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Purpose: To investigate the interreader agreement for grading of retinal alterations in
age-related macular degeneration (AMD) using a reading center setting.

Methods: In this cross-sectional case series, spectral-domain optical coherence tomog-
raphy (OCT; Topcon3DOCT, Tokyo, Japan) scans of 112 eyes of 112patientswith neovas-
cular AMD (56 treatment naive, 56 after three anti–vascular endothelial growth factor
injections) were analyzed by four independent readers. Imaging features specific for
AMDwere annotated using a novel custom-built annotation platform.Dice score, Bland-
Altman plots, coefficients of repeatability, coefficients of variation, and intraclass corre-
lation coefficients were assessed.

Results: Loss of ellipsoid zone, pigment epithelium detachment, subretinal fluid, and
drusen were the most abundant features in our cohort. Subretinal fluid, intraretinal
fluid, hypertransmission, descent of the outer plexiform layer, and pigment epithelium
detachment showed highest interreader agreement, while detection and measures of
loss of ellipsoid zone and retinal pigment epitheliumweremore variable. The agreement
on the size and location of the respective annotation was more consistent throughout
all features.

Conclusions: The interreader agreement depended on the respective OCT-based
feature. A selection of reliable features might provide suitable surrogate markers for
disease progression and possible treatment effects focusing on different disease stages.

Translational Relevance: This might give opportunities for a more time- and cost-
effective patient assessment and improved decisionmaking aswell as have implications
for clinical trials and training machine learning algorithms.
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Introduction

Age-related macular degeneration (AMD) is a
leading cause of legal blindness in the industrial-
ized world.1 Concerning advanced disease manifesta-
tions, a dry stage defined by the presence of retinal
pigment epithelial (RPE) atrophy (called geographic
atrophy [GA]) can be distinguished from or compli-
cated by a neovascular (nAMD) form typically charac-
terized by the presence of choroidal neovascularization
(CNV).2–4

While both forms of late-stage AMD are associ-
ated with the risk of visual loss, an effective treatment
for GA development and progression is still pending.
However, various therapeutic approaches are tested
in different stages of preclinical and clinical trials.5,6
To accelerate clinical testing, meaningful, validated
clinical endpoints are needed.7 Most interventional
trials currently rely on the progression of GA, which
is an accepted endpoint by regulators.8,9 However,
the most effective upcoming therapeutic approach
might be directed to earlier disease stages.10 Therefore,
ideal surrogate markers should identify early disease-
associated alterations before the hitherto unknown
point of no return.11

In contrast to color fundus photography and
fundus autofluorescence-based definition of GA,12,13
the Classification of Atrophy Meetings (CAM) group
(as an international consensus) recently used optical
coherence tomography (OCT) imaging to redefine the
phenotypic end stage of AMD as complete RPE and
outer retinal atrophy (RORA). They not only included
alterations of the outer retina into the definition but
also reported preceding OCT features for AMD.14,15
Furthermore, a current study dealing with RORA in
mitochondriopathies described a consistent sequence
of these OCT features in the development of RORA
representing different disease stages.16 Accordingly,
they could bear great potential as future clinical surro-
gate markers. However, the reliability of the detection
and quantification of some of these features has not yet
been systematically and comprehensively investigated.
Nevertheless, they have already been implemented by
reading centers for current and upcoming observa-
tional and interventional trials.14,17,18

Concerning nAMD, the therapy with intraocular
injection of anti–vascular endothelial growth factor
(VEGF) has been shown to be effective and reduces
the risk of visual loss.19,20 However, the numbers and
costs of required visits mean a significant burden on
health care systems, medical personal, and patients,
particularly in light of growing numbers due to
demographic changes and rising life expectation.21

