present paper introduces a new four-valued, also known as Belnapian,
Hybrid logic where the duality between modal operators is broken. We argue
that this is the only way of capturing the real meaning of negation: just because
it is not possible that ϕ, formally represented by ¬3ϕ, it does not mean that
the negation of ϕ is mandatory, represented by 2¬ϕ. We interpret “positive”
modal formulas (where negation does not occur immediately before the modal
operator) in an almost classical fashion – the subtle difference is the use of pos-
itive relations that capture the evidence about the presence of transitions; we
interpret “negative” modal formulas (where negation appears directly before the
modal operator) in a distinct way and by resorting to negative relations that cap-
ture the evidence about the absence of transitions. In particular, @i¬3j shall
be interpreted as “there is no transition from state i to state j”, whereas @i2¬j
is interpreted as “all transitions from state i lead to states different from j”. In-
consistencies at the level of the accessibility relation are allowed and correspond
to cases when @i3j and @i¬3j occur. The logic is called double-Belnapian
since it assigns one of four (Belnapian) values to both propositional variables
and pairs of states (the accessibility problem). We introduce a tableau system
for the logic and a tableau-based procedure in order to check if a formula is a
consequence of a set of formulas. The tableau construction algorithm terminates
and the system is sound and complete. Another section introduces measures
of inconsistency for models and databases. Finally, we talk about bisimulation
and how a classical extension does not preserve satisfiability, however a slight
change in the definition gives us the desired result.

On contradictions in propositional variables and accessibility relations

Paraconsistent versions of modal logic where both the accessibility relation
and the propositional variables are allowed a four-valued behaviour are not a
novelty. The works of Wansing and Odintsov with BKFS logic [17] and Rivieccio
and Jung with Modal bilattice logic MBL [18] are some examples of such logics.
For a version of many-valued Modal logic check Fitting’s work [12].

Even though proposals of paraconsistent Hybrid logics can be found in [6]
and more recently in [9], the work on many-valued Hybrid logic MVHL in [16]
seems to be the only version where paraconsistency is present at the level of
propositional variables and the accessibility relation. The double-Belnapian
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Hybrid logic DBHL∗ that we introduce in this paper is neither an extension
of pre-existing paraconsistent Modal logics with Hybrid logic features, nor can
it be captured by MVHL. The first distinguishing point is the fact that in
the semantics for disjunction we resort to the classical notion of disjunctive
syllogism. This will force a link between a disjunct and its negation since in
case they both hold the other disjunct must hold as well in order to make the
whole disjunction hold. Notwithstanding, that is not the main characteristic of
DBHL∗. The main novelty here is the fact that modal operators [π] and 〈π〉 are
not considered duals. We argue that this approach is the way to capture the
meaning of negation when it appears directly before the modal operator and
this is how we will obtain inconsistencies at the level of accessibility relations.
If the duality was kept, the usual semantics for modal operators would make it
so that saying that in a structure it is possible to make a π-transition between
the state named by i and a state where p holds, i.e., the structure satisfies
the formula @i〈π〉p, and that it is not possible to make such transition, i.e.
¬@i〈π〉p holds in the structure, results in an explosion created at the level of
propositional variable since the latter would be equivalent to @i[π]¬p. It is
clear that the focus of negation is not the transition – we want it to be. At
this point we would like to mention that DBHL∗ as appears in this paper differs
from the also double-Belnapian version in [10] in the semantics for ¬[π]ϕ. The
subtle difference is that, as the reader will have the opportunity to check, in
DBHL∗ we resort to the non-satisfiability of ϕ, whereas in the older version we
resorted to the satisfiability of ¬ϕ. Satisfaction coincides for pure formulas,
i.e. formulas not involving propositional variables, but has a clearly distinct
behaviour in other cases.

We propose a paraconsistent and paracomplete version of Hybrid logic such
that in a structure both @i〈π〉j and @i¬〈π〉j may hold or not; they will be
interpreted as “there is evidence of a π-transition from the state named by i to
the state named by j” and “there is evidence of the lack of a π-transition from
the state named by i to the state named by j”, respectively. The latter is not
compatible with the interpretation of @i[π]¬j which is that “there is evidence
that all π-transitions from the state named by i terminate in a state which is
not named by j”.

The structures underlying this system will incorporate two valuations in
order to deal with contradictions at the level of propositional variables, V+

and V−, and will, analogously, consider two families of accessibility relations,
(R+

π )π∈Mod and (R−π )π∈Mod in order to deal with contradictions at the level
of the accessibility relations. The semantics for nominals is the usual: each
nominal holds at a unique state.

2. Double-Belnapian Hybrid logic, DBHL∗

Let Lπ = 〈Prop,Nom,Mod〉 be a hybrid (multimodal) similarity type where
Prop is a countable set of propositional variables, Nom is a countable set disjoint
from Prop and Mod is a countable set of modality labels. We use p, q, r, etc. to
refer to the elements in Prop. The elements in Nom are called nominals and we
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typically write them as i, j, k, etc. Modalities are usually represented by π, π′,
etc.

Definition 1. The well-formed formulas over Lπ, Form(Lπ), are defined by the
following recursive definition:

ϕ,ψ := i | p | ⊥ | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ ⊃ ψ | 〈π〉ϕ | [π]ϕ | @iϕ

where i ∈ Nom, p ∈ Prop, π ∈ Mod.
For any nominal i and any formula ϕ, @iϕ is called a satisfaction statement.

Both @ and @i, where i ∈ Nom, will be referred to as satisfaction operators.
Literals are formulas of the form @ip,@i¬p,@i〈π〉j,@i¬〈π〉j,@ij or @i¬j for
i, j ∈ Nom, p ∈ Prop, π ∈ Mod.

A hybrid multistructure is defined as a Kripke frame. Explosion at the level
of propositional variables and accessibility relations is avoided and contradic-
tions are allowed by considering two valuations and two families of accessibility
relations. By doing so, the interpretation of propositional variables and the
interpretation of the negation of propositional variables is independent, as well
as the interpretation of positive modal formulas (formulas of the form 〈π〉ϕ or
[π]ϕ) and the interpretation of negative modal formulas (where negation appears
directly before the modal operator).

Definition 2. A multistructure G is a tuple (W, (R+
π )π∈Mod, (R

−
π )π∈Mod,N,

V+,V−), where:

– W 6= ∅ is the domain whose elements are called states or worlds;

– each R+
π and R−π is a binary relation, called respectively the positive and

the negative π-accessibility relation, such that R+
π ,R

−
π ⊆W ×W;

– N : Nom→W is a function called hybrid nomination that assigns nomi-
nals to elements in W such that for any nominal i, N(i) is the element of
W named by i;

– V+ and V− are hybrid valuations, both with domain Prop and range
P(W), such that V+(p) is the set of states where the propositional variable
p holds, and V−(p) is the set of states where ¬p holds.

Observe that N is not necessarily a bijection. It is possible that some states
are not named and that others have multiple names.

Intuitively, each set V+(p) consists of evidence that p holds and V−(p) con-
sists of evidence that ¬p holds. Analogously, R+

π relates states between which
there is evidence of a π-transition while R−π relates states between which there
is evidence that the π-transition is missing.

Semantics is formalized as follows:

Definition 3. A satisfaction relation G, w  ϕ between a multistructure G, a
state w in the multistructure and a formula ϕ is defined by structural induction
on ϕ in Figure 2.

We say that ϕ is globally satisfied if G  ϕ, i.e., G, w  ϕ for all w ∈W.
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(i) G, w  p iff w ∈ V+(p); G, w  ¬p iff w ∈ V−(p);

(ii) G, w  i iff w = N(i); G, w  ¬i iff w 6= N(i);

(iii) G, w  ⊥ never; G, w  ¬⊥ always;

(iv) G, w  ¬¬ϕ iff G, w  ϕ;

(v) G, w  ϕ ∨ ψ iff (G, w  ϕ or G, w  ψ)

and (G, w  ¬ϕ implies G, w  ψ)

and (G, w  ¬ψ implies G, w  ϕ);

G, w  ¬(ϕ ∨ ψ) iff G, w  ¬ϕ and G, w  ¬ψ;

(vi) G, w  ϕ ∧ ψ iff G, w  ϕ and G, w  ψ;

G, w  ¬(ϕ ∧ ψ) iff G, w  ¬ϕ or G, w  ¬ψ;

(vii) G, w  ϕ ⊃ ψ iff G, w  ϕ implies G, w  ψ;

G, w  ¬(ϕ ⊃ ψ) iff G, w  ϕ and G, w  ¬ψ;

(viii) G, w  〈π〉ϕ iff ∃w′(wR+
πw
′ and G, w′  ϕ);

G, w  ¬〈π〉ϕ iff ∀w′(w(R−π )cw′ implies G, w′ 1 ϕ);

(ix) G, w  [π]ϕ iff ∀w′(wR+
πw
′ implies G, w′  ϕ);

G, w  ¬[π]ϕ iff ∃w′(w(R−π )cw′ and G, w′ 1 ϕ);

(x) G, w  @iϕ iff G,N(i)  ϕ;

G, w  ¬@iϕ iff G,N(i)  ¬ϕ.

Figure 2: Definition of the satisfaction relation G, w  ϕ for DBHL∗.

Notation-wise, (R±π )c denotes the complement of R±π , respectively.
We define models as follows:

Definition 4. Let ∆ be a set of formulas in Form(Lπ). A multistructure G is
a model of ∆ if and only if G  δ for all δ ∈ ∆.

Let us take a closer look at the definition of satisfiability for the disjunction
of formulas: for a disjunction to hold, not only at least one of the disjuncts
must hold, but also if the negation of one of the disjuncts holds, then the other
disjunct must hold as well. A discussion about disjunctive syllogism can be
found in [2]. We advocate in its favour by using the same argument as in [4]
for Quasi-classical logic; the idea is that this definition links a disjunct and its
classical complement and preserves the meaning of the resolution principle.

Remarks on the non-duality of modal operators

We will explore the semantics of modal formulas in detail now. The use of
pure formulas, i.e., those which do not contain propositional variables, will play
an important role later as a means to represent syntactically the positive and
negative transitions in a multistructure.

• 〈π〉ϕ holds in a multistructure G at a state w if and only if there is evidence
of a π-transition from the state w to a state w′ where ϕ holds. Intuitively,
it is possible ϕ.
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↪→ Thus the formula @i〈π〉j holds if and only if there exists evidence of
a π-transition from the state named by the nominal i to the state
named by the nominal j, i.e., N(i)R+

πN(j).

• [π]ϕ holds in a multistructure G at a state w if and only if whenever there
is evidence of a π-transition from the state w to a state w′ then ϕ holds
at w′. Intuitively, it is necessary ϕ.

↪→ Thus the formula @i[π]¬j holds if and only if every time there is
evidence of a π-transition from the state named by the nominal i
to a state w′, the state w′ is not named by j, which is the same
as saying that there is not evidence of a π-transition from the state
named by the nominal i to the state named by the nominal j, i.e.,
N(i)(R+

π )cN(j).

This is when things get interesting: the negated versions.

• ¬〈π〉ϕ should then be intuitively thought of as a way of expressing it is
not possible ϕ. This is not the same as saying that ¬ϕ is necessary, i.e.,
that every time there is evidence of a transition, ¬ϕ holds in the accessed
state, but rather that there is evidence that the transition is missing for
all states where ϕ holds. The formula holds in a multistructure G at a
state w if and only if whenever ϕ holds at a state w′, there is evidence of
the lack of a π-transition from the state w to the state w′.

↪→ Thus the formula @i¬〈π〉j holds if and only if there is evidence of
the lack of a π-transition from the state named by the nominal i to
the state named by the nominal j, i.e., N(i)R−π N(j).

• ¬[π]ϕ should, by analogy, be intuitively read as it is not necessary ϕ,
meaning that there is a state where ϕ does not hold, and still there is no
evidence that a transition to that state is missing. The formula holds in
a multistructure G at a state w if and only if there is a state w′ such that
there is not a negative π-transition from w to w′ and where ϕ does not
hold.

