The Thermo-Chemical Evolution of Mars With a Strongly Stratified Mantle

Henri Samuel1, Maxim D. Ballmer2,3,4, Sebastiano Padovan5, Nicola Tosi4, Attilio Rivoldini4, and Ana-Catalina Plesa4

1Institut de Physique du Globe de Paris, CNRS, Université de Paris, Paris, France, 2University College in London, London, UK, 3ETH Zürich, Zürich, Switzerland, 4Earth-Life Science Institute, Tokyo Tech, Tokyo, Japan, 5Department of Planetary Physics, Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany, 6Royal Observatory of Belgium, Brussels, Belgium

Abstract The Martian mantle probably experienced an early global magma ocean stage. The crystallization and the fractionation and overturn of such a magma ocean likely led to the formation of a compositionally distinct layer at the bottom of the mantle. This layer would have been heavily enriched in iron and in heat-producing elements (HPE). The significant iron enrichment can lead to long-term stability with little mixing between the layer and the overlying mantle. We studied the influence of such an enriched basal layer on the thermal and chemical evolution of the Martian mantle using both 2-D finite-volume modeling at mantle scale, and a parameterized convection approach at the entire planetary scale. The basal layer is most likely stably stratified because of its moderate thickness and/or its gradual enrichment in iron with depth that prevents the development of convection in this region. We explored a wide parameter space in our parameterized models, including the layer thickness and the mantle rheology. We show that the presence of an enriched basal layer has a dramatic influence on the thermo-chemical evolution of Mars, strongly delaying deep cooling, and significantly affecting nearly all present-day characteristics of the planet (heat flux, thermal state, crustal and lithospheric thickness, Love number and tidal dissipation). In particular, the enrichment of the layer in iron and HPE generates large volumes of stable melt near the core-mantle boundary. Due to their intrinsic low viscosity and seismic velocities, these regions of silicate melt could be erroneously interpreted as core material.

Plain Language Summary Early in its history, Mars experienced a global magma ocean stage during which the silicate mantle and the iron core formed. The solidification of the silicate magma ocean likely resulted in the formation of a basal layer enriched in iron and heat-producing elements above the core-mantle boundary. This layering is supported by petrological and geochemical observations, and we studied its influence on the evolution of Mars by simulating its thermal and chemical evolution for 4.5 billion years. The heat transfer within the layer is most likely conductive and the layer concentrates heat and reduces deep mantle and core cooling. The temperature of the basal layer is high enough to melt most of this region, biasing the interpretation of seismic and geodetic data, in particular due to the tradeoffs between the thickness of the molten layer and the core size. Indeed, the molten mantle above the core may be seismically and tidally interpreted as a core larger than it actually is. Additionally, the basal layer can affect the shallow thermal and chemical structure of the planet (crustal thickness and surface heat flow), which could be inferred by available and upcoming seismic, geodetic and heat flow data from space missions.

1. Introduction

The present-day structure of Mars and other terrestrial planets results from billions of years of thermo-chemical evolution. It is known from geodetic data (gravity field, precession, and tides) that Mars is a differentiated planet with a liquid core (Smrekar et al., 2019; Van Hoolst & Rivoldini, 2014; Yoder & Standish, 1997; Yoder et al., 2003). Such a large-scale differentiation is indirect evidence that the planet has experienced a global magma ocean stage during its early history. Indeed, as Mars was formed from the accretion of planetesimals containing both metallic iron and silicates, gravitational segregation combined with large-scale melting (and therefore low viscosities) of a mixture of both materials appears to be the only viable mechanism to efficiently separate metal from silicates at planetary scale. For example, both
solid-state motion or diffusion would require time scales much longer than the age of the planet itself (Karato & Murthy, 1997; Rubie et al., 2003; Stevenson, 1981). In addition, the presence of an early magma ocean is also suggested by accretion scenarios. As planetary bodies reach sizes on the order of a few thousands of kilometers, the last stages of accretion become very energetic, and incoming impacts are likely to melt large fractions of the forming planet (Senshu et al., 2002) and references therein). Moreover, the presence of short-lived radioactive heat-producing elements (HPE) such as 26Al and 60Fe contributed significantly to the occurrence of a deep and global magma ocean (Dauphas & Pourmand, 2011; Morishima et al., 2013; Nimmo & Kleine, 2007). Finally, the very process of core formation generates large amounts of melting by converting gravitational potential energy into heat via viscous heating (Rubie et al., 2015; Samuel et al., 2010; Senshu et al., 2002). Furthermore, the 182W and 142Nd isotopic anomalies that have been measured in Martian meteorites indicate that the Martian core formed within the first 13 ± 2 Myr after the solar system formation (Foley et al., 2005; Kleine et al., 2002). All Martian meteorites show a strong depletion of highly siderophile elements (Brandon et al., 2012), indicative of efficient metal-silicate separation. The latter can only be achieved if Mars has experienced a large-scale magma ocean during its early evolution (Mezger et al., 2013). Thus, the presence of a silicate magma ocean at the end of core formation on Mars appears to be almost inevitable.

The solidification of a magma ocean during the progressive cooling of the planet is a complex process that involves significant chemical fractionation. The first solids that form are strongly depleted in incompatible elements, in particular HPE and iron oxides. During subsequent solidification, the newly formed cumulates become progressively more enriched (Elkins Tanton et al., 2003, 2005; Zeff & Williams, 2019). Since the crystallization of the Martian magma ocean is thought to occur from the bottom-up, the stacking of gradually iron-enriched and hence denser material results in a gravitationally unstable configuration. This gravitationally unstable stacking could lead to one or more episodes of Rayleigh-Taylor overturns of the cumulates (Ballmer et al., 2017; Boukaré et al., 2018; Maurice et al., 2017). Depending on a number of poorly constrained parameters (e.g., the solidification time of a magma ocean, the efficiency of melt-solid separation in the mushy freezing front [Hier-Majumder & Hirschmann, 2017], or the crystal-melt density contrasts), the solidification of a Martian silicate magma ocean and the overturn of the resulting gravitationally unstable mantle stratification may ultimately lead to the presence of a significantly denser and enriched material at the bottom of the mantle compared to the overlying mantle. The enriched material could be either well-mixed and compositionally homogeneous (but distinct from the overlying mantle) or heterogeneous with a vertical compositional gradient (Ballmer et al., 2017; Maurice et al., 2017).

In both cases, if the iron enrichment is such that the induced compositional density contrast is significantly larger than thermal density contrasts, the compositionally distinct material will form a stable flat layer enveloping the core-mantle boundary (CMB) (Lebars & Davaille, 2002; Limare et al., 2019; Olson, 1984; Plesa et al., 2014; Samuel & Farnetani, 2003; Tackley, 2002; Tosi, Plesa et al., 2013). Such a stable basal layer can remain unmixed with the rest of the mantle for billions of years, with a negligible erosion (Zhong & Hager, 2003). The presence of such a mantle reservoir is also supported by the isotopic anomalies measured in Martian meteorites (Debaille et al., 2007; Foley et al., 2005; Harper et al., 1995). Its long-term preservation can thus strongly influence the evolution and the present-day internal structure of Mars. However, the effects of such a strong mantle stratification on the long-term thermo-chemical evolution of Mars and on the interpretation of available and upcoming geophysical data have not yet been investigated in detail.

In this study, we quantify the consequences of a stable basal layer on the thermo-chemical evolution of Mars, and discuss the implications on the interpretation of available and upcoming geophysical data, with a focus on the ongoing InSight mission. The InSight lander touched down on the surface of Mars on November 2018 (Banerdt et al., 2020) and has since deployed short period and three-axis very broadband seismometers to record Martian seismic activity (Lognonné et al., 2019). The mission also aims at improving our knowledge of the core structure by precisely measuring the nutation of Mars with the radioscience experiment RISE (Folkner et al., 2018). Moreover, it features a heat flow probe (HP3) to measure the heat flux at the landing site (Spohn et al., 2018). Unfortunately, after almost one Martian year, the probe has failed to penetrate deep enough below the Martian surface, which prevents accurate measurements of temperature time series and vertical thermal gradients.
The paper is organized as follows: in Section 2, we discuss the consequences of the presence of a deep enriched mantle layer resulting from the solidification of a Martian magma ocean on the composition of the mantle in HPE and iron. In Section 3, we model the thermal evolution of a Mars-like mantle in a stagnant lid convection regime with either no layering, or with a basal layer enriched in HPE and iron. In Section 4, we conduct a refined and systematic exploration of the parameter space, and extend the characterization of the influence of a basal layer on the thermo-chemical evolution of Mars, with Section 5 describing the obtained results. Section 6 discusses the implications of our results on Martian mantle layering on the interpretation of seismic, geodetic and heat flow data, followed by a summary of the study in Section 7.

2. Mantle Layering and Enrichment

The crystallization of a Martian magma ocean may result in the formation of a stable basal layer enriched in iron and HPE. The enrichment of the basal layer depends on the style of crystallization and on its volume fraction relative to the entire silicate mantle.