Therefore, personalized interval and treatment strate-
gies (i.e., “treat and extend”) are used more commonly
in current clinical settings.22,23 In this context, objec-
tive and reliable features to determine disease activ-
ity are crucial. OCT is typically used for monitor-
ing as it provides cross-sectional images of the retina
that allow identifying the presence as well as extent
of these features.24,25 Usually, the feature identifica-
tion is manually performed by human investigators.
Machine learning (ML) applications are progressively
entering this field, especially in the context of poten-
tial deployment of in-home or remote OCT monitor-
ing.26 However, the “gold standard” by which these
algorithms are trained and validated is conventionally
human grading. This might raise the question concern-
ing reliability, subjectivity, and bias of the treatment
decisions.27

In this study, we therefore investigate the reliabil-
ity of the grading of defined OCT features commonly
found in the development of RORA and/or in the
presence of CNV secondary to AMD in order to
provide estimates for human interreader agreement for
each of these features. Thereby, we focus on the detec-
tion as well as the size and the overlap of the particular
annotations.

Methods

This retrospective cross-sectional case series was
performed at the Moorfields Eye Hospital NHS
Foundation Trust (London, UK). To identify patients
with AMD, the OCT images were linked to the diagno-
sis of the electronic medical records (EMR) database
(Medisoft, Leeds, UK) of five centers in the United
Kingdom using pseudonymized identifiers. The data
pseudonymizationwas undertaken by the EMRvendor
independently before export to the study team. The
pseudonymization key that was generated to allow
linkage of EMR to OCT data remained with the EMR
vendor at the clinical site and not accessible to the
study team, and all patient identifiers were removed.
This means that the data received by the study team
were effectively fully anonymized on receipt to prevent
any possible identification of individual patients or
treatment sites by the investigators. The imaging
data comprised 6-mm × 6-mm foveal-centered OCT
volume scans (128 or 256 scans per volume), resulting
in a resolution of either 512 × 128 A-scans or 256 ×
256 A-scans. They were obtained by spectral-domain
OCT (Topcon, Tokyo, Japan) using standardized scan
protocols. Any other additional ocular pathology
(including prior clinically significant macular edema),
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prior unlicensed bevacizumab injections, intraocular
surgery within 90 days, or prior macular or panretinal
photocoagulation led to exclusion. Thereby, this study
included imaging data of 112 eyes of 112 patients
with AMD at different disease stages. Half of these
eyes were treatment naive, and the others were imaged
after three anti-VEGF injections. Active neovascular-
ization was present in 70 eyes. Of the remaining 42
eyes, 12 and 30 were graded as intermediate and late
AMD, respectively. There were 60 right and 52 left
eyes included. The mean ± SD age was 81.4 ± 8.18
years (range, 51–98 years). The study was in adherence
with the Declaration of Helsinki. The institutional
review board ruled that approval was not required for
this study, because all data were effectively completely
anonymized before being released to our study team
to perform this research.

Image Analysis

To assess the reliability of grading retinal alterations
in AMD, a single OCT B-scan per eye was randomly
selected for annotation (including both foveal and
eccentric scans). The other B-scans were available
to give additional context if needed. Annotations
were performed by four independently trained retinal
specialists masked to the results of each other using
a custom-build platform (Supplementary Fig. S1). All
retinal abnormalities were to be delineated using (1) the
definition of features as well as the images (as standard
examples) of CAM reports14,15 and (2) unpublished
(additional) description of features based on theClassi-
fication of Atrophy Meeting from January 2019 in
Milan, Italy (the corresponding CAM Report 5 is
currently under review). The platform provided default
labels for the most common abnormalities (including
those described by the CAM group)14,15 and allowed
the readers to add additional labels not covered (as
free text) by the default setup. The latter was used
only once by one reader (annotating a single microa-
neurysm). Depending on the feature, it was annotated
as area, lateral extent, or number (i.e., single dots
in features with pointwise presentation) and likewise
for all readers. Preset default labels included drusen,
loss of ellipsoid zone (EZ), intraretinal hyperreflective
foci (HRF), hypertransmission of OCT signal (HT),
hyporeflective wedges, intraretinal fluid (IRF), descent
of the outer plexiform layer (OPL), outer retinal
tubulations, pigment epithelial detachment (PED), loss
of retinal pigment epithelium (RPE), reticular pseudo-
drusen (RPD), subretinal fluid (SRF), subretinal hyper-
reflective material (SRHM), and sub-RPE plaques
(Supplementary Fig. S1).