↪→ Thus the formula @i¬[π]¬j holds if and only if there is no evidence
of the lack of a π-transition from the state named by the nominal i
to the state named by the nominal j, i.e., N(i)(R−π )cN(j).

Our proposed logic does not only allow local propositional contradictions
such as @ip,@i¬p, as it also accepts accessibility contradictions such as @i〈π〉j,
@i¬〈π〉j. In addition to being paraconsistent, the logic is also paracomplete.

Recall that nominals still behave classically and observe that the pairs @i〈π〉j,
@i[π]¬j, and @i¬〈π〉j,@i¬[π]¬j lead to explosion. For the first pair, by as-
suming that from i it is possible j and that it is necessary ¬j we reach an
inconsistency at the level of nominals.
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A direct four-valued semantics of DBHL∗ and a comparison with other logics

In order to provide a semantics of DBHL∗ aesthetically closer to MBL so that
a comparison between the two is clearer, we will use an alternative version of
the definition of multistructure where, instead of positive and negative acces-
sibility relations and valuations, we consider four-valued accessibility functions
and valuations as follows. Recall the four truth-values we are dealing with: true
(t), false (f), both true and false (b), neither true nor false (n).

Definition 5. A Belnapian structure B is a tuple (W, (Rπ)π∈Mod ,V), where:

– W 6= ∅ is the domain;

– each Rπ is an accessibility function such that Rπ : W ×W → 4, where 4
is the usual set of Belnapian truth values: {t, f,b,n}; and

– V is a Belnapian valuation, i.e., a function with domain (Prop∪Nom)×W
and range 4 such that V(i, w) = t for a unique w ∈ W and V(i, w′) = f
for every other state w′.

Multistructures and Belnapian structures are equivalent when their domains
coincide and for all w,w′ ∈ W, π ∈ Mod, p ∈ Prop, i ∈ Nom, the equivalences
in Figure 3 hold.

Rπ(w,w′) ∈ {t, b} iff (w,w′) ∈ R+
π

Rπ(w,w′) ∈ {f,b} iff (w,w′) ∈ R−π
V(p, w) ∈ {t,b} iff w ∈ V+(p)
V(p, w) ∈ {f, b} iff w ∈ V−(p)
V(i, w) = t iff w = N(i)
V(i, w) = f iff w 6= N(i)

Figure 3: Equivalences between multistructures and Belnapian structures.

The definition of semantics is simply put as:

Definition 6. A satisfaction relation B, w d ϕ between a Belnapian structure
B, a state w in the structure and a formula ϕ is defined as follows:

B, w d ϕ⇔ V(ϕ,w) ∈ {t,b}
where the valuation V is extended to all formulas according to Figure 4.

The implication ⊃ corresponds to the weak implication connective used, for
example, in [18]. Observe also that

V(ϕ ∨ ψ,w) = inf
≤t

{
sup
≤t

{V(ϕ,w),V(ψ,w)},V(¬ϕ ⊃ ψ,w),V(¬ψ ⊃ ϕ,w)

}
.

Note that for nominals i and j such that V(i, w′) = V(j, w′′) = t and for an
arbitrary state w, it is the case that:

V(@i〈π〉j, w) = Rπ(w′, w′′).

The following result is immediate:
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– V(⊥, w) = f

– V(¬ϕ,w) = �V(ϕ,w), where �t = f, �f = t, �b = b and �n = n

– V(ϕ ∨ ψ,w) = V(ϕ,w) 6V(ψ,w)

– V(ϕ ∧ ψ,w) = inf
≤t

{V(ϕ,w),V(ψ,w)}

– V(ϕ ⊃ ψ,w) =

{
V(ψ,w) if V(ϕ,w) ∈ {t, b}
t otherwise

– V(〈π〉ψ,w) = sup
≤t

{Rπ(w,w′)~V(ψ,w′), w′ ∈W}

– V([π]ψ,w) = inf
≤t

{Rπ(w,w′)# V(ψ,w′), w′ ∈W}

– V(@iϕ,w) = V(ϕ,w′), where w′ is such that V(i, w′) = t

6,~ and # are defined by the following matrices:

6 t f b n

t t t t t
f t f f n
b t f b n
n t n n n

~ t f b n

t t f t f
f f f f f
b b f b f
n n f n f

# t f b n

t t f t f
f t t t t
b t n t n
n t b t b

Figure 4: Extension of 4-valued V to all formulas.

Lemma 1. Let G be a multistructure and B a Belnapian structure such that G
and B are equivalent. Then:

G, w  ϕ⇔ B, w d ϕ, for all ϕ ∈ Form(Lπ).

In what follows we will simply omit the subscript in .

Let us make a quick comparison between DBHL∗ and MBL [18] in what
concerns the semantics of modal formulas. We will consider the case with a single
modality in what follows; an extension to the multimodal case is straightforward.
In MBL a structure is defined as a tuple K =

(
W,R,V

)
such that W 6= ∅,

R : W ×W → 4, V : Fm ×W → 4, where Fm is the usual set of formulas in
modal logic. The satisfaction relation is defined between a structure K, a state
w and a formula ϕ such that:

K, w � ϕ⇔ V(ϕ,w) ∈ {t,b}

and V(2ψ,w) and V(3ψ,w) are defined as follows:

V(2ψ,w) := inf
≤t

{R(w,w′) −→ V(ψ,w′), w′ ∈W}

V(3ψ,w) := sup
≤t

{R(w,w′) ∗V(ψ,w′), w′ ∈W}

where −→ and ∗ are defined by the following matrices:
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−→ t f b n
t t f f n
f t t t t
b t f b n
n t n n t

∗ t f b n
t t f t n
f f f f f
b t f b n
n n f n f

Compare with the definitions in DBHL∗ (Figure 4). Observe that in this
case V(3ψ,w) = V(¬2¬ψ,w).

A curious thing about this system is that when we add nominals to it in
order to extend it to hybrid logic, the following happens when ψ is a nominal
(which behaves classically):

∗ t f
t t f
f f f
b t f
n n f

So, even though we can obtain the value n for the valuation of 3i, it is never
the case that one can obtain the value b. Furthermore, V(3j, w) 6= R(w,w′)
where w′ is the state such that V(j, w) = t. That is clear when R(w,w′) = b
and V(3j, w) = t. Therefore an extension of MBL with nominals is not enough
to syntactically express the simultaneous information about the presence and
absence of transitions.

The second comparison we make is between DBHL∗ and BKFS [17]. The
satisfaction relation � defined between a BKFS-model S = (W,R,R′,V+,V−),
where W 6= ∅, R,R′ ⊆ W ×W, V+,V− : Prop → P(W), a state w and a
formula is such that:

S, w � ¬¬ϕ iff S, w � ϕ
S, w � 3ϕ iff ∃u ∈W(wRu and S, u � ϕ);
S, w � ¬3ϕ iff ∀u ∈W(wR′u implies S, u � ¬ϕ);
S, w � 2ϕ iff S, w � ¬3¬ϕ; and
S, w � ¬2ϕ iff S, w � 3¬ϕ.

This definition associates 3 with R and 2 with R′ which means that the
modal operators are not interpreted over the same relation. Thus, contrary
to our expectations, 3¬p and 2p do not mean that p and ¬p are found si-
multaneously in a certain state. Take the following example: W = {w,w′},
R = {(w,w)}, R′ = {(w,w′)}, V+(p) = {w′} and V−(p) = {w}; we can check
that S, w � 3¬p and S, w � 2p. In opposition, in DBHL∗ when in a multistruc-
ture 3¬p and 2p hold at the same state, it means that there is a state w′ such
that there is evidence of a transition from w to w′, where p and ¬p hold.

Our last comparison is between DBHL∗ and MVHL [16]. We restrict MVHL
to four values, using Belnap’s t-lattice, as follows:
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A model is defined as a tuple M =
(
W,R,V

)
such that W 6= ∅, R : W×W→

4, and V : Prop ×W → 4. V is extended to all formulas in a way such that
V(2ψ,w) and V(3ψ,w) are defined as follows:

V(2ψ,w) := inf
≤t

{R(w,w′)⇒ V(ψ,w′), w′ ∈W}

V(3ψ,w) := sup
≤t

{R(w,w′) 7 V(ψ,w′), w′ ∈W}

where, for values a, b ∈ 4, a ⇒ b is the greatest element x ∈ 4 such that
a7 x ≤t b.

Now consider a model in MVHL where W = {w,w′}, R(w,w′) = t and
R(w,w) = R(w′, w) = R(w′, w′) = f, and V(p, w′) = b and V(p, w) = n. It
follows that V(3p, w) = b = V(¬3p, w) = V(2¬p, w). In DBHL∗, taking
W = W,R = R,V = V, implies that V(3p, w) = t, V(¬3p, w) = f, and
V(2¬p, w) = t. The interpretations of 2 and 3 for MVHL and DBHL∗ are thus
incomparable.

3. A tableau system for DBHL∗

In this section we will introduce a sound, complete and terminating tableau
system for DBHL∗ and a decision procedure that checks if a formula is a con-
sequence of a set of formulas, called a database. In order to do it, we consider
an extra-logical operator ∗ that acts on the satisfaction relation in the following
sense: for a multistructure G, a state w and a formula ϕ ∈ Form(Lπ),

G, w  ϕ∗ ⇔ G, w 6 ϕ

and, analogously,

G  ϕ∗ ⇔ G 6 ϕ.

It easy to check that G  ϕ∗ if and only if it is false that ∀w ∈W, G, w  ϕ
if and only if ∃w ∈ W : G, w 6 ϕ if and only if ∃w ∈ W : G, w  ϕ∗.
For convenience we will call ϕ∗ a starred formula, and the set Form∗(Lπ) =
Form(Lπ) ∪ {ϕ∗ | ϕ ∈ Form(Lπ)} the set of all signed formulas over Lπ.

The tableau system T is composed by the rules in Figures 5 and 6, where the
latter deals with the interaction of ∗ with formulas. A tableau in this system
will be denoted T.

The rules (@I), (Id), (Nom), ([π]), (¬〈π〉), (〈π〉∗) and (¬[π]∗) are called non-
destructive rules and the remaining ones are called destructive. This distinction
is made so that in the systematic tableau construction algorithm a destructive
rule is applied at most once to a formula (a destructive rule has exactly one
formula in the premise; the converse is not true). As in [7], the classification
of rules as destructive and non-destructive corresponds to a classification of
formulas according to their form.

Definition 7. A subformula is defined by the following conditions:
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ϕ

@iϕ
(@I)(i)

@i@jϕ

@jϕ
(@E)

@i(ϕ ∧ ψ)

@iϕ
@iψ

(∧)
@i(ϕ ⊃ ψ)

(@iϕ)∗ @iψ
(⊃)

@i(ϕ ∨ ψ)

@iϕ @iϕ @iϕ @iϕ @iψ @iψ @iψ
(@i¬ϕ)∗ (@i¬ϕ)∗ (@i¬ψ)∗ @iψ (@i¬ϕ)∗ (@i¬ψ)∗ (@i¬ϕ)∗

(@i¬ψ)∗ @iψ (@i¬ψ)∗ @iϕ

(∨)

@i[π]ϕ,@i〈π〉j
@jϕ

([π])
@i〈π〉ϕ
@i〈π〉t
@tϕ

(〈π〉)(ii)
@i¬@jϕ

@j¬ϕ
(¬@)

@i¬(ϕ ∧ ψ)

@i¬ϕ @i¬ψ
(¬∧)

@i¬(ϕ ∨ ψ)

@i¬ϕ
@i¬ψ

(¬∨)
@i¬(ϕ ⊃ ψ)

@iϕ
@i¬ψ

(¬⊃)

@i¬[π]ϕ

@i¬[π]¬t
(@tϕ)∗

(¬[π])(iii)
@i¬〈π〉ϕ,@i¬[π]¬j

(@jϕ)∗
(¬〈π〉)

@i¬¬ϕ
@iϕ

(¬¬)

@ij,@iϕ

@jϕ
(Nom)(iv)

@ii
(Id)(v)

(i) ϕ is not a satisfaction statement, i is in the branch;
(ii) ϕ /∈ Nom, t is a new nominal;

(iii) ϕ 6= ¬i for all i ∈ Nom, t is a new nominal;
(iv) for @iϕ a literal;
(v) for i in the branch.