Consider a differentiated planet of radius $R_p = 3389.5$ km, with a metallic core of radius $R_c = 1,700$ km, within the plausible range for Mars (Rivoldini et al., 2011; Smrekar et al., 2019; Van Hoolst & Rivoldini, 2014), and a corresponding mantle volume $V_m = 4 \pi (R_p^3 - R_c^3) / 3$ and bulk volumetric heat production of radioactive elements, H_m. In the presence of an enriched layer of thickness D_d and volume V_d above the core, the remaining overlying mantle volume is $V'_m = V_m - V_d$. The presence of the HPE-enriched layer, with associated heat production H_d implies by mass balance that the overlying mantle heat production is reduced compared to the homogeneous case, namely:

$$H'_m = H_m \left[1 - \frac{V_d}{V_m} (\Lambda_d - 1) \right], \tag{1}$$

where $\Lambda_d = H_d / H_m > 1$ is the layer enrichment factor, the computation of which is detailed in the supporting information S1.

Figure 1 illustrates quantitatively the influence of deep mantle enrichment in HPE, assuming fractional crystallization and HPE abundances inferred by Wänke and Dreibus (1994) (i.e., $U = 16$ ppb, Th = 56 ppb, $K = 305$ ppm).

The thickness of the basal layer cannot be constrained from magma ocean crystallization scenarios. It depends on the poorly constrained physical conditions during overturn(s) of the gravitationally unstable cumulate layers (Ballmer et al., 2015; Boukaré et al., 2018; Maurice et al., 2017) (also see supporting information S1). A few scenarios could be ruled out. For example, a partial overturn promoted by the cold shallow temperatures, leaving highly enriched Fe cumulates at the surface is unlikely because the resulting mass distribution would not be compatible the moment of inertia of Mars (Konopliv et al., 2016, 2020). Aside from such unlikely configurations, the a priori choice for the plausible range of layer thicknesses is arbitrary to some degree. We selected a range $D_d = 100$–500 km (or equivalently a range of layer volume fractions between 0.03 and 0.17) that explores values from thin layers (comparable to the thickness of boundary layers) to significant (yet smaller) thicknesses in comparison to that of the entire Martian silicate envelope. This
range therefore allows one to assess the influence of the basal layer on Mars evolution. Within this range, the corresponding layer enrichment factor increases from about 5 to 19 with decreasing \(D_d \) (Figure 1a). This enrichment induces by definition a larger HPE content in the layer than in the overlying mantle, and therefore a larger radioactive heat production (Figure 1b). The FeO content of the layer also increases with decreasing \(D_d \) (Figure 1c), leading to an increase in density \(\rho_d \) relative to that of the overlying mantle, \(\rho_m \) (see supporting information S1). This density contrast remains significant, as the layer buoyancy number

\[
B_d = \frac{\rho_d - \rho_m}{\rho_m \alpha \Delta T} \quad (2)
\]

which expresses the ratio of compositional to thermal density contrasts, is significantly larger than one (Figure 1c, right axis) for the parameter range explored here (see Table 1). In the above equation, \(\alpha \) is the
thermal expansion and ΔT is the characteristic temperature scale, which is chosen as the superadiabatic temperature difference across the entire mantle. The large values of B_t are sufficient to prevent convective mixing between the enriched layer and the overlying mantle despite its relatively large HPE content (Lange-meyer et al., 2020; Lebars & Davaille, 2002; M. Li & McNamara, 2018; Y. Li et al., 2014; Limare et al., 2019; McNamara & Zhong, 2005; Nakagawa & Tackley, 2004; Olson, 1984; Plesa et al., 2014; Samuel & Farm- etani, 2003; Tosi, Plesa, et al., 2013; Trim et al., 2014).

To study the influence of iron and HPE enrichment in the basal layer quantified above on the dynamics of a Martian-like mantle, we consider the evolution of a solid-state slowly deforming mantle (i.e., with no inertia) in a stagnant-lid convection regime, under the Boussinesq approximation. Stagnant-lid convection is thought to currently occur inside Mars and most other terrestrial planets (the currently observed plate tectonics on Earth being an exception), and is essentially due to the strong dependence of mantle viscosity on temperature, leading to the presence of a very viscous lid in the coldest part of the shallow mantle. The viscosity η depends on temperature T and pressure P through the following Arrhenius relationship:

$$\eta = \eta_0 \exp \left(\frac{E^* + PV^*}{RT} - \frac{E^* + P_{ref}V^*}{R_{ref}} \right),$$

where $E^* = 200 \text{kJ/mol}$ is the effective activation energy, V^* is the effective activation volume, R is the gas constant, and $\eta_0 = 10^{20} \text{Pa s}$ is the reference viscosity corresponding to the reference temperature $T_{ref} = 1600 \text{K}$ and reference pressure $P_{ref} = 3 \text{GPa}$.

We carried out dynamic simulations in a 2-D half-cylindrical domain of radial extent $D = R_p - R_c = 1689.5 \text{km}$ in the (r, θ) space. To ensure temperature distributions resembling more closely those of a spherical geometry, we re-scaled the radius of the core to 1118.5 km (0.33 non-dimensional units) to keep the ratio of CMB-to-planet surface equal to that of a spherical body (Van Keken, 2001) (see also Supporting information S2).

We considered two end-member cases. The first case corresponds to a compositionally homogeneous mantle. The other assumes compositional layering with a denser and enriched layer occupying the bottom 17% of the domain, whose iron and HPE enrichment decreases linearly with increasing height $r - R_c$ above the CMB. The domain is heated from below ($T(r = R_c) = T_c = 2000 \text{K}$) and from within, and cooled from above ($T(r = R_p) = T_i = 220 \text{K}$). All boundaries are free-slip and the side-walls are thermally insulating. The specific details of the modeling approach and equations are given in the supporting information S2. The enrichment in both iron and HPE is represented by a scalar, time-dependent compositional field, $C(t, r, \theta)$. In the homogeneous case, $C = 0$ everywhere. If the basal layer is present, the initial value of the compositional field decreases linearly from 1 at the bottom of the domain, to 0.2, at the top of the basal layer, and is set to zero elsewhere.

Four dimensionless numbers govern the dynamics of the system. The first is the thermal Rayleigh number that expresses the convective vigor:

$$Ra = \frac{\rho_m g \alpha \Delta T D^3}{\eta_0 \kappa},$$

where $\rho_m = 3.500 \text{ kg/m}^3$ is the mantle density, $g = 3.7 \text{ m/s}^{-2}$ the gravitational acceleration at the surface of Mars, $\alpha = 2 \times 10^{-5} \text{ K}^{-1}$ the thermal expansion coefficient, $\Delta T = T_c - T_i = 1780 \text{ K}$, and $\kappa = 10^{-6} \text{ m}^2/\text{s}$ is the thermal diffusivity. The second governing parameter is the buoyancy number defined in Equation 2. The third and fourth governing parameters are respectively the dimensionless internal heating parameter in the regular mantle and in the bulk enriched layer, when it applies. They correspond to the ratios of the whole-mantle Rayleigh number for internally heated convection to the whole-mantle thermal Rayleigh number defined above:
The C-dependent non-dimensional heat production is as follows:

\[\mathcal{H} = \mathcal{H}_m + C \frac{d\Delta H}{dC}. \]

where \(d\Delta H / dC \) is set to 51.68 such that the volume-averaged internal heating in the basal layer amounts to \(\mathcal{H}_d \). Similarly, the buoyancy number can more generally be expressed as follows:

\[B = C \frac{dB}{dC}, \]

where \(dB/dC \) is set to 6.8 such that the volume-averaged buoyancy number in the basal layer amounts to \(B_d \). Equations 6 and 7 are valid in the case of no stratification (\(C = 0 \)), or in the case of a basal layer with a compositional gradient.

Given the value of physical parameters entering into the expression of the dimensionless quantities defined above, \(Ra = 2.2 \times 10^7 \). In the absence of compositional stratification, \(C = B = 0 \) and \(\mathcal{H}_d = \mathcal{H}_m \). As done above, we assumed the HPE abundances of the Wänke and Dreibus (1994) Mars composition model for the mantle (i.e., U = 16 ppb, Th = 56 ppb, K = 305 ppm), leading to a uniform heating with \(\mathcal{H} = 5.8 \). When an enriched layer of constant composition is present, the corresponding mantle becomes heavily depleted in HPE and \(\mathcal{H}_m \approx 0.9 \) while there is a corresponding increase in \(\mathcal{H}_d \approx 29.8 \) (see Figure 1b). The corresponding buoyancy number is \(B = B_d = 3.8 \) (see Figure 1c). In the case of a gradual enrichment of the basal layer, the non-dimensional heat production within the enriched layer increases from 11.2 at its top to 52.6 at its bottom. In these simplified experiments, we do not account for radioactive decay, therefore the HPE input remains constant with time. This allows reaching a steady-state stage at which we can more easily compare the differences between the cases.

Each case starts with the same initial thermal condition: a uniform dimensionless temperature of 0.95 (i.e., 1691 K), with thermal boundary layers (TBLs) of dimensionless thickness 0.05 (84.5 km) at the top and bottom boundaries, and a random perturbation of small amplitude to break the lateral symmetry. Each case is then evolved for 4.5 Gyr at which time evolution coincides closely with a statistical steady-state stage, where the averaged quantities (heat flux, temperature, and velocities) do not evolve significantly or oscillate around a mean value. This corresponds to an elapsed time at which the mantle has “forgotten” its initial thermal state.