The annotated images were then evaluated using
Python (version 3.8.2). To obtain the area measures
in square millimeters and lateral extent measures in
millimeters, the extracted values of annotated features
(i.e., in pixels2 and pixels) were multiplied by the
individual scaling factor depending on the scanning
protocol. Further statistical analysis was exclusively
made for features present in at least 20 annotated B-
scans (respectively, eyes) to ensure reliable results.

Statistical Analysis

The software environment R (version 4.0.2; The
R Foundation for Statistical Computing, Vienna,
Austria)28 was used for interreader correlations. To
compare the reliability of feature detection, Fleiss
coefficients were used.29 To measure the agreement
in the annotated feature size, lateral extent, or
number, intraclass correlation coefficients (ICCs, one-
way random), 95% coefficients of repeatability, and
coefficients of variation (CVs) were determined.30–32
To account for the unbalanced number of readings per
sample, a linear mixed-effects model was used. Bland–
Altman plots were generated from slices with annota-
tions of at least two readers for visualization of limits
of agreement. Spearman’s rank correlation coefficients
(ρ) were calculated between the absolute differences
and the mean values to evaluate whether measurement
variability increases with lesion size or number.31

To measure overlap in annotated areas, we calcu-
lated the Dice similarity metric using Python (version
3.8.2; Python Software Foundation, Wilmington,
Delaware, USA) whenever more than one reader
annotated the same feature within a respective B-scan.
It is defined as the size of the intersection of two areas
divided by their average individual size, ranging from 0
(indicating no spatial overlap) to 1 (indicating complete
overlap).33 For area measures, overlap was calculated
on the pixel level. For lateral extent measures, only the
lateral location of the feature was taken into account.
The mean Dice coefficients per feature are reported.
Due to their focal nature, the Dice coefficient was
not regarded an appropriate metric for annotations of
HRF.

Results

In 111 of the included 112 OCT B-scans, at least
one pathologic feature was annotated. Hyporeflective
wedges (n = 1), microaneurysm (n = 1), outer retinal
tubulations (n = 5), RPD (n = 16), and sub-RPE
plaques (n = 3) were present but excluded from analy-
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Table 1. Interreader Agreement of Feature Detection

Grading Parameter n κ Coefficient 95% CI

Drusen 85 0.367 0.292–0.443
Drusen_def. 64 0.613 0.537–0.689
EZ loss 108 0.260 0.185–0.336
HRF 71 0.422 0.246–0.497
HT 29 0.746 0.671–0.822
IRF 50 0.621 0.545–0.696
OPL descent 20 0.611 0.536–0.687
PED 77 0.598 0.522–0.674
RPE loss 76 0.160 0.085–0.236
SRF 45 0.823 0.747–0.898
SRHM 51 0.357 0.282–0.433

n = overall number of B-scans annotated with the respec-
tive feature by at least one reader. CI, confidence interval;
Drusen_def., drusenwith aminimumsize of 1558.6 μm2 in the
respective B-scan.

sis due to their rarity in the respective scans. In total,
10 features were used for further analysis (Table 1). Out
of the latter group, EZ loss, drusen, and PED were the
most abundant features.

The feature detection at the B-scan level (i.e., the
individual lesion level is important when investigat-
ing progression) revealed variable interreader agree-
ment (Table 1). The most reliable results could be
found in SRF and IRF, which account for neovascular
complications, as well as the features HT, OPL descent,
and PED. Only slight to moderate interreader agree-
ment could be found in the detection of EZ loss and
RPE loss, quite similar to drusen grading.29 However,
setting a threshold of 1558.6 μm2 as minimum drusen
area (derived from the Age-Related Eye Disease Study
(AREDS) definition of minimal drusen diameter of
63 μm)34,35 to exclude so-called drupelets led to a
reduced number of annotated B-scans (n= 64) and to a
significantly increased κ coefficient of drusen grading,
indicating substantial interreader agreement.