Figure 5: Tableau rules for (non-starred) formulas.

– ϕ is a subformula of ϕ ∈ Form(Lπ), and ψ is a subformula of the starred
formula ψ∗;

– if ψ ∧ δ, ψ ∨ δ, or ψ ⊃ δ is a subformula of χ (χ is whether a formula or
a starred version), then so are ψ and δ;

– if @iψ, ¬ψ, [π]ψ, or 〈π〉ψ is a subformula of χ, then so is ψ.

The tableau system T satisfies the following subformula property:

Theorem 1 (Subformula property). Suppose that @iϕ ∈ T, where ϕ is not a
nominal, ϕ 6= 〈π〉j and ϕ 6= ¬[π]¬j for π ∈ Mod, j ∈ Nom or that (@iϕ)∗ ∈ T.
If ϕ = ¬ψ then either ϕ or ψ is a subformula of a root formula. Otherwise, ϕ
is a subformula of a root formula.

Proof. The proof can be obtained by checking each rule.

Note the following consequence of Theorem 1:

Lemma 2. For any tableau T and nominal i, the following sets are finite:
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ϕ∗

(@tϕ)∗
(@∗I )(vi)

(@i@jϕ)∗

(@jϕ)∗
(@∗E)

(@i(ϕ ∧ ψ))∗

(@iϕ)∗ (@iψ)∗
(∧∗)

(@i(ϕ ⊃ ψ))∗

@iϕ
(@iψ)∗

(⊃∗)
(@i(ϕ ∨ ψ))∗

(@iϕ)∗ @i¬ϕ @i¬ψ
(@iψ)∗ (@iψ)∗ (@iϕ)∗

(∨∗)
(@i[π]ϕ)∗

@i〈π〉t
(@tϕ)∗

([π]∗)(vii)

(@i〈π〉ϕ)∗,@i〈π〉j
(@jϕ)∗

(〈π〉∗)
(@i¬(@jϕ))∗

(@j¬ϕ)∗
(¬@∗)

(@i¬(ϕ ∧ ψ))∗

(@i¬ϕ)∗

(@i¬ψ)∗

(¬∧∗)

(@i¬(ϕ ⊃ ψ))∗

(@iϕ)∗ (@i¬ψ)∗
(¬⊃∗)

(@i¬(ϕ ∨ ψ))∗

(@i¬ϕ)∗ (@i¬ψ)∗
(¬∨∗)

(@i¬¬ϕ)∗

(@iϕ)∗
(¬¬∗)

(@i¬[π]ϕ)∗,@i¬[π]¬j
@jϕ

(¬[π]∗)
(@i¬〈π〉ϕ)∗

@i¬[π]¬t
@tϕ

(¬〈π〉∗)(vii)
(@iϕ)∗

@i¬ϕ
(Id∗)(viii)

(vi) ϕ is not a satisfaction statement, t is a new nominal;
(vii) t is a new nominal;

(viii) ϕ = j or ϕ = ¬j, where j ∈ Nom.

Figure 6: Tableau rules for starred formulas.

Γi = {ϕ | @iϕ ∈ T, where ϕ 6= 〈π〉j,¬[π]¬j, for j ∈ Nom, π ∈ Mod};
Γ∗i = {ϕ | (@iϕ)∗ ∈ T}

We define a binary relation between nominals naming the same states and
another binary relation to establish the precedence of nominals as follows:

Definition 8. Let Θ be a branch of a tableau and let NomΘ be the set of
nominals occurring in the formulas of Θ. Define a binary relation ∼Θ on NomΘ

by i ∼Θ j if and only if the formula @ij ∈ Θ.

Definition 9. Let i and j be nominals occurring on a branch Θ of a tableau
in T. The nominal i is included in the nominal j with respect to Θ if, for any
subformula ϕ of a root formula, the following holds:

– if @iϕ ∈ Θ, then @jϕ ∈ Θ;

– if (@iϕ)∗ ∈ Θ, then (@jϕ)∗ ∈ Θ;

– if @i¬ϕ ∈ Θ, then @j¬ϕ ∈ Θ;

– if (@i¬ϕ)∗ ∈ Θ, then (@j¬ϕ)∗ ∈ Θ.

If i is included in j with respect to Θ, and the first occurrence of j on Θ is
before the first occurrence of i, then we write i ⊆Θ j.

A tableau is built following this construction:
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Definition 10 (Tableau construction). Let ∆ be a finite set of signed formulas
in Form∗(Lπ). A tableau for ∆ is built inductively according to the following
rules:

– The one branch tableau T0 composed of the formulas in ∆ is a tableau for
∆;

– The tableau Tn+1 is obtained from the tableau Tn if it is possible to apply
an arbitrary rule to Tn which obeys the following three restrictions:

(1) If a formula that result from the application of a rule already occurs
in the branch, then its addition is simply omitted;

(2) A destructive rule is only applied once to the same formula in each
branch;

(3) The existential rules (〈π〉), (¬[π]), ([π]∗) and (¬〈π〉∗) are not applied
to @i〈π〉ϕ, @i¬[π]ϕ, (@i[π]ϕ)∗ nor (@i¬〈π〉ϕ)∗ on a branch Θ if
there exists a nominal j such that i ⊆Θ j.

Therefore a formula cannot occur more than once on a branch, a destructive
rule cannot be applied more than once to the same formula in a branch and the
third restriction are loop-check conditions.

Before proving termination of the tableau construction algorithm, let us
observe that the only way new satisfaction operators may be introduced in a
tableau is by using one of the following rules: (@∗I ), (〈π〉), (¬[π]), ([π]∗), (¬〈π〉∗)
and (@I). The rule (@∗I ) introduces a new satisfaction operator @t; whenever
a nominal i occurs in the branch but @i does not, the rule (@I) introduces it.
The formulas in the premises of these rules are not satisfaction statements nor
starred satisfaction statements. On the other hand, the rules (〈π〉), (¬[π]), ([π]∗)
and (¬〈π〉∗) introduce a new satisfaction operator @t and the premises in these
rules are either a satisfaction statement or a starred satisfaction statement. We
distinguish between these two cases as follows:

Definition 11. Let Θ be a branch of a tableau. If a new satisfaction operator
@t is introduced by applying one of the rules (〈π〉), (¬[π]), ([π]∗) or (¬〈π〉∗)
on the branch Θ to the formulas @i〈π〉ϕ, @i¬[π]ϕ, (@i[π]ϕ)∗ or (@i¬〈π〉ϕ)∗,
respectively, then we say that t is generated by i with respect to Θ; otherwise, if
@t is a new satisfaction operator obtained from (@I) or (@∗I ), then we say that
the nominal t is self-generated.

We introduce a (partial) binary relation between nominals to keep track of
the introduction of new satisfaction operators:

Definition 12. Let NomΘ be the set of nominals occurring in Θ. We define
a (partial) binary relation <Θ over elements in NomΘ ∪ {?}, where ? is a new
symbol to denote the origin, as follows:

– i <Θ j, with i, j ∈ NomΘ, if and only if j is generated by i with respect to
Θ;
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– ? <Θ j, with j ∈ NomΘ, if and only if @j appears in a root formula or
the nominal j is self-generated;

– x 6<Θ ?, for all x ∈ NomΘ ∪ {?}.

The following result plays a central role in the proof of termination that will
ensue next.

Proposition 1. Let Θ be a branch of a tableau. Let NomΘ be the set of nominals
occurring in Θ. The graph

(
NomΘ ∪ {?}, <Θ

)
is a well-founded ( i.e. has no

infinite descending chain), finitely branching tree.

Proof. That the graph is well-founded follows from the observation that if
x <Θ i, then either (i) the first occurrence of @x in Θ is before the first oc-
currence of @i, if x ∈ NomΘ, or (ii) if x = ?, there is no nominal in Θ which
generates an occurrence of a satisfaction statement @iϕ.

That the graph is a tree follows from the fact that each nominal i in Θ is
generated by at most one other nominal, and that all nominals have ? as an
ancestor.

That the graph is finitely branching follows from the fact that for any given
nominal i, the sets Γi,Γ

∗
i are finite (Lemma 2) and each of the finitely many

formulas in these sets can generate at most one new satisfaction operator @t

(when one of the rules (〈π〉), (¬[π]), ([π]∗) or (¬〈π〉∗) is applied).

Termination is proved as follows:

Theorem 2 (Termination). The systematic tableau construction algorithm ter-
minates.

Proof. Let us prove this by contradiction, so let us start by assuming that this
is not the case. If the algorithm does not terminate, then the tableau must
be infinite. Thus it contains an infinite branch, call it Θ. By restriction (1)
in Definition 10, all formulas in Θ are distinct. By Theorem 1 and Lemma 2,
every satisfaction statement or starred satisfaction statement in the branch of
the form @iϕ where ϕ 6= 〈π〉j,¬[π]¬j, j ∈ Nom, π ∈ Mod or (@iϕ)∗ is such
that, if ϕ = ¬ψ, then either ϕ or ψ is a subformula of a root formula; or oth-
erwise ϕ is a subformula of a root formula. Since the number of subformulas of
root formulas is finite and we assumed that the branch is infinite, then it must
be the case that there are infinitely many satisfaction operators @i. There-
fore, the graph

(
NomΘ ∪ {?}, <Θ

)
must be infinite. Since by Proposition 1 the

graph is a well-founded, finitely branching tree, it must contain an infinite path
t1 <Θ t2 <Θ t3 <Θ . . ..

For each n > 0 let Θn be the initial segment of Θ up to, but not including,
the first satisfaction statement of the form @tn+1

ϕ.
Also, for each n > 0, consider the following sets:

Λn = {ϕ | @tnϕ ∈ Θn, where ϕ 6= 〈π〉j,¬[π]¬j, for j ∈ Nom, π ∈ Mod}; and
Λ∗n = {ϕ | (@tnϕ)∗ ∈ Θn}.

All formulas ϕ in Λn and Λ∗n are such that either ϕ or ∼ϕ (a formula equiva-
lent to ¬ϕ where the negation symbol appears only directly before propositional
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variables, nominals or modal operators) are subformulas of a root formula, by
Theorem 1. Since there are only finitely many such formulas, not all Λn can be
distinct and the same happens for Λ∗n. Thus eventually there exists l,m ∈ N
with l < m such that Λl = Λm and Λ∗l = Λ∗m.

We will now prove that tm is included in tl with respect to Θm:
Let ψ be an arbitrary formula (as long as ϕ 6= 〈π〉j,¬[π]¬j for π ∈ Mod,

j ∈ Nom) for which @tmψ occurs in Θm, i.e., such that ψ ∈ Λm. Since Λl = Λm,
ψ ∈ Λl and thus @tlψ ∈ Θl. Since Θl is an initial segment of Θm, we get that
@tlψ ∈ Θm. From an analogous reasoning for formulas in Λ∗m, it is proved that
tm is included in tl with respect to Θm. It follows that tm ⊆Θm

tl, since the
first occurrence of @tl is before the first occurrence of @tm .

Now consider the first satisfaction statement of the form @tm+1δ. By defini-
tion, @tm+1δ /∈ Θm. However the nominal tm+1 is generated by tm so it must be
introduced by applying one of the rules (〈π〉), (¬[π]), ([π]∗) or (¬〈π〉∗) to a for-
mula @tmχ or (@tmχ)∗ in Θm. But this is in contradiction with restriction (3)
in Definition 10 by which none of the rules (〈π〉), (¬[π]), ([π]∗), (¬〈π〉∗) can be
applied to @tmχ and (@tmχ)∗ (for appropriate formulas χ) on the branch Θm

since tm ⊆Θm tl.

We move on to showing that the tableau system is sound and complete.

Theorem 3 (Soundness). The tableau rules are sound in the following sense:

for any rule
Λ

Σ1 · · · Σn
, n ≥ 1, and any multistructure G,

G  Λ⇒ G  Σ1 or . . . or G  Σn

where Λ, Σ1, . . . ,Σn ⊂ Form∗(Lπ).