Note that we do not impose a minimum viscosity for our finite-volume experiments. However, for computational efficiency purposes, we require that viscosity cannot vary beyond 10 orders of magnitude. Such a requirement yields a maximum viscosity cutoff in the coldest part of the mantle, which however does not prevent the formation of a stagnant lid (see supporting information S2).

Figure 2 shows the model predictions at statistical steady-state. The temperature field in the homogeneous case (Figure 2a) shows the presence of downwelling plumes originating at the base of a TBL located underneath a thick cold, and therefore considerably more viscous layer (i.e., the stagnant lid, see also the horizontally averaged temperature profile, Figure 2b). The magnitude of velocities in the lid is close to zero. In the mantle below, convective motions described above are vigorous, leading to an efficient homogenization of the temperature, as can be observed in the horizontally averaged temperature profile (Figure 2b). The maximum viscosity contrast between the top of the lid and the CMB is \(2.6 \times 10^9 \).

When considering a linear enrichment in iron and HPE with depth in the basal layer (Figures 2f and 2g), the corresponding compositional density contrast stabilizes the layer against convection, and prevents sig-
significant mixing with the upper layer. Therefore, the compositional gradient remains preserved and efficiently prevents convection within the enriched layer, despite its higher temperature and corresponding lower viscosity. Consequently, no motion can develop and therefore heat is exclusively transported by conduction across it. This situation results in an increase of temperature in the layer and a vertically heterogeneous, purely diffusive temperature profile (Figures 2d and 2e). In contrast, convective flow still occurs in the overlying mantle with upwelling and downwelling thermal plumes (Figure 2d). The temperature in the convecting mantle region is lower than in the homogeneous case described above, which implies a smaller value of the corresponding effective Rayleigh number, and therefore a weaker convective vigor. In this case, the maximum viscosity contrast is 7.9×10^9.

It should be noted that a possible alternative to the stably stratified basal layer exists, in which the enriched layer has a homogeneous iron and HPE content instead of the gradual increase of these quantities with depth considered above (Ballmer et al., 2017; Boukaré et al., 2018). A homogeneous basal layer opens up the possibility to double-layered convection as shown in the supporting information S3, which has a similar but considerably less pronounced influence on the thermal evolution than in the conductive basal layer case. However, the likelihood of occurrence of this scenario is small (supporting information S4), which is why we do not consider this possibility below.

Overall, the comparison of the two end-member cases described above has revealed the significant influence of an enriched denser basal layer at the bottom of a convecting mantle on the thermo-chemical evolution of the entire planet, and has shown that the stratification determines the efficiency of heat transfer, and shapes the thermal structure of the entire mantle, even after billions of years of evolution. In the following sections, we therefore systematically explore this influence in a more global and more exhaustive context of the thermo-chemical evolution of an entire Mars-like planet, that is, including the buoyant crust and metallic core. The flat interface between the basal layer and the overlying mantle allows for a straightforward parameterization of the heat flux across this boundary because strong lateral variations in composition are absent.

Figure 2. Results of dynamic modeling of solid-state stagnant-lid convection with internal heating after 4.5 Gyr of evolution. Top: case of a homogeneous mantle. Bottom: layered mantle with a stably stratified layer initially spanning 17% of the mantle volume. (a, d) Temperature fields. The lower and upper bounds of the color scale are set at 1000 and 2500 K, respectively, for better visibility. (b, e) Horizontally averaged temperature profiles. (f) Horizontally averaged compositional field C. (c, g) Horizontally averaged internal heating. The red dashed lines indicate the initial location of the interface between the basal layer and the overlying mantle. See text for further details.
Parameterized Convection Models: Approach

To model the thermo-chemical evolution of a Mars-sized planet, we used a parameterized approach (Hauck & Phillips, 2002; Morschhauser et al., 2011; Spohn, 1991; Stevenson et al., 1983). This approach reproduces accurately the dynamic evolution of a stagnant-lid planet in spherical geometry with various complexities (e.g., temperature, melt- and pressure-dependent viscosity, heterogeneous heating), at a considerably smaller computational cost than modeling in 3-D and even 2-D geometries (Plesa et al., 2015; Samuel et al., 2019; Thiriet, Breuer, et al., 2018; Tosi, Grott, et al., 2013). The latter allows exploring a larger parameter space (tens of thousands of evolutions) compared with 3-D or even 2-D convection studies, as we did in this study. The parameterized approach computes the thermo-chemical evolution of a planet by considering the heat transfer between several concentric envelopes, as illustrated in Figures 3a and 4a: an adiabatic convecting liquid iron-rich alloy, overlaid by a convecting silicate mantle that is covered by a conductive rigid lid. The latter includes a buoyant crust enriched in HPE.

The viscosity of the Martian mantle plays an important role, and is assumed to depend on temperature, T, hydrostatic pressure, P, and melt fraction ϕ following an Arrhenius relationship (Karato & Wu, 1993):

$$\eta(T, P) = \max \left[\eta_0 \exp \left(\frac{E^* + PV^*}{RT} - \frac{E^{\text{ref}} + P_{\text{ref}} V^{\text{ref}}}{RT_{\text{ref}}} - \beta^* \phi \right) \right] \times 10^{-2}. \tag{8}$$
where E^* and V^* are the effective activation energy and activation volume, R is the gas constant, and T_{ref} and P_{ref} are the reference temperature and pressure at which viscosity equals the reference viscosity, η_0 (in the absence of melt). The effective activation volume and energy can either directly account for viscous deformation in the diffusion creep regime, or mimic deformation in the dislocation creep regime (Kiefer & Li, 2016; Plesa et al., 2015; Samuel et al., 2019; Schulz et al., 2020; Thiriet, Michaut, et al., 2018). In the first case, E^* and V^* correspond to the intrinsic values. In the latter case (dislocation creep), E^* and V^* correspond to the intrinsic values divided by the stress power-law index, whose value is close to 3.5 (Christensen, 1983). The strong sensitivity of viscosity to temperature and the relatively small size of Mars imply that its mantle convects in the stagnant-lid regime. The above expression accounts for a dependence on melt fraction ϕ, and for a minimum threshold of 10^{-2} Pa s based on experimental constraints on the viscosity of peridotitic liquids (Liebske et al., 2005). The sensitivity of viscosity to melt fraction is expressed by β^*, the value of which is set to 30 (Hirth & Kohlstedt, 2003). The melt fraction is estimated as

$$\phi(T, P) = \min \left(\frac{T - T_{\text{sol}}}{T_{\text{liq}} - T_{\text{sol}}}, 1 \right).$$

Figure 4. Same as Figure 3, but with the presence of a 500-km thick denser and enriched layer at the bottom of the mantle. The denser basal layer is stably stratified and therefore purely conductive. See text for further details and definition of the symbols.
The crustal thickness evolves with time based on the occurrence of melting at shallow depths. The lithospheric thickness is determined by considering an energy balance between the convective heat flux at the top of the mantle, the conductive heat flux out of the lithosphere, and the energy consumed to transform a portion of convective mantle into additional viscous lithosphere material, and vice versa (Schubert et al., 1979; Spohn, 1991, and references therein). Similar to Samuel et al. (2019), the crust is enriched in HPE relative to the underlying mantle. Specifically, we assumed that the crust is 10 times more enriched in HPE relative to the underlying mantle bulk mantle (Table 1). The latter corresponds to the entire silicate envelope in the homogeneous case, or the entire silicate envelope minus the basal layer if the basal layer is present.

The exact equations are given in Samuel et al. (2019) (note that there is a sign typo in the last term on the right hand side of Equation 20 in the previously quoted paper). As detailed below, heterogeneous internal heating is taken into account, as well as latent heat of melting-crystallization. In the case of a homogeneous mantle, model equations are those described in Samuel et al. (2019). For completeness these are summarized below. Then, we detail below the approach we used to account for the presence of a denser and enriched layer.

4.1. Homogeneous Mantle

In the absence of a basal layer, the parameterized approach consists of solving for energy balance for the convecting mantle and the core (see Figure 3a for a schematic representation of the model), respectively:

\[
\rho_m C_{pm} V_m (S_t + 1) \tilde{T}_m = -\left\{ q_m + \rho_c D_c (I_m + C_{pcr} (T_m - T_l) \right\} A_m + q_c A_c + H_m V_m, \tag{10}
\]

\[
\rho_c C_{pcr} V_c \tilde{T}_c = -q_c A_c, \tag{11}
\]

where dotted quantities indicate derivatives with respect to time \(t \), \(T_m \) is the uppermost convective mantle temperature, and \(T_c \) is the temperature at the CMB; \(\rho_m \) and \(\rho_c \) are the mantle and the core densities; \(C_{pm}, C_{pcr}, \) and \(C_{pc} \) are mantle, crust, and core specific heat at constant pressure; \(A_m \) and \(A_c \) are the surface areas of the convecting mantle and core; \(V_m \) is the volume of the convecting mantle, \(V_c \) is the volume of the core, and \(H_m \) is the volumetric internal heating rate due to the presence of HPE. \(L_m \) is the latent heat of silicates melting; \(\varepsilon_m \) expresses the ratio between the average temperature in the convecting mantle and the uppermost mantle temperature, \(T_m \) (Stevenson et al., 1983), and is constantly updated, while \(\varepsilon_c \) is the constant ratio between the average temperature of the core and \(T_c \), and is computed only once. These two quantities originate from the fact that Equations 10 and 11 are written in terms of uppermost mantle and core temperatures, while the corresponding heat balance considers the average temperature for the convecting mantle and core. \(T_l \) is the temperature at the base of the stagnant lid, at which viscosity has grown by one order of magnitude with respect to the convecting mantle, yielding (Davaille & Jaupart, 1993):

\[
T_l = T_m - a_{th} R T_m^{3/2} / E^* \quad \text{with} \quad a_{th} = 2.54,
\]

which provides a good correspondence between parameterized and 3-D spherical modeling (Thiriet, Breuer, et al., 2018).