The evaluation of interreader agreement concern-
ing the size, lateral extension, or number of annotated
features at the B-scan level revealed more consistent
results. All ICC values ranged from moderate to excel-
lent correlation (Table 2).36 The focality (i.e., number of
individual annotated spots) measures of HRF revealed
the lowest ICC with values over 0.50. The features
with the highest scores for interreader agreement of
annotated size, lateral extension, or number were PED,
SRF, HT, and OPL descent in our cohort (ICC >

0.85, Fig. 1). Similar to the feature detection, exclusion
of drupelets led to a higher interreader agreement of
grading of drusen size (Table 2).

The Bland–Altman plots did not reveal system-
atic interreader discrepancies. Therefore, the mean

Table 2. Interreader Agreement of Size, Lateral Exten-
sion, or Number of Annotated Features

Grading Parameter CoR CV, % ICC (95% CI)

Drusen 0.098a 55.0 0.687 (0.534–0.792)
Drusen_def. 0.094a 48.5 0.788 (0.670–0.868)
EZ loss 3.446b 42.4 0.573 (0.415–0.695)
HRF_focality 9.388 64.5 0.527 (0.267–0.699)
HT 0.625b 24.1 0.936 (0.880–0.968)
IRF 0.121a 81.8 0.713 (0.525–0.831)
OPL descent 0.763b 16.2 0.884 (0.739–0.952)
PED 0.134a 17.6 0.972 (0.959–0.981)
RPE loss 2.157b 44.8 0.614 (0.345–0.766)
SRF 0.103a 46.5 0.938 (0.900–0.964)
SRHM 0.234a 53.9 0.793 (0.644–0.880)

CoR, 95% coefficients of repeatability; CV, Coefficients of
variation; ICC; Intraclass correlation coefficients.

aValues indicate mm2.
bValues indicate mm.

difference between measurements by different readers
consistently was around 0, and no pair of readers
permanently showed higher or lower interreader agree-
ment than the others (Fig. 2 and Supplementary Figs.
S2–S11). However, the interreader variability increased
with annotated area or number according to Spear-
man’s rank correlation coefficient (ρ) for absolute
differences and mean values for measures of drusen (ρ
= 0.317 to ρ = 0.828, P < 0.001 to P = 0.049), PED
(ρ = 0.316 to ρ = 0.605, P < 0.001 to P = 0.042), and
HRF (ρ = 0.509 to ρ = 0.761, P < 0.001 to P = 0.018).
The area measures of IRF (ρ = 0.311 to ρ = 0.755, P
< 0.001 to P = 0.139), SRF (ρ = 0.326 to ρ = 0.517,
P = 0.003 to P = 0.062), and SRHM (ρ = 0.150 to
ρ = 0.436, P = 0.170 to P = 0.708), as well as lateral
distance measures of EZ loss (ρ = 0.010 to ρ = 0.297,
P = 0.021 to P = 0.936), HT (ρ = 0.021 to ρ = 0.550,
P = 0.027 to P = 0.921), OPL descent (ρ = 0.036 to ρ

= 0.455, P = 0.066 to P = 0.964), and RPE loss (ρ =
0.108 to ρ = 0.748, P < 0.001 to P = 0.818), did not
show this correlation.

More reliable than size, extent, or number of
annotated features, the Dice coefficients revealed
consistent values over 0.5 (up to >0.75, Table 3)
for all features. This indicated a distinct overlap of
annotated regions and therefore uniform localization
of the features (Fig. 1).

Discussion

In this study, we systematically investigated the relia-
bility of grading an extensive number of structural
OCT features associated with different stages of AMD
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Figure 1. OCT-based feature annotation. AnOCTB-scan (left) and the respective feature annotation of each reader (right) are demonstrated
as example. IRF (blue), SRF (orange), and PED (green) revealed high interreader agreement, while annotations of EZ loss (red) and intraretinal
HRF (yellow) significantly differed in size and number between the readers. However, the location of annotated features within the B-scan
was quite similar throughout all features.