Proof. The proof can be obtained by checking each rule.
As an example, we will prove soundness for the rules (∨), (〈π〉) and (¬[π]∗):

• @i(ϕ ∨ ψ)

@iϕ @iϕ @iϕ @iϕ @iψ @iψ @iψ
(@i¬ϕ)∗ (@i¬ϕ)∗ (@i¬ψ)∗ @iψ (@i¬ϕ)∗ (@i¬ψ)∗ (@i¬ϕ)∗

(@i¬ψ)∗ @iψ (@i¬ψ)∗ @iϕ

(∨)

Let G be a multistructure such that G  @i(ϕ ∨ ψ). Then:

G  @i(ϕ ∨ ψ)
⇔ G, w  @i(ϕ ∨ ψ), for all w ∈W
⇔ G, N(i)  (ϕ ∨ ψ)
⇔ (G, N(i)  ϕ or G, N(i)  ψ)

and (G, N(i)  ¬ϕ implies G, N(i)  ψ)
and (G, N(i)  ¬ψ implies G, N(i)  ϕ)

⇔ (G, N(i)  ϕ or G, N(i)  ψ)
and (G, N(i) 1 ¬ϕ or G, N(i)  ψ)
and (G, N(i) 1 ¬ψ or G, N(i)  ϕ)

⇔ (G, N(i)  ϕ and G, N(i) 1 ¬ϕ and G, N(i) 1 ¬ψ)
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or (G, N(i)  ϕ and G, N(i) 1 ¬ϕ and G, N(i)  ϕ)
or (G, N(i)  ϕ and G, N(i)  ψ and G, N(i) 1 ¬ψ)
or (G, N(i)  ϕ and G, N(i)  ψ and G, N(i)  ϕ)
or (G, N(i)  ψ and G, N(i) 1 ¬ϕ and G, N(i) 1 ¬ψ)
or (G, N(i)  ψ and G, N(i) 1 ¬ϕ and G, N(i)  ϕ)
or (G, N(i)  ψ and G, N(i)  ψ and G, N(i) 1 ¬ψ)
or (G, N(i)  ψ and G, N(i)  ψ and G, N(i)  ϕ)

⇔ (G, N(i)  ϕ and G, N(i)  (¬ϕ)∗ and G, N(i)  (¬ψ)∗)
or (G, N(i)  ϕ and G, N(i)  (¬ϕ)∗)
or (G, N(i)  ϕ and G, N(i)  ψ and G, N(i)  (¬ψ)∗)
or (G, N(i)  ϕ and G, N(i)  ψ)
or (G, N(i)  ψ and G, N(i)  (¬ϕ)∗ and G, N(i)  (¬ψ)∗)
or (G, N(i)  ψ and G, N(i)  (¬ϕ)∗ and G, N(i)  ϕ)
or (G, N(i)  ψ and G, N(i)  (¬ψ)∗)

⇔ (G  @iϕ and G  (@i¬ϕ)∗ and G  (@i¬ψ)∗)
or (G  @iϕ and G  (@i¬ϕ)∗)
or (G  @iϕ and G  @iψ and G  (@i¬ψ)∗)
or (G  @iϕ and G  @iψ)
or (G  @iψ and G  (@i¬ϕ)∗ and G  (@i¬ψ)∗)
or (G  @iψ and G  (@i¬ϕ)∗ and G  @iϕ)
or (G  @iψ and G  (@i¬ψ)∗)

• @i〈π〉ϕ
@i〈π〉t
@tϕ

(〈π〉), for t a new nominal, ϕ /∈ Nom.

Let G be a multistructure such that G  @i〈π〉ϕ. Then:

G  @i〈π〉ϕ
⇔ G, w  @i〈π〉ϕ, for all w ∈W
⇔ G, N(i)  〈π〉ϕ
⇔ ∃w′ ∈W (N(i)R+

πw
′ and G, w′  ϕ)

⇔ G  @i〈π〉t and G, w′  ϕ, where t is a new nominal such that N(t) = w′

⇔ G  @i〈π〉t and G  @tϕ, where t is a new nominal such that N(t) = w′

⇒ G  @i〈π〉t and G  @tϕ, for a new nominal t

• (@i¬[π]ϕ)∗,@i¬[π]¬j
@jϕ

(¬[π]∗)

Let G be a multistructure such that G  (@i¬[π]ϕ)∗ and G  @i¬[π]¬j.
Then:

G  (@i¬[π]ϕ)∗ and G  @i¬[π]¬j
⇔ G 1 @i¬[π]ϕ and G  @i¬[π]¬j
⇔ G, w 1 @i¬[π]ϕ, for some w ∈W and G, w′  @i¬[π]¬j, for all w′ ∈W
⇔ G, N(i) 1 ¬[π]ϕ and G, N(i)  ¬[π]¬j
⇔ false(G, N(i)  ¬[π]ϕ) and G, N(i)  ¬[π]¬j
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⇔ false(∃w′ ∈W (N(i)�R
−
πw
′ and G, w′ 1 ϕ))

and ∃w′′ ∈W (N(i)�R
−
πw
′′ and G, w′′ 1 ¬j)

⇔ ∀w′ ∈W (N(i)R−π w
′ or G, w′  ϕ)

and ∃w′′ ∈W (N(i)�R
−
πw
′′ and w′′ = N(j))

⇔ ∀w′ ∈W (N(i)�R
−
πw
′ implies G, w′  ϕ)

and ∃w′′ ∈W (N(i)�R
−
πw
′′ and w′′ = N(j))

⇒ G, w′′  ϕ and w′′ = N(j)
⇔ G  @jϕ

The remaining cases are proved analogously.

A branch is closed if and only if there is a formula ψ for which ψ and ψ∗ are
in that branch or if @i⊥ or @i¬i is in the branch for some nominal i. Otherwise
the branch is open. A tableau is closed if and only if all of its branches are
closed; otherwise the tableau is open.

In order to prove completeness, we prove that if a terminal tableau has an
open branch Θ, then there exists a model GΘ and a state w where all root
formulas are satisfied.

From now on, Θ is a branch of a terminal tableau.
Let U be the subset of NomΘ that contains every nominal i for which there

is no nominal j such that i ⊆Θ j. Let ≈ be the restriction of ∼Θ (Definition
8) to U . Note that U contains all nominals appearing in the root formulas.
Observe also that Θ is closed under the rules (Id) and (Nom), so both ∼Θ and
≈ are equivalence relations.

Given a nominal i in U, we let [i]≈ denote the equivalence class of i with
respect to ≈ and we let U/≈ denote the set of equivalence classes.

We let R+
π be the binary relation on U defined by iR+

π j if and only if there
exists a nominal j′ ≈ j such that one of the following conditions is satisfied:

1. @i〈π〉j′ ∈ Θ; or if
2. there exists a nominal k ∈ NomΘ such that @i〈π〉k ∈ Θ and k ⊆Θ j′.

On the other hand, we let R−π be the binary relation on U such that iR−π j if

and only if i��̂R−π j (observe that R̂−π is the complement of R−π ), and iR̂−π j if and
only if there exists a nominal j′ ≈ j such that one of the following conditions is
satisfied:

1. @i¬[π]¬j′ ∈ Θ; or if
2. there exists a nominal k ∈ NomΘ such that @i¬[π]¬k ∈ Θ and k ⊆Θ j′.

Note that the nominal k referred to in the second items is not an element
of U. It follows from Θ being closed under the rule (Nom) that R+

π and R−π
are compatible with ≈ in the first argument and it is trivial that they are

compatible with ≈ in the second argument. We let R+
π , respectively R−π , be the

binary relation on U/≈ defined by [i]≈R+
π [j]≈, respectively [i]≈R−π [j]≈, if and

only if iR+
π j, respectively iR−π j. Analogously, we let [i]≈ R̂−π [j]≈ be the binary

relation on U/≈ defined by [i]≈ R̂−π [j]≈ if and only if iR̂−π j.
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Let N : U → U/≈ be defined such that N(i) = [i]≈.

Let V+ be the function that to each ordinary propositional variable assigns
the set of elements of U where that propositional variable occurs, i.e., i ∈ V+(p)
if and only if @ip ∈ Θ. Conversely i /∈ V+(p) if and only if @ip /∈ Θ. Anal-
ogously, let V− be the function that to each ordinary propositional variable
assigns the set of elements of U where the negation of that propositional vari-
able occurs, i.e., i ∈ V−(p) if and only if @i¬p ∈ Θ. Conversely i /∈ V−(p) if
and only if @i¬p /∈ Θ. We let V+ be defined by V+(p) = {[i]≈ | i ∈ V+(p)}.
We define V− analogously: V−(p) = {[i]≈ | i ∈ V−(p)}.

Given a branch Θ, let GΘ =

(
U/≈,

(
R+
π

)
π∈Mod

,
(

R−π
)
π∈Mod

,N,V+,V−
)

.

We will omit the reference to the branch in GΘ if it is clear from the context.

Theorem 4 (Model Existence). Let Θ be an open branch of a terminal tableau
T. The model extracted from the branch, GΘ, is such that the following condi-
tions hold:

(i) if @iϕ ∈ Θ, then GΘ, [i]≈  ϕ;
(ii) if (@iϕ)∗ ∈ Θ, then GΘ, [i]≈ 6 ϕ.

whenever @iϕ contains only nominals from U.

Proof. The proof is by induction on the complexity of ϕ:

• The base step for the cases when ϕ is either a nominal or the negation
of a nominal, a propositional variable or the negation of a propositional
variable follows from the definition of G.

• The case when ϕ is ⊥ is trivial.

Induction Hypothesis (I.H.): the result holds for the formulas ψ, δ,¬ψ,¬δ.

• ϕ = ¬¬ψ
(i) @i¬¬ψ ∈ Θ, then, by applying the rule (¬¬), @iψ ∈ Θ. By I.H.

G, [i]≈  ψ and equivalently G, [i]≈  ¬¬ψ.

(ii) (@i¬¬ψ)∗ ∈ Θ, then, by applying the rule (¬¬∗), (@iψ)∗ ∈ Θ. By
I.H. G, [i]≈ 6 ψ and equivalently G, [i]≈ 6 ¬¬ψ.

• ϕ = ψ ∧ δ
(i) @i(ψ∧δ) ∈ Θ, then, by applying the rule (∧), @iψ,@iδ ∈ Θ. By I.H.

G, [i]≈  ψ and G, [i]≈  δ. Therefore G, [i]≈  ψ ∧ δ.
(ii) (@i(ψ ∧ δ))∗ ∈ Θ, then, by applying the rule (∧∗), (@iψ)∗ ∈ Θ or

(@iδ)
∗ ∈ Θ. Hence, by I.H., G, [i]≈ 6 ψ or G, [i]≈ 6 δ. Therefore

G, [i]≈ 6 ψ ∧ δ.

• ϕ = ¬(ψ ∧ δ)
(i) @i¬(ψ ∧ δ) ∈ Θ, then, by applying the rule (¬∧), @i¬ψ ∈ Θ or

@i¬δ ∈ Θ. By I.H. G, [i]≈  ¬ψ or G, [i]≈  ¬δ. Therefore
G, [i]≈  ¬(ψ ∧ δ).
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(ii) (@i¬(ψ ∧ δ))∗ ∈ Θ, then, by applying the rule (¬∧∗), (@i¬ψ)∗,
(@i¬δ)∗ ∈ Θ. Hence, by I.H. G, [i]≈ 6 ¬ψ and G, [i]≈ 6 ¬δ. There-
fore G, [i]≈ 6 ¬(ψ ∧ δ).

• ϕ = ψ ⊃ δ
(i) @i(ψ ⊃ δ) ∈ Θ, then, by applying the rule (⊃), (@iψ)∗ ∈ Θ or

@iδ ∈ Θ. By I.H. G, [i]≈ 1 ψ or G, [i]≈  δ. Thus G, [i]≈  ψ ⊃ δ.
(ii) (@i(ψ ⊃ δ))∗ ∈ Θ, then, by applying the rule (⊃∗), @iψ, (@iδ)

∗ ∈ Θ.
Hence, by I.H., G, [i]≈  ψ and G, [i]≈ 6 δ. So G, [i]≈ 6 ψ ⊃ δ.