The (average) heat flux out of the surface of the convecting mantle, \(q_m \), is as follows:

\[
q_m = k_m \frac{T_m - T_i}{\delta_u},
\]

where \(k_m \) is the mantle thermal conductivity, \(\delta_u \) is the thickness of the upper TBL of the convecting mantle. Similarly, the heat flux between the core and the mantle are as follows:

\[
q_c = k_m \frac{T_c - T_b}{\delta_c},
\]

where \(T_b \) is the temperature at the base of the convecting mantle. The latter is obtained by adding the adiabatic gradient to \(T_m \):
where α is the mantle thermal expansion coefficient, g is the surface gravitational acceleration, and $\Delta R = R_p - D_l - R_c - \delta_u - \delta_l$ is the thickness of the convecting mantle devoid of its TBLs.

The expression for the thickness of the upper TBL stems from boundary layer theory:

$$\delta_u = (R_l - R_c) \left(\frac{Ra_b}{Ra} \right)^{\beta_u}$$

where $\beta_u = 0.335$ allows for the closest match between parameterized and 3-D spherical modeling of stagnant lid convection with variable viscosity (Thiriet, Breuer, et al., 2018), and $Ra_b = 450$ (Choblet & Sotin, 2000). The thermal Rayleigh number associated with the convecting mantle is defined as:

$$Ra = \frac{\rho_m \alpha g \Delta T (R_c - D_l - R_p)^3}{\eta_m \kappa},$$

which expresses the mantle convective vigor. In the definition above, $\kappa = k_m / (\rho_m C_{pm})$ is the mantle thermal diffusivity, $\eta_m = \eta(T_m, P_m)$ is the viscosity of the mantle below the stagnant lid, and $\Delta T = T_m - T_l + \max (T_c - T_b, 0)$ is the sum of temperature differences across the upper and lower TBLs of the convecting mantle.

The thickness of the lower TBL is given below:

$$\delta_b = \left[\frac{\kappa \eta_b Ra_{b_0}}{\rho_m \alpha g (1/T_c - 1/T_b)} \right]^{1/3},$$

where $\eta_b = \eta(T_b + T_c) / 2$, P_c is the mantle viscosity taken at temperature and pressure half-way across the lower TBL, $Ra_{b_0} = 0.28 Ra_b^{0.21}$ is the bottom boundary layer Rayleigh number (Deschamps & Sotin, 2000), where $Ra_b = \rho_m \alpha g \Delta T (R_p - R_c)^3 / (\eta_m \kappa)$ is the thermal Rayleigh number for the entire mantle thickness and $\Delta T_l = T_m - T_l + \max (T_c - T_b, 0)$ is the sum of the temperature contrasts across the entire rigid lid, and the basal TBL.

The model accounts for crust formation, in which latent heat is consumed or released upon melting and crystallization at shallow depths, through the use of a time-dependent Stefan number that expresses the ratio of latent to specific heat:

$$\phi = \left(\frac{\rho_m C_{pm}}{T_m(T_m + T_c)} \right) \int_{V_c} \phi(r) dV$$

where $\phi_b = (1/\rho_m C_{pm}) \int_{V_b} \phi(r) dV$ is the average melt fraction in the convecting mantle.

At depths where the pressure is below 7.4 GPa, the produced melt is buoyant (Ohtani et al., 1995, 1998), and is therefore assumed to be extracted upwards to contribute to the build-up of the crust. The model accounts for the fact that melt extraction alters the solidus and liquidus curves. For additional details related to shallow melt extraction and the crustal growth model, we refer to Samuel et al. (2019) where the description for the growth rate \dot{D}_c is given. At depths where the pressure is above 7.4 GPa, no upward or downward melt extraction is assumed. The presence of melt in these deeper regions only influences viscosity, and the mantle energy balance through the consumption or the release of latent heat upon melting or crystallization, respectively (i.e., term containing $S_c \dot{T}_m$ on the left-hand side of Equation 10).

The set of differential equations are integrated in time using a second-order Runge Kutta scheme with dynamic time-step, subject to the following initial temperature conditions: $T_c(0) = T_{0_c} = 2100$ K, $T_m(0) = T_{0_m} = 1800$ K, along with small values for $D_o = 1$ m and $D_l = 10$ m. The values of the model parameters along with their meaning are listed in Table 1.
4.2. Layered Mantle Parameterization

When the enriched basal conductive layer is present (see Figure 4a for a schematic representation of the model), an additional equation is required to describe the heat transfer outwards, inwards, and within the basal layer, along with additional modifications to the previously described energy balance. We neglect the possible erosion of the basal layer by plumes. Although such erosion exists (Figure 2f), it is relatively limited given the assumed density contrasts between the basal layer and the overlying mantle. Therefore, considering a constant thickness of the basal layer with time is a reasonable assumption. Under these conditions, the core energy balance (Equation 11) remains unchanged. However, Equation 10 becomes:

\[\rho_m c_p m \dot{V}_m \varepsilon_m (S_i + 1) \dot{T}_m = -\left(q_m + \rho_p \bar{D}_p [L_m + C_{\rho_p} (T_m - T_i)] \right) A_m + q_d A_d + \dot{H}_m \dot{V}_m, \]

where \(\dot{V}_m = V_m - V_0 \) is the volume of the convecting mantle without the basal layer (i.e., the volume contained within \(r = R_c + D_a \) and \(r = R_p - D_i \)), and \(H'_m \) is the time-dependent output of HPE per unit volume within \(V'_m \). Similarly, \(\varepsilon'_m \) is the time-dependent ratio between the averaged temperature within \(V'_m \) and \(T_m \). \(A_d \) is the surface area of the interface between the basal layer and the overlying mantle, \(q_d \) is the heat flux across this boundary. The latter will be explicitly described further below.

As in Section 3, we set the initial content in HPE in the silicate envelope using the abundances listed in Wänke and Dreibus (1994). The presence of the HPE-enriched layer implies by mass balance that the overlying mantle heat production \(H'_m \) is smaller than what is considered for the homogeneous case \(H_m \). Heat production in the depleted mantle \(H'_m \) is given by Equation 1. The thickness of the uppermost TBL that enters for example in the expression of \(q_m \) (Equation 12) now becomes:

\[\delta_m = (R_i - R_c - D_d) \left(\frac{Ra}{Ra'} \right)^{1/3}, \]

where \(Ra' \), the Rayleigh number associated with the convecting volume \(V'_m \), is given below:

\[Ra' = \frac{\rho_m \alpha g \Delta T (R_p - D_d - R_i - D_i)}{\eta_m \kappa}. \]

and \(\Delta T = T_m - T_i + \Delta T'_m \), where \(\Delta T'_m = T_i - T_0 = 1.43RT_0^2 / E' \) (Deschamps & Sotin, 2000) and \(T_i \) is the temperature at top of the basal layer. The meaning of \(T_0 \) remains the same as in the homogeneous mantle case (i.e., the temperature at the bottom of the convecting mantle just above the lower TBL). However, its expression now becomes: \(T_0 = T_m + \alpha g T_m (R_w + D_d - D_i - \delta_m - \delta_b) / C_{pm} \), where \(\delta_b \) is the thickness of the TBL just above the interface between the basal layer and the overlying mantle. The latter is computed with the corresponding form of Equation 17.

For all cases shown in this study the Rayleigh numbers associated with the convecting mantle are always supercritical, which is consistent with our model assumptions and with the recent traces of volcanism observed at the surface of Mars (Hartmann et al., 1999; Neukum et al., 2004).

We considered the presence of a compositional gradient within the layer, such that the iron content linearly increases with depth (Ballmer et al., 2017; Boukaré et al., 2018; Maurice et al., 2017; Plesa et al., 2014). As seen in Figures 2d–2g, for a sufficiently large compositional gradient as we assumed here, thermal expansion cannot overcome the compositional gradients. This would result in a stratified layer that is stable against thermal convection. Additionally, even in the absence of compositional gradient the basal layer is likely to be too thin and too viscous to allow for convective motion (supporting information S4). Consequently, heat within the layer can only be transferred via conduction (Section 3). Therefore, similar to the thermal evolution within the stagnant lid, heat transfer across the stably stratified basal layer is described by the following time-dependent, spherically symmetric, diffusion equation:

\[\rho(r) C_{pm} \frac{\partial T}{\partial t} = k_m \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) + H(t,r) - \rho(r) L_m \frac{\partial \phi(t,r)}{\partial t} \]

where \(H(t,r) \) is the energy production in the depleted mantle per unit volume within \(V'_m \) (Equation 12).
where T is the radially dependent temperature within the basal layer, r is the radius ranging here between R_c and $R_c + D_d$, ρ is the density, H is the radially varying and time decaying heat production due to HPE. Note that the melt fraction ϕ is a function of r and t and that the basal layer remains diffusive regardless of the value of its viscosity. This remains true if the layer is entirely molten and has therefore very small viscosity (Equation 8). Such stability against convection within the layer results from its increasing iron content with depth (supporting information S1). Since the layer enrichment increases linearly with depth, both the density and HPE content follow the same linear trend:

$$\rho(r) = \rho_d f_d(r),$$ \hspace{1cm} (22a)

$$H(t,r) = H_d(t)f_d(r),$$ \hspace{1cm} (22b)

where $f_d(r)$ is a linear function (see supporting information S5) that expresses the depth-dependence of the enrichment in incompatible elements within the basal layer.