Figure 2. Interreader agreement. The Bland–Altman plots demonstrate the interreader agreement between two exemplary readers
(readers 1 and 4) for measures of drusen, EZ loss, intraretinal HRF, HT, IRF, OPL descent, PED, RPE loss, SRF, and SRHM. The measurement
differences (diff.) are plotted against their mean. The solid line indicates the mean difference and the dashed lines indicate the 95% limits of
agreement. There were no systematic differences between the readers. Bland–Altman plots for the interreader agreement between each
pair of all readers can be found in Supplementary Figures S2 to S11.

in a reading center setting. The presented findings
provided evidence for the dependence of interreader
agreement on the respective annotated feature. Hence,
the appropriate selection of features has the poten-
tial to provide suitable surrogate markers for disease
progression and possible therapeutic effects on differ-
ent disease stages in upcoming interventional trials.

Clinical surrogate markers are needed to accelerate
future interventional trials. Best-corrected visual acuity
loss does not always constitute a useful endpoint in
clinical trials for AMD due to its high interindividual
variability, its psychophysical nature, and phenomena
such as foveal noninvolvement.37 Nevertheless, most
interventional trials for neovascular AMD currently
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Table 3. Interreader Agreement of Location of
Annotated Features

Grading Parameter Dice 95% CI

Drusen 0.539 0.507–0.570
EZ loss 0.632 0.606–0.658
HT 0.696 0.646–0.745
IRF 0.549 0.508–0.591
OPL descent 0.720 0.658–0.782
PED 0.764 0.740–0.787
RPE loss 0.650 0.598–0.701
SRF 0.664 0.632–0.697
SRHM 0.612 0.552–0.671

rely on this feature. In contrast, studies for dry AMD
usually use morphologic endpoints like GA (e.g., by
semiautomated delineation in fundus autofluorescence
imaging)38 or RORA (defined by OCT imaging)14,15
as an accepted endpoint by regulators.8,9 However,
atrophic lesions represent the end stage of AMD,
and the most effective upcoming therapeutic approach
might be directed to earlier disease stages, which is diffi-
cult to extrapolate from preclinical data.10 Ideal surro-
gate markers, therefore, should be readily captured,
reflect the current disease stage, be reliable, and ideally
be predictive for long-term progression based on short-
term changes.39

As the OCT is the most abundant digital imaging
device in modern ophthalmology, it has already been
implemented in routine patient assessment and most
clinical trial designs for retinopathies.40 For neovascu-
lar AMD, the analysis of IRF and SRF is used to evalu-
ate disease activity and treatment indication besides
drop of vision, presence of bleedings, or leakage in
angiography.23,41 It has been shown to be an objec-
tive and susceptible measure that might even precede
functional impairment and be faster executed and/or
more comfortable than invasive imaging technology
like angiography or fundus photography.23,24,42 For
dry AMD, multimodal assessment (including OCT)
of drusen, pigment epithelial alterations, or signs of
RORA is inevitable in the differential diagnosis and
analysis of disease progression.17 The evaluation of
additional or individual OCT features could therefore
be effectively carried out.

A current publication showed a consistent sequence
of OCT features in the development of RORA
secondary to maternally inherited diabetes and
deafness (MIDD), indicating that these features repre-
sent different disease stages.16 Given that MIDD is a
mitochondriopathy and mitochondrial dysfunction is
considered part of the pathophysiology in AMD,43,44
results obtained in that model disease might be partly

transferred to AMD. Indeed, an international consen-
sus published by the CAM group indicated that most
of these features are associated with RORA devel-
opment secondary to AMD.14,15 It also described
features like EZ loss, RPE loss, HT, OPL descent,
HRF, and SRHM. However, the reliability of these
features has not yet been comprehensively investigated
by this group.