• ϕ = ¬(ψ ⊃ δ)
(i) @i¬(ψ ⊃ δ) ∈ Θ, then, by applying the rule (¬ ⊃), @iψ,@i¬δ ∈ Θ.

By I.H., G, [i]≈  ψ and G, [i]≈  ¬δ. So G, [i]≈  ¬(ψ ⊃ δ).
(ii) (@i¬(ψ ⊃ δ))∗ ∈ Θ, then, by applying the rule (¬⊃∗), (@iψ)∗ ∈ Θ or

(@i¬δ)∗ ∈ Θ. Hence, by I.H., G, [i]≈ 1 ψ or G, [i]≈ 6 ¬δ. Therefore
G, [i]≈ 6 ¬(ψ ⊃ δ).

• ϕ = @jψ

(i) @i@jψ ∈ Θ, then, by applying the rule (@E), @jψ ∈ Θ. By I.H.
G, [j]≈  ψ. Thus G, [i]≈  @jψ.

(ii) (@i@jψ)∗ ∈ Θ, then, by applying the rule (@∗E), (@jψ)∗ ∈ Θ. By
I.H. G, [j]≈ 6 ψ and it follows that G, [i]≈ 6 @jψ.

• ϕ = ¬(@jψ)

(i) @i¬(@jψ) ∈ Θ, then, by applying the rule (¬@), @j¬ψ ∈ Θ. By I.H.
G, [j]≈  ¬ψ. Therefore G, [i]≈  @j¬ψ, so G, [i]≈  ¬@jψ.

(ii) (@i¬(@jψ))∗ ∈ Θ, then, by applying the rule (¬@∗), (@j¬ψ)∗ ∈ Θ.
By I.H. G, [j]≈ 6 ¬ψ and it follows that G, [i]≈ 6 @j¬ψ and so
G, [i]≈ 6 ¬@jψ.

• ϕ = ψ ∨ δ
(i) @i(ψ ∨ δ) ∈ Θ, then from applying rule (∨), one of the following

happens:

1. @iψ, (@i¬ψ)∗, (@i¬δ)∗ ∈ Θ; or
2. @iψ, (@i¬ψ)∗ ∈ Θ; or
3. @iψ,@iδ, (@i¬δ)∗ ∈ Θ; or
4. @iψ,@iδ ∈ Θ; or
5. @iδ, (@i¬ψ)∗, (@i¬δ)∗ ∈ Θ; or
6. @iδ, (@i¬δ)∗ ∈ Θ; or
7. @iδ, (@i¬ψ)∗,@iψ ∈ Θ.

Recall that

G, [i]≈  ψ ∨ δ
⇔ (G, [i]≈  ψ or G, [i]≈  δ)

and (G, [i]≈  ¬ψ implies G, [i]≈  δ)
and (G, [i]≈  ¬δ implies G, [i]≈  ψ)
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In the first case, by I.H. G, [i]≈ 6 ¬ψ, G, [i]≈ 6 ¬δ, and G, [i]≈  ψ.
Therefore, G, [i]≈  ψ ∨ δ.
Cases 2.–7. follow a similar approach.

Thus if @i(ψ ∨ δ) ∈ Θ then G, [i]≈  ψ ∨ δ.
(ii) (@i(ψ ∨ δ))∗ ∈ Θ, then by applying rule (∨∗), either:

1. (@iψ)∗, (@iδ)
∗ ∈ Θ; or

2. @i¬ψ, (@iδ)
∗ ∈ Θ; or

3. @i¬δ, (@iψ)∗ ∈ Θ.

In case 1. by I.H. G, [i]≈ 1 ψ and G, [i]≈ 1 δ. Thus, G, [i]≈ 1 ψ ∨ δ.
In cases 2. and 3. the reasoning is analogous.

In conclusion, if (@i(ψ ∨ δ))∗ ∈ Θ then G, [i]≈ 1 ψ ∨ δ.

• ϕ = ¬(ψ ∨ δ)
(i) @i¬(ψ ∨ δ) ∈ Θ, then from applying rule (¬∨), @i¬ψ,@i¬δ ∈ Θ. By

I.H. G, [i]≈  ¬ψ, and G, [i]≈  ¬δ. Therefore, G, [i]≈  ¬(ψ ∨ δ).
(ii) (@i¬(ψ ∨ δ))∗ ∈ Θ, then by applying rule (¬∨∗), it follows that

(@i¬ψ)∗ ∈ Θ or (@i¬δ)∗ ∈ Θ. By I.H. G, [i]≈ 1 ¬ψ or G, [i]≈ 1 ¬δ.
It follows that G, [i]≈ 1 ¬(ψ ∨ δ).

• ϕ = 〈π〉ψ
(i) ∗ if ψ = j, j ∈ Nom:

@i〈π〉j ∈ Θ, then [i]≈R+
π [j]≈ and by definition G, [i]≈  〈π〉j.

∗ if ψ is not a nominal:
@i〈π〉ψ ∈ Θ, then by the application of the rule (〈π〉), @i〈π〉t
and @tψ ∈ Θ, for a new nominal t. Then:

· if t ∈ U, [i]≈R+
π [t]≈. By I.H., G, [t]≈  ψ, so G, [i]≈  〈π〉ψ.

· if t /∈ U, ∃a such that t ⊆Θ a. Assume that there is no b such
that a ⊆Θ b, i.e., a ∈ U. Since @tψ ∈ Θ, from Theorem 1 it
follows that if ψ = ¬δ then either ψ or δ is a subformula of a
root formula, otherwise ψ is a subformula of a root formula;
Definition 9 implies that @aψ ∈ Θ. By I.H. G, [a]≈  ψ and

by definition [i]≈R+
π [a]≈. So, G, [i]≈  〈π〉ψ.

(ii) (@i〈π〉ψ)∗ ∈ Θ. We want to prove that G, [i]≈ 1 〈π〉ψ, i.e., that for

all [k]≈ such that [i]≈R+
π [k]≈, G, [k]≈ 1 ψ.

Let k be a nominal such that [i]≈R+
π [k]≈; by definition exists k′ with

k′≈k that satisfies one of the following conditions:

∗ @i〈π〉k′ ∈ Θ, which then by applying the rule (〈π〉∗), implies
that (@k′ψ)∗ ∈ Θ. By I.H. G, [k′]≈ 1 ψ. Since [k′]≈ = [k]≈, then
G, [k]≈ 1 ψ. Or:

∗ ∃a ∈ NomΘ such that @i〈π〉a ∈ Θ and a ⊆Θ k′, then by applying
(〈π〉∗) it follows that (@aψ)∗ ∈ Θ. From Theorem 1, if ψ = ¬δ
either ψ or δ is a subformula of a root formula otherwise ψ is a
subformula of a root formula. Since a ⊆Θ k′, (@k′ψ)∗ ∈ Θ. By
I.H. G, [k′]≈ 1 ψ. Since [k′]≈ = [k]≈, then G, [k]≈ 1 ψ.
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It follows that G, [i]≈ 1 〈π〉ψ.

• ϕ = ¬〈π〉ψ

(i) @i¬〈π〉ψ ∈ Θ. We want to prove that G, [i]≈  ¬〈π〉ψ, i.e., that for

all [k]≈ such that [i]≈�
�R−π [k]≈, G, [k]≈ 1 ψ.

Let k be a nominal such that [i]≈�
�R−π [k]≈. That is the case if and

only if [i]≈R̂−π [k]≈, which by definition implies that exists k′ with
k′≈k that satisfies one of the following two conditions:

∗ @i¬[π]¬k′ ∈ Θ which then by applying the rule (¬〈π〉) implies
that (@k′ψ)∗ ∈ Θ and by I.H. G, [k′]≈ 1 ψ. Since [k′]≈ = [k]≈,
G, [k]≈ 1 ψ. Or:

∗ ∃a ∈ NomΘ such that @i¬[π]¬a ∈ Θ and a ⊆Θ k′, then by ap-
plying the rule (¬〈π〉), (@aψ)∗ ∈ Θ. From Theorem 1 if ψ = ¬δ
then either ψ or δ is a subformula of a root formula, otherwise ψ
is a subformula of a root formula. Since a ⊆Θ k′, (@k′ψ)∗ ∈ Θ.
By I.H. G, [k′]≈ 1 ψ. Since [k]≈ = [k′]≈, G, [k]≈ 1 ψ.

Therefore G, [i]≈  ¬〈π〉ψ

(ii) (@i¬〈π〉ψ)∗ ∈ Θ, thus by applying rule (¬〈π〉∗), @i¬[π]¬t,@tψ ∈ Θ,
for a new nominal t. Then:

∗ if t ∈ U, [i]≈R̂−π [t]≈. By I.H. G, [t]≈  ψ. Thus G, [i]≈ 1 ¬〈π〉ψ.
∗ if t /∈ U, ∃a such that t ⊆Θ a. Assume that there is no b such

that a ⊆Θ b, i.e., a ∈ U. By Theorem 1 on @tψ ∈ Θ, if ψ = ¬δ
then either ψ or δ is a subformula of a root formula, otherwise
ψ is a subformula of a root formula. Since t ⊆Θ a, @aψ ∈ Θ.

By I.H. G, [a]≈  ψ and by definition [i]≈R̂−π [a]≈. It follows that
G, [i]≈ 1 ¬〈π〉ψ.

• ϕ = [π]ψ

(i) @i[π]ψ ∈ Θ. We want to prove that G, [i]≈  [π]ψ, i.e., that for all

[k]≈ such that [i]≈R+
π [k]≈, G, [k]≈  ψ.

Let k be a nominal such that [i]≈R+
π [k]≈. By definition it implies that

exists k′ with k′≈k which satisfies one of the following two conditions:

∗ @i〈π〉k′ ∈ Θ which then, by applying the rule ([π]), implies that
@k′ψ ∈ Θ and by I.H. G, [k′]≈  ψ. Since [k′]≈ = [k]≈, then
G, [k]≈  ψ. Or:

∗ ∃a ∈ NomΘ such that @i〈π〉a ∈ Θ and a ⊆Θ k′, then by applying
the rule ([π]), @aψ ∈ Θ. From Theorem 1 if ψ = ¬δ either ψ or δ
is a subformula of a root formula, otherwise ψ is a subformula of
a root formula. Since a ⊆Θ k′, @k′ψ ∈ Θ. By I.H. G, [k′]≈  ψ.
Since [k]≈ = [k′]≈, G, [k]≈  ψ.
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It follows that G, [i]≈  [π]ψ.

(ii) (@i[π]ψ)∗ ∈ Θ, thus by applying the rule ([π]∗), @i〈π〉t, (@tψ)∗ ∈ Θ,
for a new nominal t. Then:

∗ if t ∈ U, [i]≈R+
π [t]≈. By I.H. G, [t]≈ 1 ψ, thus G, [i]≈ 1 [π]ψ.

∗ if t /∈ U, ∃a such that t ⊆Θ a. Assume that there is no b such that
a ⊆Θ b, i.e., a ∈ U. By Theorem 1 on (@tψ)∗ ∈ Θ, if ψ = ¬δ
either ψ or δ is a subformula of a root formula, otherwise ψ is
a subformula of a root formula. Since t ⊆Θ a, (@aψ)∗ ∈ Θ. By

I.H. G, [a]≈ 1 ψ and by definition [i]≈R+
π [a]≈. It follows that

G, [i]≈ 1 [π]ψ.

• ϕ = ¬[π]ψ

(i) @i¬[π]ψ ∈ Θ, then by applying the rule (¬[π]), @i¬[π]¬t, (@tψ)∗ ∈ Θ,
for a new nominal t. Then:

∗ if t ∈ U, [i]≈R̂−π [t]≈. By I.H. G, [t]≈ 1 ψ. Thus G, [i]≈  ¬[π]ψ.
∗ if t /∈ U , ∃a such that t ⊆Θ a. Assume that there is no b such that
a ⊆Θ b, i.e., a ∈ U . By Theorem 1 on (@tψ)∗ ∈ Θ, if ψ = ¬δ
either ψ or δ is a subformula of a root formula, otherwise ψ is
a subformula of a root formula. Since t ⊆Θ a, (@aψ)∗ ∈ Θ. By

I.H., G, [a]≈ 1 ψ and by definition [i]≈R̂−π [a]≈. It follows that
G, [i]≈  ¬[π]ψ.