Equation 21, with time varying boundary conditions ($T(R_c) = T_0$ and $T(R_c + D_d) = T_f$) must be solved at each time-step, and is discretized using finite-differences of second-order accuracy in space. The time integration can be performed using a first-order implicit scheme. Higher-order explicit schemes (second- and third-order Runge-Kutta) were tested using sub-time-stepping. However, given the small step size, they did not result in a noticeable accuracy improvement. Therefore, we used the unconditionally stable and more efficient implicit scheme. With the knowledge of $T(t,r)$, we can express the fluxes $q_d = -k_m(\partial T / \partial r) |_{-R_c}$ and $q_d = -k_m(\partial T / \partial r) |_{R_c+D_d}$, where the temperature derivatives are obtained via second-order accurate finite differences.

Following Elkins-Tanton (2008) (Equation 2 therein), the influence of iron on both the solidus and the liquidus is accounted for by subtracting the term: $6(\text{Fe}_m - \text{Fe}_d)$, to T_{sol} and T_{liq} where Fe_m is the Fe-number (i.e., $\text{Fe}_m = 100 \text{Fe}/(\text{Fe} + \text{Mg})$) for the overlying mantle, and Fe_d is the Fe-number within the basal layer. The latter increases linearly with depth in the case of a stably stratified layer: $\text{Fe}_d(r) = \text{Fe}_d(r)$ (as in Equation 22a), where Fe_d is the average iron number of the denser basal layer, whose computation is detailed in the supporting information S1 and S5.

5. Parameterized Convection Model Results

Using the approach described above, we extended in the following our comparison between the layered case and the homogeneous mantle case presented in Section 3, to the scale of a Mars-sized planet. Then, we explored systematically a wider parameter space defined by mantle rheological parameters to quantify the influence of the basal layer on various key quantities characterizing the evolution of Mars, and its resulting present-day structure. We checked that the parameterized convection model described above can reproduce the results displayed in Figure 2 for the same conditions (i.e., no crust, Boussinesq approximation, fixed CMB temperature, no radioactive decay) both in the homogeneous and layered mantle cases.

5.1. Influence of the Stably Stratified Basal Layer

We first proceed with the comparison of the evolution of two selected cases. One without layering, and a second one with a 500-km thick basal layer in the mantle, analogous to the cases considered in Figures 2a–2c and 2d–2g, with however additional complexities such as adiabatic heating, melting, crustal formation, radioactive decay, and core evolution. The values of the governing parameters are: $R_c = 1,700$ km, $\eta_0 = 10^{20}$ Pa s, $E^* = 200$ kJ mol$^{-1}$, and $V^* = 5$ cm3/mol. The values for all other quantities correspond to those given in Table 1.

5.1.1. Main Evolutionary Trends and Present-Day Structure

The panels of Figures 3 and 4 display the schematic view of the parameterized model along with the evolution of several key quantities (temperatures, crustal and lithospheric thicknesses) and the resulting pres-
ent-day thermo-chemical structure, in the case of a homogeneous mantle and for a layered mantle with conductive basal layer, respectively.

The comparison of the present-day areotherms in the homogeneous (Figure 3b) and layered case (Figure 4b) shows that the layered case is globally hotter. The thermal evolution in the homogeneous mantle case is monotonic with a continuous cooling of the mantle and the core (Figure 3c). On the contrary, the thermal evolution in the layered mantle case is more complex, with an increase in basal layer temperatures during the first 1 Gyr followed by a more steady decrease until the present-day (Figure 4c). Unlike the homogeneous mantle case, the core temperature continuously and significantly increases, while the uppermost convecting mantle temperature decreases during the entire evolution. Importantly, the planet on average cools down more efficiently in the homogeneous case than in the layered case. The crustal and total lithospheric thicknesses evolve in a comparable way in the homogeneous (Figure 3d) and layered cases (Figure 4d). The timing for crustal formation occurring mostly during the first Gyr is similar in both cases, which is in line with photogeological estimates (Greeley & Schneid, 1991; Nimmo & Tanaka, 2005). However, the predicted time evolution of crustal thicknesses is also sensitive to other model parameters, such as the initial thermal state or the value of the rheological parameters. Therefore the crustal evolution described above may change for different combinations of governing parameters (see e.g., Section 5.2).

The effect of the basal layer on the thermal evolution essentially originates from the reduced heat transfer between the layer and the overlying mantle (as noted in Section 3). This reduction limits deep mantle and core heat loss to space.

5.1.2. Comparative Evolution of Temperatures and Heat Fluxes Across the Planetary Envelopes

Figure 5 displays the evolution of several additional quantities corresponding to the two cases described above and shown in Figures 3 and 4. The presence of the basal layer induces a conductive flux, q_a, at the interface (Figure 5a). This heat essentially comes from the radioactive decay of HPE present in the layer. As time increases, the HPE content decreases due to the radioactive decay, which explains the observed “bell-shaped” evolution of q_a. The CMB heat flux becomes rapidly negative in the layered case (i.e., the enriched layer heats up the core, see Figure 5b), while it remains always positive for the homogeneous mantle, leading to the continuous decrease of the CMB temperature displayed in Figure 3c. The presence of the conductive layer slightly delays mantle cooling (Figure 5c), but only during the first few ~100 Myr. Indeed, in the homogeneous case, the convecting mantle is more enriched in HPE than in the layered case. Accordingly, the mantle heat flux becomes larger in the layered case compared to the homogeneous case. This considerable difference results from the fact that the HPE in the layered case are concentrated in the deep mantle. Eventually, the HPE output is transferred to the overlying mantle via conduction at the interface, thereby enhancing q_m, in the layered case. In contrast, in the homogeneous case, HPE are most abundant in the enriched buoyant crust above the mantle, and do not contribute to mantle thermal evolution (except in the shallowest part of the mantle where the enriched crust could slightly delay mantle heat loss by increasing the temperature locally). Consequently, the surface heat flux that accounts for mantle contribution and crustal heat production is larger in the homogeneous case than in the layered case (Figure 5d). However, after 4.5 Gyr of evolution both cases show comparable heat flux values because the total HPE content is the same (Wänke & Dreibus, 1994), and only their distribution varies among the two cases. This prediction is highlighted in Figure 5e that displays the bulk (U_r) and the convective (U_{rc}) Urey ratios, defined respectively as the ratio between the total heat HPE production, including and excluding that of the crust, to the total heat escape at the surface. Values larger than one for U_r and U_{rc} are indicative of heating, and values smaller than one indicate cooling. However, by excluding the heat production contribution in the crust, the convective Urey ratio specifically expresses the efficiency of mantle cooling or heating, while the bulk Urey ratio is a proxy for the entire planet. In the homogeneous case, the crust grows rapidly, and the rest of the mantle is accordingly depleted of HPE. This leads to a very distinct evolution of bulk and convective Urey ratios (Figure 5e). However, both U_r and U_{rc} drop below unity early on, indicating that the mantle immediately looses heat, while the entire planet cools down during most of its history. On the contrary, for the layered case, U_r and U_{rc} are very similar to each other, because most of the HPE are located in the deep mantle and contribute to the mantle heat balance. The Urey ratios are significantly above unity for the first half of the planet’s history (Figure 5e). At present-day, the convective Urey ratio for the layered case is considerably larger than that of the homogeneous case. On the contrary, the present-day surface heat flux is
Figure 5. Time evolution of various (a–d) fluxes, and (e) bulk and convective Urey ratios corresponding to the layered case displayed in Figure 4 (blue curves), and the equivalent homogeneous case displayed in Figure 3 (black curves).
about 25% larger for the homogeneous case than in the layered case because of the different contributions of crustal heat production located just below the surface, and the HPE-enrichment in the deep layer.

The distribution of heat sources, and the evolution of the heat fluxes across the different planetary envelopes control the thermal evolution of each layer. As previously noted, the increase of q_d followed by a decrease of q_d, combined with the radioactive decay of heat sources in the basal layer yields the observed early increase in q_m, followed by a decrease of the temperature in the basal layer (Figure 4c). Similarly, the positive CMB heat flux (Figure 5b) yields a rather slow and gradual cooling of the core in the homogeneous case (Figure 3c), while the stronger and essentially negative q_c for the layered case yields a significant increase in core temperatures during the entire planet history (Figure 4c).