Reliability might be the most important prerequi-
site to define a surrogate marker for patient assessment
and future interventional clinical trials. Rather, low
interreader agreement was found in the detection of
EZ loss and RPE loss. Reliability of size and location
of both feature annotations, however, were distinctly
higher, while ICC did not reach levels of previously
published data (0.75 for RPE loss).45 However, the
latter used another OCT device (Spectralis HRA-OCT;
Heidelberg Engineering, Heidelberg, Germany) that
might have led to better image quality. Some of the
differences between readers might be due to inaccurate
delineation of lesion borders since loss and attenua-
tion of RPE and/or EZ might merge (Fig. 1). Inter-
estingly, the average relative difference between two
readers for RPE loss was indicated with 72.4, which
was significantly higher than the CV (44.8) in our study,
while both measures are thought to be independent
of lesion size. Concerning HRF, the variable number
might derive from the size of the feature. Readers
might have simply overlooked small features, leading
to not more than moderate reliability (Fig. 1). As these
features with low interrater agreement might be inher-
ently problematic for humans to detect and quantify
on OCT images, their utility as surrogate markers in
clinical studies is limited. In this context, an automated
artificial intelligence–based feature detection is likely
to be more consistent and precise in performance
than human graders.24,46,47 The application of deep
learning and its broader family, ML, might be a way
forward in utilizing the utility of these potential surro-
gate markers. However, the ML algorithms are trained
and the performance is judged by the human “gold
standard,”48 which, if unreliable, may be problematic.
Different approaches try to assess this problem: (1)
Prerequisites for reliable gradings are precise defini-
tions and grading protocols as well as proper annota-
tion platforms (respectively, software environments).
(2) Training a ML algorithm on gradings from multi-
ple graders could converge these gradings to an
average grader, which would mitigate part of the
subjectivity.49 (3) A consensus grading (e.g., from a
consensus meeting or by averaging gradings or by
adjudicating inconsistencies) might be considered
“superhuman” (i.e., better than a single grader). This
superhuman grading could be used to develop a model
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that produces results at the same quality.50 (4) The use
of additional data (e.g., other modalities or follow-up
images) may allow for improved grading.51 (5) By using
super-quality imaging (e.g., higher-resolution OCT),
more reliable gradings might be obtained, which could
then be transferred to standard-quality imaging for
model development.52 Moreover, ML is likely to be the
only way to quantitate large volumes of dense OCT
raster scans that are being generated in clinical trial
reading centers, busy clinical practices, and emerging
home/remote OCT devices.53

More consistent results could be found for SRF
and IRF. Here, our results revealed high interreader
agreement in all three investigated parameters (detec-
tion, size, and location; Fig. 1). This was in line with
previously published data.54 Despite different data sets,
the here described ICCs between readers were higher
than the ICCs derived from intermodality reliability
between spectral-domain and time-domain OCT.55,56
Given that both features reflect neovascular activity
and guide the indication for anti-VEGF treatment
(besides other clinical features, including hemorrhage
and loss of vision), this might be of particular impor-
tance. A recent study has investigated the interreader
agreement of PED size measures and reported an ICC
of over 0.99.57 The slightly higher ICC value (our study,
0.972) might be traced back to the fact that the latter
has included only 20 eyes with a definite presence of
PED and did not parallelly focus on other retinal alter-
ations. The possible impact of reader fatigue (number
of images and/or features) might be worth investigating
in a future study.

We noted a high reliability of the HT feature,
supporting previously published data.45 In contrast, no
previous report has systematically investigated inter-
reader agreement of OPL descent. Given the high relia-
bility (Tables 1–3) and appearance in the development
of RORA,14 OPL descent would be worth further
investigations and to explore its potential as a possible
surrogate marker in future clinical trials as well as for
training ML algorithms.