(ii) (@i¬[π]ψ)∗ ∈ Θ. We want to prove that G, [i]≈ 1 ¬[π]ψ, i.e., that

for all [k]≈ such that [i]≈R̂
−
π [k]≈, G, [k]≈  ψ.

Let k be a nominal such that [i]≈R̂
−
π [k]≈. By definition, exists k′

with k′≈k that satisfies one of the following two conditions:

∗ @i¬[π]¬k′ ∈ Θ, which then by applying the rule (¬[π]∗), implies
that @k′ψ ∈ Θ. By I.H. G, [k′]≈  ψ. Since [k′]≈ = [k]≈, then
G, [k]≈  ψ. Or:

∗ ∃a ∈ NomΘ such that @i¬[π]¬a ∈ Θ and a ⊆Θ k′, then by
applying (¬[π]∗) it follows that @aψ ∈ Θ. From Theorem 1 if
ψ = ¬δ either ψ or δ is a subformula of a root formula, otherwise
ψ is a subformula of a root formula. Since a ⊆Θ k′, @k′ψ ∈ Θ.
By I.H. G, [k′]≈  ψ. Since [k′]≈ = [k]≈, G, [k]≈  ψ.

Thus G, [i]≈ 1 ¬[π]ψ.

Observe that root formulas that are satisfaction statements contain only
nominals from U, therefore they are captured in this theorem. On the other
hand, if a root formula ϕ (resp. ϕ∗) is not a satisfaction statement, the ap-
plication of the rule (@I) (resp. (@∗I )) turns it into one. Thus, by proving
satisfiability of @iϕ (resp. (@iϕ)∗) in a model G, at a state w, where i ∈ U, we
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are proving that there exists a model and a state where ϕ (resp. ϕ∗) is satisfied.
Note also that (@I) is applied to ϕ for every i in the branch so there is at least
one state where all root formulas are satisfied.

There is a straightforward consequence relation in DBHL∗, defined as:

Definition 13. Let ∆ be a finite set of signed formulas called database. The
formula ϕ is a consequence of ∆ if and only if for all multistructures G where
all formulas in ∆ are globally satisfied, ϕ is globally satisfied as well.

Formally,

∆  ϕ⇔ ∀G (G  ∆⇒ G  ϕ)

In other words, ϕ is a consequence of ∆ if and only if ϕ is globally satisfied
in all multistructures that are models of ∆. It is clear that the consequence
relation  is non-trivializable. Observe that ∆ may include both non-starred as
well as starred formulas.

The following result holds:

Proposition 2. For any finite set of signed formulas ∆ = {δ1, . . . , δn} ⊂
Form∗(Lπ) and any formula ϕ ∈ Form(Lπ), there is a tableau τ for δ1, . . . , δn, ϕ

∗

that is closed if and only if there is no multistructure G such that G  ∆ and
G  ϕ∗.

Example 1. Let ∆ = {@i〈π〉p,@i[π]j,@i¬〈π〉p}. We will check if ϕ = @i¬〈π〉j
is a consequence of ∆ using the tableau-based decision procedure described in
Proposition 2:

@i〈π〉p, @i[π]j, @i¬〈π〉p, (@i¬〈π〉j)∗ 1.
@i〈π〉t, @tp 2. by (〈π〉) rule on 1

@tj 3. by ([π]) rule on 1 and 2
@jp 4. by (Nom) rule on 3 and 2

@i¬[π]¬u,@uj 5. by (¬〈π〉∗) rule on 1
@ii,@jj,@tt,@uu 6. by (Id) rule

@ju 7. by (Nom) rule on 5 and 6
@up 8. by (Nom) rule on 7 and 4

(@up)
∗ 9. by (¬〈π〉) rule on 1 and 5

×

Since the tableau is closed, ϕ is a consequence of ∆.
Let us give some intuition behind this result: the multistructure that satisfies

the database is such that there is evidence of the presence of a transition from
the state named by i to a state where p holds; there is also evidence that the
only transition present from the state named by i leads to the state named by
j, therefore p holds in that state. We also have evidence of the absence of
transitions from the state named by i to states where p holds. Thus, we have
evidence about the absence of the transition from the state named by i to the
state named by j.
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We can also show that, for all models, transitivity of equality between nom-
inals is globally satisfied:

Example 2. Let ∆ = {} and ϕ = (@ij ∧@jk) ⊃ @ik.
The tableau-based decision procedure described in Proposition 2 yields the

following:

((@ij ∧@jk) ⊃ @ik)∗ 1.
(@t((@ij ∧@jk) ⊃ @ik))∗ 2. by (@∗I ) rule on 1
@t(@ij ∧@jk), (@t(@ik))∗ 3. by (⊃∗) rule on 2

@t(@ij),@t(@jk) 4. by (∧) rule on 3
@ij,@jk, (@ik)∗ 5. by (@E) rule on 4, (@∗E) rule on 3

@ii 6. by (Id) rule
@ji 7. by (Nom) rule on 5 and 6 – @ij,@ii
@ik 8. by (Nom) rule on 7 and 5 – @ji,@jk
×

Since the tableau is closed, ϕ is a consequence of ∆ = {} which means that
ϕ is globally satisfied in all models, i.e., ϕ is valid.

Representation of models via diagrams

From this point on, we will assume that Prop, Nom and Mod are finite sets
for any hybrid multimodal similarity type Lπ = 〈Prop,Nom,Mod〉, as is the
domain W of any multistructure.

Let Lπ(W) denote the expansion of Lπ that ensures that all states are named
by a nominal and let G(W) denote the natural expansion of the multistructure
G to the hybrid multimodal similarity type Lπ(W).

The diagram of a multistructure will be constituted by all evidence of what
happens at specific states, all evidence about transitions and the lack of transi-
tions, and finally all evidence about equalities between states.

We start by introducing the notion of DB-literal that will be used later:

Definition 14. We define the set of DB-literals over a hybrid (multimodal)
similarity type Lπ = 〈Prop,Nom,Mod〉 as:

DBLit(Lπ) = {@ip,@i¬p,@i〈π〉j,@i¬〈π〉j,@ij | i, j ∈ Nom,
p ∈ Prop, π ∈ Mod}.

Definition 15. Let Lπ = 〈Prop,Nom,Mod〉 be a hybrid (multimodal) similarity
type, and G = (W, (R+

π )π∈Mod, (R
−
π )π∈Mod,N,V

+,V−) be a multistructure over
Lπ. The diagram of G, denoted by Diag(G), is the set of DB-literals over Lπ(W)
that hold in G(W), i.e.,

Diag(G) = {α ∈ DBLit(Lπ(W)) | G(W)  α}.
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Two distinct multistructures over Lπ with the same domain W induce two
distinct diagrams (over Lπ(W)). Thus the diagram Diag(G) uniquely defines
the multistructure G.

We will use D(∆,W) to denote the set of diagrams of multistructures that
are models of ∆, with domain W, over the hybrid (multimodal) similarity type
Lπ(W), where Lπ contains the symbols occurring in ∆.

The following example deals with a single modality which for the sake of
simplicity is omitted.

Example 3. In Figure 7 are represented five different (named) locations, evi-
dence of the presence (full line) and absence (dashed line) of transitions between
pairs of locations as well as some local properties.

Figure 7: An inconsistent map.

This multistructure is represented by the following diagram:

{@ii,@jj,@kk,@ll,@mm, // nominal equalities
@jp,@k¬q,@lp,@l¬p, // local properties
@i3j,@i¬3j,@i¬3k,@j3i, // transitions
@j3l,@k3j,@l3k}

Note that there is a difference between checking if a formula is satisfied in
a multistructure and checking if a formula is a consequence of the diagram of
a multistructure. Recall that a formula is a consequence of a set of formulas
∆ if it is globally satisfied in every model of ∆. Observe also that there are
multistructures that satisfy all the formulas in the diagram of a particular mul-
tistructure G, apart from G itself; this happens for every multistructure of which
G is a substructure (we consider that G is a substructure of G′ if the domain of G
is a subset of or equal to the domain of G′, for each modality π, the associated
positive and negative accessibility relations R+

π and R−π in G are a subset or
equal to those in G′, each state in G′ is named by at least the same nominal
as in G, and finally, for each propositional variable p the positive and negative
valuations V+(p) and V−(p) are a subset or equal to those in G′). In order to
check if a formula is globally satisfied in a multistructure, we must check if it is
a consequence of its diagram together with the following set of formulas:

{α∗ | α ∈ DBLit(Lπ)\Diag(G)}
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where Lπ is the hybrid (multimodal) similarity type that contains all symbols
appearing in Diag(G). This construction is always feasible since the multistruc-
tures we are considering are finite.

In Example 3, the formula @i3p is a consequence of the diagram of the
multistructure presented, call it G. However, even though @i¬3¬q holds in the
multistructure, it is not a consequence of its diagram: take a multistructure
whose diagram is Diag(G) ∪ {@l¬q} – it is a model for the diagram of G and
nonetheless @i¬3¬q does not hold there.

In order to avoid dealing with unnecessary information, we introduce the
notion of minimal model. Minimal models are those where each formula in its
diagram is absolutely necessary to keep it a model, according to the following
definition:

Definition 16. The set of minimal models with domain W for a set of signed
formulas ∆ is the set MinD(∆,W) defined as:

MinD(∆,W) = {M ∈ D(∆,W) | if M ⊂M then M /∈ D(∆,W)}.

Clearly, every model contains a minimal model, i.e., for every model M1,
there is a minimal model M2 such that M2 ⊆M1.

No useful information is lost when we use MinD(∆,W) instead of D(∆,W).

Given a set ∆ of signed formulas, there is an algorithm that allows us to
extract minimal models for ∆, each of them already represented by its diagram.
The algorithm will resort to the tableau system introduced and works as follows:

Algorithm 1. In order to extract minimal models for ∆ proceed as follows:

1. Build a terminal tableau for ∆ by applying the tableau rules of system T,
where condition (iv) is restated as follows:

(iv) for @iϕ a DB-literal;

together with the following extra rule:

@ij,@kψ

@k(ψ[i/j])
(Bridge)(i)

(i) @kψ is a DB-literal; ψ[i/j] is the result of replacing in ψ all
occurrences of i with j.

This extra rule is sound and ensures that we have all DB-literals that are
satisfied in our model.

Consider only the open branches from now on.

2. In order to determine minimal models with a certain number of states,
introduce formulas of the form @ij, @i¬j for nominals already occurring;
introduce new nominals only if necessary to suit the number of states de-
sired. (If, for example, i and j are the only nominals occurring in the
tableau and we want to determine minimal models with a single state, we
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must add the condition @ij; if we want models with two states, we can
either add the condition @i¬j, or consider the case where @ij is added
and a new nominal k is introduced by adding @i¬k as well. The number
of combinations grows very rapidly.)

3. Apply the rules mentioned in step 1., treating the formulas introduced in
step 2. as if they were root formulas, until a terminal tableau is reached.

Repeat the instructions on step 2. about combining nominals in order to
suit the number of states previously set.

Consider only the open branches.

4. Finally, with the purpose of defining the positive and negative transitions
between states, split each branch into sub-branches such that each sub-
branch contains one way of combining the formulas @i〈π〉j, @i[π]¬j and
@i¬〈π〉j, @i¬[π]¬j for all nominals i and j and modalities π occurring
on the branch.

Apply the rules indicated in step 1. until a terminal tableau is reached.
Each new open branch defines the families of positive and negative acces-
sibility relations (R+

π )π∈Mod and (R−π )π∈Mod.

For each open branch copy the DB-literals into a set which will be the
diagram of a model for ∆. Take the minimal models from amongst those.

Proposition 3. There are no minimal models for ∆ other than those that are
obtained from this algorithm.