5.1.3. Influence of the Basal Layer Thickness

The above description of the model results demonstrates that the presence of an enriched basal layer considerably influences the evolution of the planet, and impacts its resulting present-day thermo-chemical state. This is illustrated in Figure 6 that compares the present-day thermal profiles obtained for a homogeneous mantle (Figure 6a) with a case with a 500-km thick basal layer (Figure 6b). The solidus and liquidus curves are also displayed and show that a large fraction of the basal layer is fully molten. This is due to both the hot temperature of the enriched layers, and the depression of the melting curves due to the iron enrichment in the deep mantle. Note that melting of the basal layer may lead to a reduction of the compositional density contrast between the basal layer and the overlying mantle. However, the iron enrichment is sufficiently large to maintain density of the layer considerably larger than that of the overlying mantle (supporting information S6). Therefore, deep melting is unlikely to affect the stability of the basal layer for the cases considered in this study.

Figure 7 shows the present-day thermal state for different cases with either a homogeneous mantle or a basal layer of various thicknesses, D_d. The presence of an enriched basal layer also prevents core heat loss because the layer acts as a heat buffer, and even heats up the core for a large part of the planet's history (Figures 4c and 5b), leading to an increase in present-day core temperatures, T_c.

Figures 7b and 7c display the present-day crustal thicknesses and surface heat fluxes as a function of the layer thickness with other governing parameters being the same as in the layered case considered above. For relatively thin layers the crustal thicknesses are about 10% larger than that of the homogeneous case. We observe a decrease in crustal thickness with increasing D_d, which becomes more pronounced for thicknesses above 400-km. This effect is due to the fact that thicker basal layers further deplete the shallow mantle in...
HPE and delay the heat transfer from the basal layer to the overlying mantle. This leads to a colder shallow mantle early on, and therefore to smaller associated crustal production rates with increasing values of \(D_c\). However, the corresponding range of \(D_c\) remains comparable to the value obtain for a homogeneous mantle for the range of \(D_b\) explored. The present-day heat flux steadily decreases with increasing \(D_b\) (Figure 7c). The observed rather modest influence of \(D_b\) on present-day surface heat flux may be due to the fact that for a given set of rheological parameters, the present-day surface heat flux is mostly governed by the HPE content of the bulk mantle, which does not change among the different cases considered.

5.2. Combined Influences of the Stably Stratified Basal Layer and Mantle Rheology

The investigations described above did not explore the effects of mantle rheological parameters, which are key quantities to the thermo-chemical evolution of Mars. Therefore, in the following we consider their influences and focus on the case of a 200-km-thick basal layer. As previously discussed, different values of layer thickness do not impact the qualitative behavior described below. Figure 8 shows present-day values of several main quantities as a function of the reference mantle viscosity, \(\eta_0\), and the effective activation energy, \(E^*\). The average planet temperature (Figure 8a), increases with increasing \(\eta_0\) and \(E^*\). An increase in either of these two parameters implies an increase in mantle viscosity (Equation 8), which reduces the efficiency of convective heat transfer, and eventually diminishes planetary heat loss, leading to larger temperatures. This general trend is observed for the depleted mantle (\(T_m\), Figure 8c), the enriched layer (\(T_e\), Figure 8d), and the core (\(T_c\), Figure 8e).

The temperature at the base of the crust, \(T_{cr}\) (Figure 8b) shows a more complex dependence on \(\eta_0\) and \(E^*\), but is essentially most sensitive to \(E^*\). In fact, \(T_{cr}\) is more difficult to interpret within such a wide parameter space, because it is also sensitive to the thickness of the crust \(D_c\) (see Figure 8f), which in turn depends on the early thermal history of the planet that may contain non-linear feedbacks with \(\eta_0\) and \(E^*\). However, the ratio of \(T_c\) and \(D_c\) correlates well with the surface heat flux (Figure 8g), which essentially follows a trend comparable to that predicted for temperature, and can be explained in the same way.

As previously discussed (Figure 6), a fraction of the basal layer may be molten. Figure 8h shows the thickness of the molten part of the basal layer, which has similar sensitivities to \(\eta_0\) and \(E^*\) as those of the predicted temperatures of the basal layer. The presence of a hot molten layer located at the top of the CMB affects the planet’s reaction to tidal forcing and internal dissipation (Samuel et al., 2019). To quantify these effects, we computed the degree-two tidal Love number (\(k_2\)) and associated quality factor \(Q\) at Phobos semi-diurnal tidal frequency (5 h 33 min), following the approach outlined in the supporting information S7. These two quantities are displayed in Figures 8i and 8j, respectively. The Love number is mostly sensitive to the core radius and to the rigidity of the mantle, which is why it follows closely the trend shown by the thickness of the molten layer displayed in Figure 8h. In contrast, the tidal quality factor is essentially sensitive to the thermal state of the solid part of the planet, in particular in regions where its ability to deform is greater.
In the present case, this corresponds to the hottest part of the solid-to-partially molten mantle. The latter is defined as the mantle with a melt fraction smaller than \(\phi_c = 0.4 \), the critical value for the rheological transition from solid to liquid behavior of silicates (Costa et al., 2009; Lejeune & Richet, 1995). The trend observed in Figure 8 is consistent with \(Q \) scaling as the inverse of the viscosity in the hottest part of the solid denser layer, where most of the dissipation takes place. Therefore, the dependencies of the main present-day quantities displayed in Figure 8 are essentially governed by the rheology of the convecting mantle combined with the heat buffer effect of the enriched layer.

To better quantify the influence of the basal layer we define the relative difference function, \(\Delta \), such that:

\[
\Delta(x) = \frac{x_{\text{layered}} - x_{\text{homogeneous}}}{x_{\text{homogeneous}}},
\]

where \(x \) is a given quantity associated with a given evolution (e.g., \(T_{\text{m}}, k_2, D_{\text{cr}} \ldots \)). The subscript "homogeneous" refers to a case without basal layer while the subscript "layered" refers to the same case with a basal layer. Recall that in what follows, the latter always corresponds to a 200-km thick stably stratified layer with an initial layer temperature \(T_{\text{m}} = T_{\text{m}0} \) (i.e., initially no temperature contrast between the basal layer and the overlying mantle). Large absolute values for \(\Delta \) indicate large differences with respect to the non-layered case, and vice versa.

Figure 9 displays \(\Delta \) field values for several key quantities after 4.5 Gyr of evolution, as a function of \(\eta_0 \) and \(E^* \). The first row (a–d) shows the quantities that are most significantly affected by the presence of the basal layer over a wider parameter space. The second row (e–h) shows the quantities that are less affected by the presence of the basal layer (or only affected over a relatively small region within the parameter space considered). Among the most affected quantities, the surface heat flux is reduced by 15%–30%, even though
present-day mantle temperatures are not necessarily very different compared to the case without layering (Figure 7b). These differences mostly reflect the distinct thermo-chemical evolutions between the homogeneous and the layered cases. Systematic differences are also predicted for the field \(\Delta(D_{pr}) \) (Figure 9d), indicating a strong influence of the basal layer. However, as explained earlier, the present-day crustal thickness mostly results from the early history, which cannot be distinguished in present-day temperature fields. As seen above, the basal layer acts as an insulator and heat source for the core, resulting in a significant increase (\(\sim 50 \) to \(\sim 70 \) percents) in \(T_c \), as illustrated in Figure 9b. Similar to the surface heat flux, this magnitude of \(\Delta(T_c) \) is mostly sensitive to \(\eta_0 \). In addition, the presence of a thick molten layer (Figure 8h) strongly affects the Love number \(k_2 \) (Figure 8c) resulting in a 30%--50% increase. Other quantities, such as the planet average temperature (Figure 9e), or the temperature of the convecting mantle (Figure 9f), are less affected by the presence of the basal layer, because the core volume, hence its contribution to the average thermal state, is rather small, and because of the thermostat effect (i.e., the non-linearity induced by the temperature dependence of viscosity, which tends to attenuate thermal differences with time [Schubert et al., 1979]).

The presence of the basal layer also results in a reduction of the tidal quality factor, \(Q \). The influence is rather moderate compared to other quantities displayed in Figure 9 (usually < 30%, Figure 9g), although it can be larger for specific combinations of small \(\eta_0 \) and large \(E^* \). This corresponds roughly to the region of the parameter space where the differences in mantle convective temperatures are the largest (Figure 9f), which probably relates to the sensitivity of dissipation to mantle temperature mentioned above. In addition, this region also coincides with the region where the layer-induced decrease in lithospheric thickness are the largest (Figure 9h), perhaps indicating a change in efficiency of stagnant-lid convection.

Consequently, the presence of a basal layer combined with the influence of mantle rheological parameters results essentially in a strong decrease in present-day surface heat flux and crustal thickness, associated
with a significant increase in core temperature as well as \(k_2 \). The impact of the presence of a basal layer on the tidal dissipation is moderate to large, and more modest for the overlying convecting mantle temperatures, due to the thermostat effect.