Interestingly, the reliability of OCT-based feature
annotation for SRF, HT, and PED, for example,
reached the reliability of grading atrophic lesions in
fundus autofluorescence imaging in different diseases,
including AMD.39,44,58,59 However, OCT imaging uses
less energetic infrared light that minimizes poten-
tial light toxicity and is more comfortable for the
patient.58,60 Furthermore, OCT imaging does not rely
on pupil dilation, and devices are more common
than fundus autofluorescence imaging devices.40 In
this context, OCT scans were selected in a random-
ized manner in our study. A previous study revealed
that more eccentric scan locations might lead to less

reliable results.54 Therefore, the pure evaluation of
central scans might have led to even higher inter-
reader agreement. Nevertheless, additional features of
summation images like shape-descriptive parameters
or dynamic flow signal could give further informa-
tion,44,59,61 suggesting a multimodal assessment as a
gold standard in AMD diagnosis and study design at
the current stage of imaging technology.17

It has been shown by the AREDS study that the
number and size of drusenmight predict progression of
AMD.62 Furthermore, we could show that the AREDS
definition of minimum drusen size makes sense not
only in the context of color fundus photography but
also for OCT grading as the so-called drupelets (diame-
ter <63 μm) have an unclear pathologic importance,
and their exclusion led to a significant increase in inter-
reader agreement (Tables 1 and 2).34,35 If, nevertheless,
a delineation of drupelets is aimed for, an automated
artificial intelligence–based feature detection is likely
to show improved performance over human graders,
similar to the abovementioned small feature of HRF.
More recently, a focus was set on the predictive value
as well as the complicated delineation of drusen in
the presence of RPD (also termed subretinal drusenoid
deposits).63 In this context, the low number of patients
with RPD (which led to exclusion from further analy-
sis) is a limitation of our study, and future studies
focusing on interrater reliability of drusen, including
this particular feature, are warranted. Besides drusen
and RPD, the presentation of HRF64 and the baseline
atrophic lesion size12 were also reported to affect future
progression rate. Concerning exudative complications,
the predictive value of SRF has been controversially
discussed,65,66 while the extent of central retinal thick-
ening and IRF is thought to represent the neovascular
activity and therefore visual outcome.67–69 Therefore,
it might be hypothesized that some of the addition-
ally presented imaging features could also be predictive
for neovascular or dry AMD progression. However,
the image feature description in this study was based
on retrospective cross-sectional data, as it was beyond
the scope of this study to evaluate the accuracy of
predictive factors. However, if noted to be present,
the consistency of size and location of most imaging
features have the potential to provide the framework for
further prospective studies. These prospective studies
would allow to further evaluate the predictive value,
which might give more insights into the pathophysiol-
ogy of AMD and allow for effective study design as
presented before for different parameters in AMD or
other retinopathies.42,44,59,61,70,71

A further limitation of this study is the applica-
tion of OCT imaging devices by a single manufacturer.
Different OCT imaging devices might provide different
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scanning artifacts or image quality.72,73 Thereby, the
annotation and, hence, the reliability of single features
might be different on large-scale real-world data.74 As
there is no gold standard, it cannot be excluded that
features have been missed and other data sets could
provide addition conclusions. To minimize this possi-
bility, we relied on trained retinal specialists who have
identified and interpreted the features, and the oppor-
tunity to add additional features was given at all time
points during annotation (Supplementary Fig. S1).
Finally, readers might have utilized the contextual B-
scans differently, which was not recorded. However,
the variability of their approach and annotations
reflects the human variability, which was part of the
purpose of this study. An evaluation of how human
readers use additional images for grading might be
an interesting question for a future study, especially
in the context of multimodal approaches to retinal
diseases.17

In conclusion, this study evaluated the reliability
of annotations of multiple OCT features represent-
ing different disease stages in a reading center setup.
The inclusion of objective and reliable features like
SRF, IRF, HT, OPL descent, or PED into future
studies might enable multiple surrogate markers repre-
senting different disease stages within a single image.
This might open up numerous new opportunities for
evaluating disease progression and possible treatment
effect in AMD, possibly leading to a more time-
and cost-effective interpretation, further insights into
the pathomechanisms, enhanced individualized patient
assessment, and improved training of ML applica-
tion. Emerging advances in artificial intelligence train-
ing and validationmay allow for a higher consistency in
performance than human graders, suggesting a wider
variety of reliable surrogate markers and potential
benefits in the future.
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