Proof. Suppose that M is the diagram of a multistructure G which is a minimal
model for ∆ and is such that M 6⊆ Θ for all open branches Θ, in the sense that
for each branch Θ there exists a literal ϕ such that ϕ ∈ Θ and ϕ /∈M.

Thus, for M under the conditions described, G 1 Θ for all Θ.

Recall that by Theorem 3 (Soundness), for each rule
∆

Σ1| . . . |Σn
and any

multistructure G, G  ∆ implies G  Σ1 or . . . G  Σn. Therefore it follows that
G 1 ∆. So G is not a model for ∆, and therefore G cannot be a minimal model.
Hence there is no such M.

We present an example as a means to illustrate the algorithm developed:

Example 4. Let ∆ = {@i〈π〉p,@i¬〈π〉q,@iq}. Let us use the algorithm intro-
duced in order to determine minimal models of ∆ with only one state:

◦ Step 1.
The terminal tableau with root ∆ comes as follows:

@i〈π〉p, @i¬〈π〉q, @iq 1.
@i〈π〉t, @tp 2. by (〈π〉) rule on 1

@ii, @tt 3. by (Id)
�
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◦ Steps 2. and 3.
Now, given that two nominals occur in the tableau, if we want to determine

minimal models with a single state, we must add to the tableau the formula @it,
meaning that the nominals i and t name the same state. In this case the tableau
is extended as follows:

@it 4. by step 2. of the algorithm
@ti, @tq, @t〈π〉t 5. by (Nom) rule on 4 and 3/1/2

@ip 6. by (Nom) rule on 5 and 2
@i〈π〉i, @t〈π〉i 7. by (Bridge) rule on 5 and 2/5

�

◦ Step 4.
Last step is to determine the positive and negative transitions between states.

From the tableau constructed so far, we have that there is a positive transition
from the state named by both i and t to itself. Thus the only information missing
is if there is or there is not a negative transition from the state named by both
i and t to itself. So we split the open branch of the tableau into two in the
following way:

@i¬〈π〉i @i¬[π]¬i 8. by step 4. of the algorithm
(@tq)

∗ 9. by rule (¬〈π〉) on 8 and 1
@i¬〈π〉t × 10. by rule (Bridge) on 8 and 4
@t¬〈π〉i 11. by rule (Nom) on 8 and 4
@t¬〈π〉t 12. by rule (Bridge) on 11 and 4
�

The minimal model for ∆ with one state is:

M = {@iq,@tq,@ip,@tp,@ii,@tt,@it,@ti,
@i〈π〉i,@i〈π〉t,@t〈π〉i,@t〈π〉t,
@i¬〈π〉t,@i¬〈π〉t,@t¬〈π〉i,@t¬〈π〉t}

Its graphical representation is as follows:

In the graphical representation the full line represents R+
π and the dashed

one represents R−π .

Note that this algorithm produces very large tableaux – in step 4, when
considering n states, we split each open branch into 4n×n branches. However,
dealing with each branch separately is as simple as before.
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4. Inconsistency measures

The idea of measuring the amount of inconsistent information in paraconsis-
tent structures has been widely addressed in [13], [14] and [15], where a variety
of different measures have been proposed. An inconsistency measure is sim-
ply a function that assigns a non-negative real value to sets of formulas. Each
inconsistency measure is a strategy for analysing inconsistent information by
showing how conflicting a set of formulas is. Some measures are more fine-
grained than others, but in general what they do is they allow us to compare
sets of information.

Inconsistency measures can be classified in various ways and may satisfy cer-
tain properties. One distinction is between absolute measures that measure the
total amount of contradictions and relative measures that use a ratio to deter-
mine how much of the database is inconsistent. A few inconsistency measures
for multistructures represented by their diagrams will be presented next, as well
as a couple of inconsistency measures for databases.

Absolute measures for multistructures

Given a multistructure G whose diagram Diag(G) we will represent by M,
an absolute measure that counts how many inconsistencies are in M is given as
follows:

MInc1(M) =
∣∣{(p, w) ∈ Prop×W : {@ip,@i¬p} ⊆M where N(i) = w

}∣∣
+

∑
π∈Mod

∣∣{(w,w′) ∈W ×W : {@i〈π〉j,@i¬〈π〉j} ⊆M where

N(i) = w and N(j) = w′
}∣∣.

Observe that each component of this measure could be considered as an
absolute measure by itself.

MInc1 is monotonic:

Lemma 3. Let G1,G2 be two multistructures and M1,M2 be their representa-
tions. If M1 ⊆M2, then MInc1(M1) ≤ MInc1(M2).

The next measure counts the number of inconsistencies in a particular con-
nected component of a multistructure, whose definition comes as follows:

Con(G,N(i)) =
{
u ∈W | ∃j1, . . . , jn ∈ Nom :

((∃π ∈ Mod : @i〈π〉j1 ∈M or @j1〈π〉i ∈M)
and (∃π ∈ Mod : @j1〈π〉j2 ∈M or @j2〈π〉j1 ∈M),
. . . ,
and (∃π ∈ Mod : @jn−1

〈π〉jn ∈M or @jn〈π〉jn−1 ∈M)

and N(jn) = u)
}
∪ {N(i)}.

Clearly
⋃

i∈Nom

Con(G,N(i)) = W.
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Then MInc2 comes as:

MInc2(M,N(i)) =
∣∣{(p, u) ∈ Prop× Con(G,N(i)) :
{@tp,@t¬p} ⊆M where N(t) = u

}∣∣
+
∑

π∈Mod

∣∣{(w,w′) ∈ Con(G,N(i))× Con(G,N(i)) :

{@i〈π〉j,@i¬〈π〉j} ⊆M where N(i) = w and N(j) = w′
}∣∣.

As MInc1, MInc2 is monotonic too.
A third measure counts the number of inconsistencies in a particular path

via a modality π, whose definition comes as follows:

Path(G,N(i)) =
{
u ∈W | ∃j1, . . . , jn ∈ Nom, ∃π1, . . . , πn ∈ Mod :

(@i〈π1〉j1,@j1〈π2〉j2, . . . ,@jn−1
〈πn〉jn ∈M)

and N(jn) = u
)}
∪ {N(i)}.

The measure is given as:

MInc3(M, N(i)) =
∣∣{(p, u) ∈ Prop× Path(G,N(i)) : {@tp,@t¬p} ⊆M,
where N(t) = u

}∣∣
+

∑
π∈Mod

∣∣{(w,w′) ∈ Path(G,N(i))× Path(G,N(i)) :

{@i〈π〉j,@i¬〈π〉j} ⊆M where N(i) = w and N(j) = w′
}∣∣.

Once again, this measure is monotonic.
This type of measure may be useful in the future to explore the least incon-

sistent path in problems that resemble the travelling salesman problem, adapted
to deal with inconsistent maps.

Observe that Path(G,N(i)) ⊆ Con(G,N(i)), thus the following lemma holds:

Lemma 4. Let G be a multistructure represented by M. Then

MInc3(M, N(i)) ≤ MInc2(M, N(i)) ≤ MInc1(M), for all i ∈ Nom.

A weighted measure requires weight vectors for propositional variables and
states and a matrix detailing the weight of each transition:

weightProp =
[
weightp1 . . .weightp|Prop|

]
and

weightW =
[
weightw1

. . .weightw|W |

]
and
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weightW×W =


weightw1,w1

weightw1,w2
. . . weightw1,wn

weightw2,w1
weightw2,w2

. . . weightw2,wn

...
...

...
weightwn,w1

weightwn,w2
. . . weightwn,wn


where all entries are non-negative real numbers.

Let MInc4 be such that:

MInc4(M) =
∑

(p,w): @ip,@i¬p∈M,
where N(i)=w

weightPropp
× weightWw

+
∑

π∈Mod

 ∑
(w,w′): @i〈π〉j,@i¬〈π〉j∈M,

where N(i)=w,N(j)=w′

weightW×Ww,w′

 .

Relative measures for multistructures

Taking the number of inconsistencies in a multistructure and dividing it by
the number of possible inconsistencies gives us a relative measure whose result is
a ratio between 0 and 1 that tells us how much of a portion of the multistructure
is inconsistent.

Given a multistructure G represented by M, this inconsistency measure comes
in the form:

MInc5(M) =
MInc1(M)

|Prop| × |W|+ |Mod| × |W| × |W|
.

This measure is neither monotonic nor anti-monotonic for the following rea-
son:

• if M1 ⊆ M2 and the multistructures that are represented by M1 and M2

have the same domain W and are built over the same hybrid (multimodal)
similarity type, then

MInc5(M1) =
MInc1(M1)

|Prop| × |W|+ |Mod| × |W| × |W|

≤ MInc1(M2)

|Prop| × |W|+ |Mod| × |W| × |W|
= MInc5(M2)

since from previous results we already had that MInc1(M1) ≤ MInc1(M2);

• if, however that is not the case, monotonicity can be broken:

Let G1 and G2 be two multistructures over L1
π = ({p}, {i}, {π}) and

L2
π = ({p}, {i, j}, {π}), respectively, such that
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– W1 = {w1} and W2 = {w1, w2},
– R+

1 = R−1 = R+
2 = R−2 = ∅,

– N1(i) = N2(i) = w1, N2(j) = w2,

– V+
1 (p) = V−1 (p) = V+

2 (p) = V−2 (p) = {w1}.

Then M1 = {@ip,@i¬p,@ii} and M2 = {@ip,@i¬p,@ii,@jj}. Clearly
M1 ⊂ M2 and MInc1(M1) = MInc1(M2) = 1. Therefore,

MInc5(M1) =
1

1
≥ 1

6
= MInc5(M2).

We can also take the weighted measure MInc4 and divide it by the sum of
the weights of the elements of the multistructure. This inconsistency measure
comes as follows:

MInc6(M) =
MInc4(M)∑

p∈Prop,w∈W
weightp × weightw + |Mod| ×

∑
w,w′∈W

weightw,w′
.

MInc6 is also neither monotonic nor anti-monotonic.

Example 5. Let us calculate some measures of inconsistency for the multi-
structure in Example 3. We refer to the diagram of the multistructure as M.
|W| = 5, |Prop| = 2, |Mod| = 1

• MInc1(M) = 2.

• MInc2(M,N(i)) = 2.

• MInc3(M,N(m)) = 0.

• MInc5(M) =
2

10 + 25
=

2

35
.

Measures for databases

We may want to know whether one source is more inconsistent than another.
In particular we would like to determine which is the least inconsistent source
of information we have in our hands, which will intuitively be thought of as the
least problematical or most reliable source.

First, let us consider minimal models with the least number of inconsisten-
cies, which we will call preferred models.

Definition 17. The set of preferred models with domain W for a set of signed
formulas ∆ is the set PrefD(∆,W) defined as:

PrefD(∆,W) = {M ∈ MinD(∆,W) | for all M ∈ MinD(∆,W),
MInc1(M) ≤ MInc1(M)}.
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We define MInc7(∆,D), as a sequence 〈r1, . . . , rn, . . .〉 where rn = MInc5(M)
if there exists a model M ∈ PrefD(∆,Wn) with Wn a domain of size n, and
rn = ∗ otherwise. We use ∗ as kind of a null value.

The measure MInc7(∆,D) captures how the relative measure of inconsistency
of preferred models for a database ∆ evolves with increasing domain size. There
are databases ∆ for which all minimal models contain no inconsistencies at all,
and others for which all minimal models are inconsistent.

We adopt a lexicographic ordering over the tuples generated by the MInc7

function as follows:

Definition 18. Let ∆1,∆2 be two databases. Let MInc7(∆1,D) = 〈r1, r2, . . . 〉
and MInc7(∆2,D) = 〈s1, s2, . . . 〉.

MInc7(∆1,D) � MInc7(∆2,D)⇔ for all i ≥ 1, ri ≤ si or ri = ∗ or si = ∗.

In case MInc7(∆1,D) � MInc7(∆2,D), one says that ∆1 is less or as incon-
sistent as ∆2 and denote this by ∆1 ≤inc ∆2.

Example 6. Let ∆1 = {@i〈π〉p,@i¬〈π〉q,@jq} and ∆2 = {@ip,@i¬p}. Then:

MInc7(∆1,D) =

〈
1

3
, 0, 0, . . . , 0, . . .