6. Implications

Our results have important implications for the long-term thermo-chemical evolution of Mars. For example, primordial heat can be stored efficiently in the deep interior of Mars if a stably stratified layer insulates the core, while most of the Martian mantle undergoes efficient cooling. This prediction may account for petrological evidence, which points to a protracted thermal history of Mars mantle (Filiberto & Dasgupta, 2015). Mantle source temperatures of igneous rocks estimated by Filiberto and Dasgupta (2015) indicate the presence of a long-lived hot reservoir somewhere in the Martian mantle, but also of another reservoir that has steadily cooled with time, consistent with our model predictions. The effects of a denser basal layer on the long-term evolution moreover affect the interpretation of different types of geophysical data in terms of the present-day structure of Mars, including seismic wave arrival-times and geodetic measurements (\(k_2, Q \), moment of inertia factor).

Indeed, as illustrated in Figures 9a, 9d, and 9h, the presence of a basal layer leads to a dramatic change of the lithospheric and crustal thicknesses, as well as of the shallow thermal gradient. These quantities are expected to strongly affect the propagation of seismic waves that can be recorded by the InSight SEIS instruments. For instance, the shallow thermo-chemical profile of Mars can affect the presence of seismic shadow zones, and modulate their extent (e.g., Zheng et al., 2015, their Figure 2).

One of the most dramatic effect of the basal layer is the presence of a molten silicate layer above the CMB. This prediction could influence the interpretation of seismic data in terms of core size. Indeed, the presence of a molten silicate layer could give the false impression of the CMB location to be shifted toward shallower depths if core phases are recorded by SEIS. This effect is illustrated in Figure 10 that displays seismic velocity profiles for P- and S-waves, along with the associated ray paths for deep reflected waves for a source located at 50 km depth, and an epicentral distance of 60°. The case without (Figures 10a and 10b) and with (Figures 10c and 10d) a 300-km thick basal layer are considered. The thermal profiles for these two cases are displayed in Figure 7b and the ray paths were computed using the Tau_p toolkit (Crotwell et al., 1999). In absence of a basal layer the P- and S-wave seismic velocity profiles have comparable depth-dependence in the entire mantle (Figure 10a) leading to similar ray paths for compressional and shear waves in this region (Figure 10b). This yields comparable reflections at the CMB for P- and S-waves. However, the presence of a molten basal layer changes P and S wavespeeds, \(V_p = \sqrt{(K + 4 \mu / 3) / \rho} \) and \(V_s = \sqrt{\mu / \rho} \), in the deep mantle in two different ways. Since most of the layer is molten, the corresponding shear modulus \(\mu \) (and hence \(V_s \)) is zero. The bulk modulus \(K \) also decreases due to melting and large temperatures, but its value remains significantly above zero (Figure 10c). Consequently, the P and S ray paths become significantly different: S-waves are reflected at the interface (in this case located close to \(R_c + D_c \)) where the mantle is molten, while P-waves can travel further toward deeper regions in the basal layer (however at considerably smaller wave speeds), and are reflected at the CMB (Figure 10d). These different ray paths would lead to considerably smaller values of travel time difference between P- and S-waves, \(\Delta t_{P-S} \), compared to the case where the basal layer is absent. Indeed, compared to the homogeneous mantle case the larger P-wave distances together with the smaller P-wavespeed in the molten mantle would yield larger P-waves travel times. On the other hand, the smaller S-waves distance in the layered mantle case would contribute to the decrease of the travel time difference between P- and S-waves. Specifically, in the absence of a basal layer \(\Delta t_{S-P} = 474 \) s, while \(\Delta t_{S-P} = 287 \) s when the basal layer is present. This corresponds to a significant (i.e., \(\sim 40\% \)) relative difference in \(\Delta t_{S-P} \) between the homogeneous and the layered mantle cases. In the current example, the detection of a deep bouncing S-wave could lead to an erroneous interpretation of a core radius of \(\sim 1940 \) km instead of \(1,700 \) km. Therefore, identifying such an “anomalous”/unexpected “S − P” travel time difference would allow one to discriminate between the presence or the absence of a compositional stratification in the mantle of Mars.

An analogous influence of the presence of a basal layer can be expected on the extent of shadow zones due to deep mantle and core structures. In the absence of a basal layer, the angular extent of the shadow zone
due to the liquid core is larger for S-waves than for P-waves. For a given core size, if a molten basal layer is present, the angular extent of the S-waves shadow zone would be even larger than in the absence of a basal layer, because shear waves are unable to propagate in the deep molten mantle. On the contrary, the P-wave shadow zone due to the deep regions of the planet would be less affected since compressional waves can still propagate in the molten mantle.

Additionally, the interpretation of geodetic data could be influenced by the possibility of a deep molten silicate layer in terms of core size and composition. This is shown in Figure 11, which illustrates the possible tradeoffs between Martian core size and the thickness of a basal layer. This figure was obtained by considering a set of prescribed temperature profiles sharing common characteristics, but also with distinct features. All the profiles have $D_{cr} = 60$ and $D_{l} = 300$ km thick crust and lithosphere, respectively, with $T_m = 1600$, $T_c = 2600$, and $T_d = 2500$ K. The denser layer is therefore completely molten, while the overlying mantle is entirely solid. The two main parameters that remain distinct among these models are the core radius R_c and the molten layer thickness D_d. These two parameters were varied systematically within 0–400 km for
Following the approach detailed in Samuel et al. (2019) with the knowledge of the profiles, we computed the mantle elastic coefficients, density, and rigidity required to compute the corresponding degree-two Love number. The latter is obtained following the approach outlined in the supporting information S7. For the core, which is assumed to be composed of iron with a fraction of sulfur, we followed the approach outlined in Rivoldini et al. (2011) to compute its physical properties. The obtained k_2 field shown in Figure 11a clearly illustrates the tradeoff between R_c and D_d: any given value of k_2 can be explained equally well by either a small core overlaid by a relatively thick molten silicate layer, or a larger core with a thinner or even no overlying molten silicate layer. For $k_2 = 0.169 \pm 0.0012$ (2σ) (Konopliv et al., 2016) (marked by the black lines in Figure 11a), a significant range of compatible solutions in (D_d, R_c) space exist. Such tradeoffs can be partially removed by considering additional constraints, such as the normalized moment of inertia factor, whose value in the 2σ range $\frac{I}{(MR_c^2)} = 0.36379 \pm 0.00002$, respectively. Mantle rheological parameters are $\eta_0 = 10^{21}$ Pa s, $E^* = 300$ kJ mol$^{-1}$, $V^* = 5$ cm3/mol. (d) Solutions that simultaneously satisfy constraints on k_2 and I estimates (in red) or satisfying only either k_2 or I estimates (in green) assuming $x_S = 11\%$ of sulfur in the planet's core. (e-f) Same as (d), but for $x_S = 14\%$ and $x_S = 17\%$, respectively. See text for further details.

Following the approach detailed in Samuel et al. (2019) with the knowledge of the profiles, we computed the mantle elastic coefficients, density, and rigidity required to compute the corresponding degree-two Love number. The latter is obtained following the approach outlined in the supporting information S7. For the core, which is assumed to be composed of iron with a fraction of sulfur, we followed the approach outlined in Rivoldini et al. (2011) to compute its physical properties. The obtained k_2 field shown in Figure 11a clearly illustrates the tradeoff between R_c and D_d: any given value of k_2 can be explained equally well by either a small core overlaid by a relatively thick molten silicate layer, or a larger core with a thinner or even no overlying molten silicate layer. For $k_2 = 0.169 \pm 0.0012$ (2σ) (Konopliv et al., 2016) (marked by the black lines in Figure 11a), a significant range of compatible solutions in (D_d, R_c) space exist. Such tradeoffs can be partially removed by considering additional constraints, such as the normalized moment of inertia factor, whose value in the 2σ range $\frac{I}{(MR_c^2)} = 0.36379 \pm 0.00002$, is known with a considerably better accuracy than that of the Love number (Konopliv et al., 2016). Figure 11b displays the normalized moment of inertia factor associated with R_c and D_d, assuming a core sulfur content $x_S = 0.11$. The estimated 2σ range (black contours in Figure 11b) yields a different and smaller set of compatible solutions. The k_2-inferred and I-inferred sets of compatible solutions can be combined by considering their intersection in (D_d, R_c) space to yield a considerably smaller set of solutions (Figure 11d). However, the resulting set depends on to the assumed core composition, which was fixed to a sulfur content of 11%. If one instead adjusts the core sulfur content in order to match $\frac{I}{(MR_c^2)} = 0.36379$, one can express the dependence of x_S on R_c and D_d, as displayed in Figure 11c. The core sulfur content is more sensitive to R_c than D_d, which allows constraining the relationships between k_2, I, x_S, R_c and D_d. For instance, Figures 11d–11f.
show the set of \(R_c \) and \(D_a \) values that satisfy both \(k_2 \) and \(I \) constraints for different values of core sulfur content. Therefore, for a given mantle composition, combining \(k_2 \) and \(I \) would allow one to constrain the value of \(R_c \), \(D_a \) and the composition of the Martian mantle for a plausible content of light elements in the core. Additional constraints on the present-day Mars tidal quality factor (e.g., \(Q = 95 \pm 10 \); Khan et al., 2018) may be considered. However, this constraint may be too loose to yield any improvement. In addition, \(Q \) likely depends on grain size, whose present-day value for Mars is not well known (supporting information S7). Nevertheless, the presence and the persistence of a denser, hotter and molten silicate layer overlying the Martian core will significantly affect the tidal dissipation of Mars. Over geological time scales, this could significantly influence the orbital evolution of Martian satellites, in particular Phobos, and could modulate the nature of the thermal-orbital constraints on the mantle rheology and the initial thermal state of Mars (Samuel et al., 2019). This aspect is worth investigating in the near future.