〉
,

MInc7(∆2,D) =

〈
1

2
,

1

6
,

1

12
, . . .

1

n× (n+ 1)
, . . .

〉
.

Thus ∆1 ≤inc ∆2.

MInc7 is monotonic: given ∆1,∆2 such that ∆1 ⊆ ∆2, and since addi-
tional statements may add but cannot subtract inconsistencies, it follows that
MInc7(∆1,D) � MInc7(∆2,D).

We define equivalence between databases in the next definition:

Definition 19. Let ∆1,∆2 be two databases. ∆1 and ∆2 are equivalent if for
all M

M is a model of ∆1 ⇔M is a model of ∆2.

The following result holds:

Proposition 4. Let ∆1,∆2 be two databases. If ∆1 and ∆2 are equivalent,
then

MInc7(∆1,D) = MInc7(∆2,D).

Proof. Let MInc7(∆1,D) = 〈r1, r2, . . .〉 and MInc7(∆2,D) = 〈s1, s2, . . .〉.
Since ∆1 and ∆2 are equivalent, any preferred model M of ∆1 with a domain

of size n is a model of ∆2. In fact, M is a preferred model for ∆2 as well, for if
it were not, then it could not be a preferred model of ∆1.

Therefore, rn = sn for all n and thus MInc7(∆1,D) = MInc7(∆2,D).
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5. DB-bisimulation

Bisimulation is the fundamental notion of equivalence between models in
Modal logic and extensions to Hybrid logic are not a novelty, [1]. In this section
the notion of bisimulation is extended to multistructures. Curiously, the classical
construction will not preserve satisfiability of formulas between bisimilar models.
However, that will be the case for a posterior definition of DB-bisimulation,
which performs a small, yet significant, change in the previous definition.

Definition 20. Let G =
(
W, (R+

π )π∈Mod , (R
−
π )π∈Mod ,N,V

+,V−
)

and

G = (W, (R+
π )π∈Mod, (R

−
π )π∈Mod,N,V+,V−) be two hybrid multistructures over

the same hybrid (multimodal) similarity type Lπ = 〈Prop,Nom,Mod〉.
A relation Z ⊆W ×W is a multi-bisimulation if Z is a bisimulation (in the

classical sense) between the hybrid structures H =
(
W, (R∗π)π∈Mod ,N,V

◦) and

H =
(

W,
(
R∗π
)
π∈Mod

,N,V◦
)

, for each combination ∗, ◦ ∈ {+,−}.

In more detail, Z is a multi-bisimulation if the following conditions are met:

• (N(i),N(i)) ∈ Z for all i ∈ Nom;

• if (w,w) ∈ Z, then:
– atomic conditions:

o w ∈ V◦(p) iff w ∈ V◦(p), for all ◦ ∈ {+,−} and p ∈ Prop;
o N(i) = w iff N(i) = w′, for all i ∈ Nom;

– if wR∗πu for some u ∈W, then there is some u ∈W such that wR∗πu
and (u, u) ∈ Z (Zig∗), for ∗ ∈ {+,−};

– if wR∗πu for some u ∈W, then there is some u ∈W such that wR∗πu
and (u, u) ∈ Z (Zag∗), for ∗ ∈ {+,−}.

Two pointed hybrid multistructures (G, w) and (G, w) are multi-bisimilar if
there is a multi-bisimulation Z between G and G′ such that (w,w) ∈ Z.

Theorem 5. DBHL∗ is not invariant under multi-bisimulation.

Proof. Take the following pointed hybrid multistructures over Lπ = 〈{p},∅, {π}〉:

– (G, w), where G is such that W = {w}, R+
π = ∅, R−π = {(w,w)}, N is the

empty function, V+(p) = {w} and V−(p) = ∅; and

– (G, w), where G is such that W = {w, v}, R+
π = ∅, R−π = {(w, v), (v, v)},

N is the empty function, V+(p) = {w, v} and V−(p) = ∅.

Observe that (G, w) and (G, w) are multi-bisimilar. The multi-bisimulation
Z = {(w,w), (w, v)} is represented in the following figure:
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Figure 8: Multi-bisimulation between G and G.

Nonetheless, G, w  ¬〈π〉p whereas G, w 1 ¬〈π〉p.

So, although this seems like a natural definition for multi-bisimulation, it
is clearly not the best since invariance is lost. Note also that a multistructure
where all states are named is only multi-bisimilar to itself.

We change Definition 20 and introduce a DB-bisimulation as follows:

Definition 21. Let G =
(
W, (R+

π )π∈Mod , (R
−
π )π∈Mod ,N,V

+,V−
)

and

G = (W, (R+
π )π∈Mod, (R

−
π )π∈Mod,N,V+,V−) be two hybrid multistructures over

the same hybrid (multimodal) similarity type Lπ = 〈Prop,Nom,Mod〉.
A relation Z ⊆W ×W is a DB-bisimulation if:

• (N(i),N(i)) ∈ Z for all i ∈ Nom;

• if (w,w) ∈ Z, then:
– atomic conditions:

o w ∈ V+(p) iff w ∈ V+(p), for all p ∈ Prop;
o w ∈ V−(p) iff w ∈ V−(p), for all p ∈ Prop;
o N(i) = w iff N(i) = w′, for all i ∈ Nom;

– if wR+
π u for some u ∈W, then there is some u ∈W such that wR+

π u
and (u, u) ∈ Z (Zig+);

– if w��R−π u for some u ∈W, then there is some u ∈W such that w�
�R−π u

and (u, u) ∈ Z (Zig−);

– if wR+
π u for some u ∈W, then there is some u ∈W such that wR+

π u
and (u, u) ∈ Z (Zag+);

– if w�
�R−π u for some u ∈W, then there is some u ∈W such that w��R−π u

and (u, u) ∈ Z.

Two pointed hybrid multistructures are DB-bisimilar in an analogous fashion
to the definition of multi-bisimilar pointed multistructures.

We conclude with the proof of invariance:
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Theorem 6. DBHL∗ is invariant under DB-bisimulation.

Proof. Let (G, w) and (G, w) be two DB-bisimilar pointed hybrid multistructures
over Lπ. We prove that, for all ϕ ∈ Form(Lπ), G, w  ϕ⇔ G, w  ϕ.

The proof is by induction on the structure of ϕ:

• ϕ = p:

G, w  p ⇔ w ∈ V+(p)

⇔ w ∈ V+(p) (w,w) ∈ Z : atomic condition

⇔ G, w  p

• ϕ = ¬p:

G, w  ¬p ⇔ w ∈ V−(p)

⇔ w ∈ V−(p) (w,w) ∈ Z : atomic condition

⇔ G, w  ¬p

• ϕ = i:

G, w  i ⇔ w = N(i)
⇔ w = N(i) (w,w) ∈ Z : atomic condition

⇔ G, w  i

• ϕ = ¬i:

G, w  ¬i ⇔ w 6= N(i)
⇔ w 6= N(i) (w,w) ∈ Z : atomic condition

⇔ G, w  ¬i

Induction Hypothesis (I.H.): the result holds for subformulas ψ, δ of ϕ, as
well as for ¬ψ,¬δ.

• ϕ = ψ ∨ δ:

G, w  ψ ∨ δ ⇔ (G, w  ψ or G, w  δ)
and (G, w  ¬ψ implies G, w  δ)
and (G, w  ¬δ implies G, w  ψ)

⇔
(
G, w  ψ or G, w  δ

)
(I.H.)

and
(
G, w  ¬ψ implies G, w  δ

)
and

(
G, w  ¬δ implies G, w  ψ

)
⇔ G, w  ψ ∨ δ

• ϕ = ¬(ψ∨δ), ψ∧δ,¬(ψ∧δ), ψ ⊃ δ,¬(ψ ⊃ δ) follow an analogous reasoning.
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• ϕ = 〈π〉ψ:

In order to give full details, we prove this case in two steps.

G, w  〈π〉ψ ⇔ ∃u ∈W : wR+
π u and G, u  ψ

⇒ ∃u ∈W : wR+
π u and (u, u) ∈ Z (Zig+)

⇒ ∃u ∈W : wR+
π u and G, u  ψ (I.H.)

⇔ G, w  〈π〉ψ

G, w  〈π〉ψ ⇔ ∃u ∈W : wR+
π u and G, u  ψ

⇒ ∃u ∈W : wR+
π u and (u, u) ∈ Z (Zag+)

⇒ ∃u ∈W : wR+
π u and G, u  ψ (I.H.)

⇔ G, w  〈π〉ψ

• ϕ = [π]ψ:

Suppose that G, w  [π]ψ and G, w 1 [π]ψ. Then for all u ∈ W, wR+
π u

implies G, u  ψ. On the other hand, there exists u ∈W such that wR+
π u

and G, u 1 ψ. From this, and by (Zag+), there exists s ∈ W such that
wR+

π s and (s, u) ∈ Z. Thus, by I.H., G, s 1 ψ and therefore G, w 1 [π]ψ,
which is a contradiction.

If we assume that G, w 1 [π]ψ and G, w  [π]ψ we reach a contradiction
in an analogous fashion, by using (Zig+) instead. So, G, w  [π]ψ if and
only if G, w  [π]ψ.

• ϕ = ¬〈π〉ψ:

Suppose that G, w  ¬〈π〉ψ and G, w 1 ¬〈π〉ψ. Then for all u ∈ W,
G, u  ψ implies wR−π u, or equivalently, for all u ∈ W, w��R−π u implies
G, u 1 ψ. On the other hand, there exists u ∈W such that G, u  ψ and

w�
�R−π u. From this, and by (Zag−), there exists s ∈ W such that w��R−π s

and (s, u) ∈ Z. Thus, by I.H., G, s  ψ and therefore G, w 1 ¬〈π〉ψ, which
is a contradiction. So, G, w  ¬〈π〉ψ if and only if G, w  ¬〈π〉ψ.

If we assume that G, w 1 ¬〈π〉ψ and G, w  ¬〈π〉ψ we reach a contradiction
in an analogous fashion, by using (Zig−) instead. So, G, w  ¬〈π〉ψ if and
only if G, w  ¬〈π〉ψ.

• ϕ = ¬[π]ψ:

G, w  ¬[π]ψ ⇔ ∃u ∈W : w��R−π u and G, u 1 ψ

⇔ ∃u ∈W : w�
�R−π u and G, u 1 ψ (Zig−/Zag−) + (I.H.)

⇔ G, w  ¬[π]ψ
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6. Conclusion

The paper presents a four-valued Hybrid logic where propositional variables
and accessibility relations are paraconsistent and paracomplete. The major
novelty about this work is the fact that the duality between modal operators is
no longer valid. However, the multistructures with which we work are such that
they can be described by a set of atomic formulas, a diagram, just like structures
can in standard Hybrid logic. We also introduced a sound and complete tableau
system, discussed inconsistency measures and notions of bisimulation. This
formal system is possibly the key to deal with graph-related problems where
inconsistent information regarding local data and transitions is provided. We
intend to continue looking for applications of this logic, namely in problems such
as the travelling salesman when the underlying map is inconsistent. We also plan
on studying fuzzy versions of DBHL∗, as well as an extension to dynamic logic
in order to check the influence of our four-valued accessibility relations in the
behaviour of the composition of actions.

The topic of paraconsistency at the level of nominals should also be addressed
in the future. This seemingly easy feature carries a lot of implications and
requires a lot of care in many ways. Let us not forget that we cannot simply
assign one of four values to pairs (i, w), otherwise nothing would distinguish
them from ordinary propositional variables.
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[16] J. U. Hansen, T. Bolander, and T. Braüner. Many-valued hybrid logic. Journal of Logic
and Computation, 28(5):883–908, 06 2015.

[17] S. P. Odintsov and H. Wansing. Disentangling FDE-based paraconsistent modal logics.
Studia Logica, 105(6):1221–1254, Dec 2017.

[18] U. Rivieccio, A. Jung, and R. Jansana. Four-valued modal logic: Kripke semantics and
duality. Journal of Logic and Computation, 2015.

40