In this study, we assumed that the basal layer results from fractional crystallization. We explored the influence of another style of crystallization: the intermediate-batch crystallization as in Ballmer et al. (2017). In this crystallization scenario the fractionation is due to compaction of the crystal mush at ∼50% melt fraction (instead of due to crystal settling at ∼100% melt fraction). We found that it does not significantly affect the model results.

Our modeling results rely on the assumption of a strong compositional stratification of the mantle, as discussed earlier and shown in the supporting information S1. This implies that the interface between the basal layer and the overlying mantle is essentially flat and that no mixing occurs between the layers. In this case, the parameterized convection can reproduce accurately the evolution in curved geometry (supporting information S7). However, alternative scenarios are possible, such as the development of a strong topography at the interface and the partial erosion and mixing between the two mantle layers, which would occur in the case where the compositional density contrasts are smaller than what we considered (Davaille, 1999; M. Li et al., 2014; Maurice et al., 2017; McNamara & Zhong, 2005; Samuel & Farnetani, 2003; Tosi, Plesa et al., 2013). This would likely reduce the influence of the basal layer that we described in our study. Therefore, our modeling results for the (heterogeneous) layered and (homogeneous) non-layered cases can be considered as plausible end-members within a broad spectrum of intermediate scenarios.

We showed in the supporting information S6 that due to its iron enrichment, the basal layer remains denser than the overlying mantle, even if it is partially or entirely molten. However, our models do not account for possible melt transport within the basal layer. Indeed, if the layer is partially molten, melt-solid density differences may lead to episodes of melt segregation (Boukaré & Ricard, 2017) and/or Rayleigh-Taylor overturns. Because both the enriched melt and solids are denser than the overlying mantle these processes would remain confined within the layer. If they occur, these episodes may result in smaller temperature gradients across the basal layer, but the layer’s heat buffer effect we reported in this study would remain present. Hence, even in this case our main conclusions would not be altered by the occurrence of these complexities.

In this study, we considered the HPE abundances associated with the bulk composition model of Wänke and Dreibus (1994) while for other bulk composition models the HPE content can be significantly different (Lodders & Fegley, 1997; Sanloup et al., 1999; Treiman et al., 1986). Different HPE contents will affect the thermal evolution and the resulting present-day crustal thickness, surface heat flux, and deep thermal structure (Plesa et al., 2015). However, these changes are unlikely to qualitatively change the influence of the basal layer and our general conclusions.

Our main results did not account for the presence of water, which has been reported to be potentially important for the thermo-chemical history (Kiefer & Li, 2016). We have therefore considered cases where the influence of water on the thermo-chemical evolution of the planet is accounted for supporting information S10. Water reduces mantle viscosity, which enhances heat transfer. Water also depresses the melting curves, which enhances melting. As a consequence, the presence of water enhances early cooling and crustal production, but the thermostat effect attenuates the long-term differences in thermal histories between the cases with and the cases without water. In addition, the effect of water is similar for cases with and without basal layer. Therefore, the influence of the basal layer in presence of water remains similar to what we observed when water is not present.
A possible limitation of our approach results from the assumed constant value of the thermal mantle conductivity, in particular in the basal layer. We evaluated the possible impact of this simplification in the supporting information S9 and found that larger values of thermal conductivity (possibly due to the larger temperatures in the basal layer [Hofmeister, 1999; Schumacher & Breuer, 2006]) could notably reduce the temperature contrasts between the basal layer and the overlying mantle and generate thicker crusts. However, the iron enrichment may reduce the thermal conductivity of the basal layer (Zhang et al., 2019). Therefore, large uncertainties remain regarding the differences in thermal conductivity between the enriched basal layer and the overlying mantle. In spite of these uncertainties, the influence of the basal layer on the thermo-chemical evolution of Mars remains qualitatively comparable, and therefore does not affect the main conclusions of our study.

As pointed out in several previous studies (Nakagawa & Tackley, 2004; Zeff & Williams, 2019), the insulating nature of the basal layer may prevent the sustainability of an early Martian dynamo suggested by magnetic data (Acuña et al., 1998; Connerney et al., 2004; Johnson et al., 2020). Indeed, unlike the homogeneous mantle case (Breuer & Spohn, 2003), the presence of a basal layer requires external sources in addition to favorable endogenous processes to power an early dynamo: (1) Soon after the emplacement of the basal layer, the initial super-heating of the core due to core formation processes could have been substantial (Rubie et al., 2015; Samuel et al., 2010; Senshu et al., 2002), and would have been sufficient to generate a strong CMB heat flux during a few tens of millions of years. (2) The overturn that led to the formation of the basal layer in the first place should have enhanced CMB heat flux by delivering cold material to the CMB (Elkins Tanton et al., 2005; Plesa et al., 2014), in particular if plate tectonics was operating on early Mars (Breuer & Spohn, 2003). (3) Late giant impacts may have led to early dynamo episodes lasting for a few tens to a few hundreds of millions of years (Monteux et al., 2013; Reese & Solomatov, 2010) even though the heat associated with the impact would further reduce the heat flux at the CMB (Arkani-Hamed & Olson, 2010). (4) Elliptical instabilities in the Martian core lasting for several hundreds million years could be exited by early satellites orbiting the planet in retrograde fashion (Arkani-Hamed, 2009). This process has been shown to be sufficient to trigger and maintain an early dynamo for the first ∼500 Myrs of Mars evolution (Arkani-Hamed, 2009; Sauret et al., 2014). These mechanisms of internal or external origin, alone or in combination, would have led to the existence of an early Martian dynamo operating on the scale of a few hundred million years. Therefore, one can reasonably consider that the presence of deep mantle layering remains compatible with the existence of an ancient Martian dynamo.

7. Conclusions

We studied the influence of the presence of an iron- and HPE-enriched layer at the bottom of the Martian mantle, on the long-term thermo-chemical evolution of the entire planet. The presence of such a layer is a likely consequence of the solidification of an early silicate magma ocean that Mars most probably experienced. We conducted a restricted set of dynamic evolution calculations, and a broader systematic exploration using parameterized convection calculations to model the thermo-chemical evolution of Mars with or without the presence of a denser and enriched silicate layer overlying the Martian core. We focused on the most likely possibility of a non-convecting basal layer characterized by motionless, purely conductive heat transfer. The presence of the basal layer strongly influences long-term planetary thermal evolution, yielding a considerable temperature increase in the lower mantle and in the core. In turn, the rest of the mantle cools down more efficiently, affecting the crustal thickness and surface heat flux. The significant temperature increase due to the HPE enrichment in the denser basal layer systematically generates large amounts of melting in the enriched silicate regions. Consequently, the deep mantle enrichment in iron and HPE implies the presence of a molten silicate layer above the CMB. This hot and molten silicate material significantly increases the planet's Love number, and increases its tidal dissipation. These drastic changes induced by the deep Martian mantle layering are likely to alter our interpretation of seismic, geodetic and heat flux data that the Insight mission has started to collect since the deployment of its instruments. Therefore, the possibility of the presence of an enriched basal layer should be considered when interpreting available and upcoming geophysical data. In addition to constraining the present-day structure of Mars, this consideration will allow one to further connect the present-day structure of the planet with its early state, and to reconstruct its long-term thermo-chemical history.
Data Availability Statement

Derived data files used in this study (Samuel, 2020) are available using the DOI number: https://doi.org/10.5281/zenodo.4271582. The numerical codes used to compute the results in this study are described in detail in Ballmer et al. (2017) (Pre- and post-magma ocean HPE and iron enrichment profiles); Hüttig et al. (2013) (stagnant-lid thermo-chemical convection); Samuel et al. (2019) (Mars parameterized convection); Padovan et al. (2014) (Love number and tidal dissipation); Crotwell et al. (1999) (ray paths and travel times).

Acknowledgments

We are grateful to Julian Lowman and to two anonymous reviewers for their comments that helped improving the manuscript, to the editor Laurent Montési, and to the associate editor Scott King for their useful comments and for the handling of the manuscript. We thank Francis Nimmo for discussions and useful advice and ChEd Boukaré for discussions on solid-melt density contrasts. H. Samuel acknowledges the support from the Deutsche Forschungsgemeinschaft (grant number SA 2042/3-1). S. Padovan acknowledges funding from the DFG within the Research Unit FOR 2440 “Matter edges the support from the Deutsche density contrasts. H. Samuel acknowledges the support from the Deutsche Forschungsgemeinschaft (grant number SA 2042/3-1). S. Padovan acknowledges funding from the DFG within the Research Unit FOR 2440 “Matter edges the support from the Deutsche Forschungsgemeinschaft (grant number SA 2042/3-1). S. Padovan acknowledges funding from the DFG within the Research Unit FOR 2440 “Matter edges the support from the Deutsche Forschungsgemeinschaft (grant number SA 2042/3-1).

References

https://doi.org/10.1029/2020JE006613

SAMUEL ET AL. 25 of 28

Reference From the Supporting Information